共查询到20条相似文献,搜索用时 15 毫秒
1.
Little is known about the biology of Burmeister’s porpoises (Phocoena spinipinnis), a small cetacean species endemic to South American waters. Information on stock structure, however, is urgently needed, as the species suffers from considerable mortality due to local fishery activities throughout its distribution range. Using mitochondrial control region sequences and 11 species-specific microsatellite loci, we assessed the genetic differentiation among 118 stranded, incidentally or directly-caught Burmeister’s porpoises from different localities in Peruvian, Chilean, and Argentine waters. F-statistics and Bayesian clustering analyses indicate a major population differentiation along the South American Pacific coast, separating Peruvian from both Chilean and Argentine individuals. Interestingly, this population boundary is consistent with the population structure found in another sympatrically-occurring cetacean species: the dusky dolphin (Lagenorhynchus obscurus). Given that vulnerability to local depletion for South American coastal porpoises and dolphins is probably highest in the Peruvian population (due to high exploitation levels and recurrent El Niño events), the genetic data reported here considerably strengthen the need for conservation efforts focused on regulation of catches in local waters. Moreover, we discuss possible genetic differentiation among Burmeister’s porpoises (i) from the Atlantic and Pacific Ocean and (ii) from different Peruvian harbors. Finally, cross-species amplifications suggest that our newly-developed microsatellite markers will be useful in population genetic studies in the five other extant porpoise species. 相似文献
2.
KENNETH G. ROSS MICHAEL J. B. KRIEGER LAURENT KELLER D. DEWAYNE SHOEMAKER 《Biological journal of the Linnean Society. Linnean Society of London》2007,92(3):541-560
We studied population genetic variation and structure in the fire ant Solenopsis invicta using nuclear genotypic and mitochondrial DNA (mtDNA) sequence data obtained from samples collected throughout its native range. Geographic populations are strongly differentiated at both genomes, with such structure more pronounced in Brazil than in Argentina. Higher-level regional structure is evident from the occurrence of isolation-by-distance patterns among populations, the recognition of clusters of genetically similar, geographically adjacent populations by ordination analysis, and the detection of an mtDNA discontinuity between Argentina and Brazil coinciding with a previously identified landform of biogeographical relevance. Multiple lines of evidence from both genomes suggest that the ancestors of the ants we studied resembled extant northern Argentine S. invicta , and that existing Brazilian populations were established more recently by serial long-distance colonizations and/or range expansions. The most compelling evidence for this is the corresponding increase in F K (a measure of divergence from a hypothetical ancestor) and decrease in genetic diversity with distance from the Corrientes population in northern Argentina. Relatively deep sequence divergence among several mtDNA clades, coupled with geographical partitioning of many of them, suggests prolonged occupation of South America by S. invicta in more-or-less isolated regional populations. Such populations appear, in some cases, to have come into secondary contact without regaining the capacity to freely interbreed. We conclude that nominal S. invicta in its native range comprises multiple entities that are sufficiently genetically isolated and diverged to have embarked on independent evolutionary paths. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 541–560. 相似文献
3.
This study used analyses of the genetic structure of a non‐game fish species, the mottled sculpin Cottus bairdii to hypothesize probable recolonization routes used by cottids and possibly other Laurentian Great Lakes fishes following glacial recession. Based on samples from 16 small streams in five major Lake Michigan, U.S.A., tributary basins, significant interpopulation differentiation was documented (overall FST = 0·235). Differentiation was complex, however, with unexpectedly high genetic similarity among basins as well as occasionally strong differentiation within basins, despite relatively close geographic proximity of populations. Genetic dissimilarities were identified between eastern and western populations within river basins, with similarities existing between eastern and western populations across basins. Given such patterns, recolonization is hypothesized to have occurred on three occasions from more than one glacial refugium, with a secondary vicariant event resulting from reduction in the water level of ancestral Lake Michigan. By studying the phylogeography of a small, non‐game fish species, this study provides insight into recolonization dynamics of the region that could be difficult to infer from game species that are often broadly dispersed by humans. 相似文献
4.
Emmanouella Vogiatzi Eleni Kalogianni Brian Zimmerman Sofia Giakoumi Roberta Barbieri Peristera Paschou Antonios Magoulas Dimitris Tsaparis Nikos Poulakakis Costas S. Tsigenopoulos 《Biological journal of the Linnean Society. Linnean Society of London》2014,111(2):334-349
The genetic variation of the critically endangered Corfu killifish (Valencia letourneuxi), an endemic freshwater fish species of the western Balkans, was assessed for nine populations sampled in eight water systems in western continental Greece, the Peloponnese and the Ionian Island of Corfu, using mitochondrial and microsatellite markers. The analyses were based on data from three mtDNA regions (D‐loop, COI and 16S rRNA sequences) and 14 microsatellite loci. Samples from the congeneric species Valencia hispanica and the phylogenetically closely related species Aphanius fasciatus were also used in the study as outgroups. Both the mitochondrial and the microsatellite analyses revealed three distinct population groupings associated with the geographical distribution of the populations: one southern group occupying rivers draining to the Patraikos Gulf, the second one including the populations flowing into the Amvrakikos Gulf and the third, more northern group, including the other populations from rivers in Corfu Island and Epirus flowing into the Ionian Sea. Within these groupings there is limited genetic differentiation between populations; in addition, there is reduced intrapopulation genetic variation, evidenced by low heterozygosity values, number of alleles and haplotype diversity. In terms of taxonomic implications and appropriate management actions for conservation, our data suggest that the major population groups should be regarded at least as three distinct conservation units (CUs), with translocation and restocking actions to take place only within the geographical range of the CU concerned. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 334–349. 相似文献
5.
Mitochondrial DNA (mtDNA) control region sequences and microsatellite loci length polymorphisms were used to investigate genetic
differentiation in spotted dolphins (Stenella attenuata) in the Eastern Tropical Pacific and to examine the intraspecific structure of the coastal subspecies (Stenella attenuata graffmani). One-hundred and thirty-five animals from several coastal areas and 90 offshore animals were sequenced for 455 bp of the
mitochondrial control region, resulting in 112 mtDNA haplotypes. Phylogenetic analyses and the existence of shared haplotypes
between the two subspecies suggest recent and/or current gene flow. Analyses using χ2, F
ST (based on haplotype frequencies) and ΦST values (based on frequencies and genetic distances between haplotypes) yielded statistically significant separation (randomized
permutation values P<0.05) among four different coastal populations and between all but one of these and the offshore subspecies (overall F
ST=0.0691). Ninety-one coastal animals from these four geographic populations and 50 offshore animals were genotyped for seven
nuclear microsatellite loci. Analysis using F
ST values (based on allelic frequencies) yielded statistically significant separation between most coastal populations and offshore
animals, although no coastal populations were distinguished. These results argue for the existence of some genetic isolation
between offshore and inshore populations and among some inshore populations, suggesting that these should be treated as separate
units for management purposes. 相似文献
6.
Nina Vasiljevic Nadja V. Morf Josef Senn Sílvia PrezEspona Federica Mattucci Nadia Mucci Gaia MooreJones Simone Roberto Rolando Pisano Adelgunde Kratzer Rob Ogden 《Ecology and evolution》2022,12(2)
In the early 1800s, the European roe deer (Capreolus capreolus) was probably extirpated from Switzerland, due to overhunting and deforestation. After a federal law was enacted in 1875 to protect lactating females and young, and limiting the hunting season, the roe deer successfully recovered and recolonized Switzerland. In this study, we use mitochondrial DNA and nuclear DNA markers to investigate the recolonization and assess contemporary genetic structure in relation to broad topographic features, in order to understand underlying ecological processes, inform future roe deer management strategies, and explore the opportunity for development of forensic traceability tools. The results concerning the recolonization origin support natural, multidirectional immigration from neighboring countries. We further demonstrate that there is evidence of weak genetic differentiation within Switzerland among topographic regions. Finally, we conclude that the genetic data support the recognition of a single roe deer management unit within Switzerland, within which there is a potential for broad‐scale geographic origin assignment using nuclear markers to support law enforcement. 相似文献
7.
Genetic differentiation was minimal and overall non-significant among five collections of bigeye tuna Thunnus obesus from the Indian Ocean, examined for variation at mitochondrial DNA (mtDNA) and at seven microsatellite loci. 相似文献
8.
Patterns of genetic differentiation in the plains zebra ( Equus quagga ) were analysed using mitochondrial DNA control region variation and seven microsatellites. The six morphologically defined subspecies of plains zebra lacked the population genetic structure indicative of distinct evolutionary units. Both marker sets showed high levels of genetic variation and very low levels of differentiation. There was no geographical structuring of mitochondrial DNA haplotypes in the phylogenetic tree, and the plains zebra showed the lowest overall differentiation recorded in any African ungulate studied so far. Arid-adapted African ungulates have shown significant regional genetic structuring in support of the Pleistocene refuge theory. This was not the case in the zebra, and the data are discussed in relation to the impact of Pleistocene climate change on a nonbovid member of the savannah ungulate community. The only other species showing a similar absence of genetic structuring is the African buffalo ( Syncerus caffer ), but this taxon lacks the high levels of morphological variation present in the plains zebra. 相似文献
9.
Ana Lúcia Cypriano‐Souza Márcia H. Engel Susana Caballero Carlos Olavarría Lilián Flórez‐González Juan Capella Debbie Steel Angie Sremba Anelio Aguayo Deborah Thiele C. Scott Baker Sandro L. Bonatto 《Marine Mammal Science》2017,33(2):457-479
Humpback whales wintering in tropical waters along the Atlantic and Pacific coasts of the South American continent are thought to represent distinct populations or “stocks.” Here we present the first analysis of genetic differentiation and estimates of gene flow between these breeding stocks, based on both mitochondrial DNA (mtDNA) control region sequences (465 bp) and 16 microsatellite loci from samples collected off Brazil (n = 277) and Colombia (n = 148), as well as feeding areas near the western Antarctic Peninsula (n = 86). We found significant differentiation between Brazilian and Colombian breeding grounds at both mtDNA (FST = 0.058) and microsatellite (FST = 0.011) markers and corroborated previous studies showing genetic similarity between humpbacks from Colombia and those from Antarctic Peninsula feeding areas. Estimates of long‐term gene flow between Brazil and Colombia were low to moderate, asymmetrical, and mostly mediated by males. Assignment procedures detected some cases of interchange and individuals of admixed ancestry between breeding grounds, indicating limited mixing of individuals between these stocks. Overall, results highlight the differentiation of humpback whale breeding populations with adjacent feeding grounds. This appears to be a remarkable example of fidelity to seasonal habitat in the absence of any contemporary barriers. 相似文献
10.
CLINTON W. EPPS JOHN D. WEHAUSEN PER J. PALSBØLL DALE R. MCCULLOUGH 《The Journal of wildlife management》2010,74(3):522-531
ABSTRACT Understanding colonization is vital for managing fragmented populations. We employed mitochondrial DNA haplotypes and 14 microsatellite (nuclear DNA) markers to infer the origins of newly established populations of desert bighorn sheep (Ovis canadensis nelsoni) and to assess loss of genetic diversity during natural colonizations. We used haplotype distribution, F-statistics, Bayesian population clustering, and assignment tests to infer source populations for 3 recent colonies and identified a previously undetected colonization from multiple source populations. Allelic richness declined in 3 of 4 colonies in comparison to the primary source populations, but not as much as has been reported for translocated populations. Heterozygosity declined in only one colony. We also demonstrated that both native and translocated desert bighorn sheep have naturally recolonized empty habitats and suggest that colonization may partially offset population extinction in the region as long as connectivity is maintained. Genetic techniques and mitochondrial DNA haplotypes we described will allow managers to determine the origins of future colonizations by bighorn sheep in California, USA, and prioritize protection of linkages between known sources and colonies. 相似文献
11.
Plants offer excellent models to investigate how gene flow shapes the organization of genetic diversity. Their three genomes can have different modes of transmission and will hence experience varying levels of gene flow. We have compiled studies of genetic structure based on chloroplast DNA (cpDNA), mitochondrial DNA (mtDNA) and nuclear markers in seed plants. Based on a data set of 183 species belonging to 103 genera and 52 families, we show that the precision of estimates of genetic differentiation (G(ST)) used to infer gene flow is mostly constrained by the sampling of populations. Mode of inheritance appears to have a major effect on G(ST). Maternally inherited genomes experience considerably more subdivision (median value of 0.67) than paternally or biparentally inherited genomes (approximately 0.10). G(ST) at cpDNA and mtDNA markers covary narrowly when both genomes are maternally inherited, whereas G(ST) at paternally and biparentally inherited markers also covary positively but more loosely and G(ST) at maternally inherited markers are largely independent of values based on nuclear markers. A model-based gross estimate suggests that, at the rangewide scale, historical levels of pollen flow are generally at least an order of magnitude larger than levels of seed flow (median of the pollen-to-seed migration ratio: 17) and that pollen and seed gene flow vary independently across species. Finally, we show that measures of subdivision that take into account the degree of similarity between haplotypes (N(ST) or R(ST)) make better use of the information inherent in haplotype data than standard measures based on allele frequencies only. 相似文献
12.
L. W. ANDERSEN E. W. BORN I. GJERTZ Ø. WIIG L.-E. HOLM & C. BENDIXEN 《Molecular ecology》1998,7(10):1323-1336
The population structure of the Atlantic walrus, Odobenus rosmarus rosmarus , was studied using 11 polymorphic microsatellites and restriction fragment length polymorphism detected in the NADH-dehydrogenase ND1, ND2 and ND3/4 segments in mtDNA. A total of 105 walrus samples were analysed from northwest (NW) Greenland, east (E) Greenland, Svalbard and Franz Joseph Land. Two of the 10 haplotypes detected in the four samples were diagnostic for the NW Greenland sample, which implied that the group of walruses in this area is evolutionary distinct from walruses in the other three areas. One individual sampled in E Greenland exhibited a Pacific haplotype, which proved a connection between the Pacific walrus and walruses in eastern Greenland. The Franz Joseph Land, Svalbard and E Greenland samples shared the most common haplotype, indicating very little differentiation at the mtDNA level. Gene flow ( Nm ) estimates among the four areas indicated a very restricted exchange of female genes between NW Greenland and the more eastern Atlantic Arctic samples, and a closer relationship between the three samples composing the eastern Atlantic Arctic. The genetic variation at 11 polymorphic microsatellite loci grouped individuals into three populations, NW Greenland, E Greenland and a common Franz Joseph Land–Svalbard population, which were connected by moderate gene flow. 相似文献
13.
Genetic diversity and population structure were studied in eight populations of the kestrel Falco tinnunculus to identify the genetic consequences of spatial distribution and to infer the colonization patterns of the Cape Verde archipelago. We studied genetic differentiation and gene flow among seven island populations and one mainland population using nine microsatellite loci. Within the archipelago, differentiation was strong and genetic diversity and heterozygosity were low but variable among populations. Two subspecies F. tinnunculus neglectus on the northwestern islands and F. tinnunculus alexandri on all the other islands were identified as genetically distinct units. F. t. alexandri could be further separated into two groups on eastern and southern islands. Populations are probably founded by birds originating from the mainland. Immigration is more likely to the eastern and southern populations, whereas the northwestern islands with the lowest genetic diversity and highest differentiation are likely to exhibit fewer founding events by immigrants. The number of founding events on each island may depend not only on geographical distance to neighbouring populations, but also on directional immigration due to the northeastern trade winds. This may explain differences in genetic differentiation and diversity between populations and subspecies and may enable allopatric speciation. 相似文献
14.
Stephanie S. Coster Amy B. Welsh Gary Costanzo Sergio R. Harding James T. Anderson Todd E. Katzner 《Ibis》2019,161(1):66-78
Examining population genetic structure can reveal patterns of reproductive isolation or population mixing and inform conservation management. Some avian species are predicted to exhibit minimal genetic differentiation among populations as a result of the species high mobility, with habitat specialists tending to show greater fine‐scale genetic structure. To explore the relationship between habitat specialization and gene flow, we investigated the genetic structure of a saltmarsh specialist with high potential mobility across a wide geographical range of fragmented habitat. Little variation among mitochondrial sequences (620 bp from ND2) was observed among 149 individual Clapper Rails Rallus crepitans sampled along the Atlantic coast of the USA, with the majority of individuals at all sampling sites sharing a single haplotype. Genotyping of nine microsatellite loci across 136 individuals revealed moderate genetic diversity, no evidence of bottlenecks and a weak pattern of genetic differentiation that increased with geographical distance. Multivariate analyses, Bayesian clustering and an AMOVA all suggested a lack of genetic structuring across the Atlantic coast of the USA, with all individuals grouped into a single interbreeding population. Spatial autocorrelation analyses showed evidence of weak female philopatry and a lack of male philopatry. We conclude that high gene flow connecting populations of this habitat specialist may result from the interaction of ecological and behavioural factors that promote dispersal and limit natal philopatry and breeding‐site fidelity. As climate change threatens saltmarshes, the genetic diversity and population connectivity of Clapper Rails may promote resilience of their populations. This finding helps inform about potential fates of other similarly behaving saltmarsh specialists on the Atlantic coast. 相似文献
15.
Traditional population genetic analyses typically seek to characterize the genetic substructure caused by the nonrandom distribution of individuals. However, the genetic structuring of adult populations often does not remain constant over time, and may vary relative to season or life-history stages. Estimates of genetic structure may be biased if samples are collected at a single point in time, and will reflect the social organization of the species at the time the samples were collected. The complex population structures exhibited by many migratory species, where temporal shifts in social organization correspond to a large-scale shift in geographic distribution, serve as examples of the importance that time of sampling can have on estimates of genetic structure. However, it is often fine-scale genetic structure that is crucial for defining practical units for conservation and management and it is at this scale that distributional shifts of organisms relative to the timing of sampling may have a profound yet unrecognized impact on our ability to interpret genetic data. In this study, we used the wild turkey to investigate the effects of sampling regime on estimates of genetic structure at local scales. Using mitochondrial sequence data, nuclear microsatellite data and allozyme data, we found significant genetic structuring among localized winter flocks of wild turkeys. Conversely, we found no evidence for genetic structure among sampling locations during the spring, when wild turkeys exist in mixed assemblages of genetically differentiated winter flocks. If the lack of detectable genetic structure among individuals is due to an admixture of social units as in the case of wild turkeys during the spring, then the F IS value rather than the F ST value may be the more informative statistic in regard to the levels of genetic structure among population subunits. 相似文献
16.
Mitochondrial DNA (mtDNA) control-region sequences and microsatellite loci length polymorphisms were used to estimate phylogeographical patterns (historical patterns underlying contemporary distribution), intraspecific population structure and gender-biased dispersal of Phocoenoides dalli dalli across its entire range. One-hundred and thirteen animals from several geographical strata were sequenced over 379 bp of mtDNA, resulting in 58 mtDNA haplotypes. Analysis using F(ST) values (based on haplotype frequencies) and phi(ST) values (based on frequencies and genetic distances between haplotypes) yielded statistically significant separation (bootstrap values P < 0.05) among most of the stocks currently used for management purposes. A minimum spanning network of haplotypes showed two very distinctive clusters, differentially occupied by western and eastern populations, with some common widespread haplotypes. This suggests some degree of phyletic radiation from west to east, superimposed on gene flow. Highly male-biased migration was detected for several population comparisons. Nuclear microsatellite DNA markers (119 individuals and six loci) provided additional support for population subdivision and gender-biased dispersal detected in the mtDNA sequences. Analysis using F(ST) values (based on allelic frequencies) yielded statistically significant separation between some, but not all, populations distinguished by mtDNA analysis. R(ST) values (based on frequencies of and genetic distance between alleles) showed no statistically significant subdivision. Again, highly male-biased dispersal was detected for all population comparisons, suggesting, together with morphological and reproductive data, the existence of sexual selection. Our molecular results argue for nine distinct dalli-type populations that should be treated as separate units for management purposes. 相似文献
17.
Flávio O. Francisco Leandro R. Santiago Yuri M. Mizusawa Benjamin P. Oldroyd Maria C. Arias 《Insect Science》2017,24(5):877-890
Tetragonisca angustula is one of the most widespread stingless bees in the Neotropics. This species swarms frequently and is extremely successful in urban environments. In addition, it is one of the most popular stingless bee species for beekeeping in Latin America, so nest transportation and trading is common. Nest transportation can change the genetic structure of the host population, reducing inbreeding and increasing homogenization. Here, we evaluate the genetic structure of 17 geographic populations of T. angustula in southern Brazil to quantify the level of genetic differentiation between populations. Analyses were conducted on partially sequenced mitochondrial genes and 11 microsatellite loci of 1002 workers from 457 sites distributed on the mainland and on 3 islands. Our results show that T. angustula populations are highly differentiated as demonstrated by mitochondrial DNA (mtDNA) and microsatellite markers. Of 73 haplotypes, 67 were population‐specific. MtDNA diversity was low in 9 populations but microsatellite diversity was moderate to high in all populations. Microsatellite data suggest 10 genetic clusters and low level of gene flow throughout the studied area. However, physical barriers, such as rivers and mountain ranges, or the presence or absence of forest appear to be unrelated to population clusters. Factors such as low dispersal, different ecological conditions, and isolation by distance are most likely shaping the population structure of this species. Thus far, nest transportation has not influenced the general population structure in the studied area. However, due to the genetic structure we found, we recommend that nest transportation should only occur within and between populations that are genetically similar. 相似文献
18.
KIMBERLY R. ANDREWS LESZEK KARCZMARSKI WHITLOW W. L. AU SUSAN H. RICKARDS CYNTHIA A. VANDERLIP BRIAN W. BOWEN E. GORDON GRAU ROBERT J. TOONEN 《Molecular ecology》2010,19(4):732-748
Spinner dolphins (Stenella longirostris) exhibit different social behaviours at two regions in the Hawaiian Archipelago: off the high volcanic islands in the SE archipelago they form dynamic groups with ever‐changing membership, but in the low carbonate atolls in the NW archipelago they form long‐term stable groups. To determine whether these environmental and social differences influence population genetic structure, we surveyed spinner dolphins throughout the Hawaiian Archipelago with mtDNA control region sequences and 10 microsatellite loci (n = 505). F‐statistics, Bayesian cluster analyses, and assignment tests revealed population genetic separations between most islands, with less genetic structuring among the NW atolls than among the SE high islands. The populations with the most stable social structure (Midway and Kure Atolls) have the highest gene flow between populations (mtDNA ΦST < 0.001, P = 0.357; microsatellite FST = ?0.001; P = 0.597), and a population with dynamic groups and fluid social structure (the Kona Coast of the island of Hawai’i) has the lowest gene flow (mtDNA 0.042 < ΦST < 0.236, P < 0.05; microsatellite 0.016 < FST < 0.040, P < 0.001). We suggest that gene flow, dispersal, and social structure are influenced by the availability of habitat and resources at each island. Genetic comparisons to a South Pacific location (n = 16) indicate that Hawaiian populations are genetically depauperate and isolated from other Pacific locations (mtDNA 0.216 < FST < 0.643, P < 0.001; microsatellite 0.058 < FST < 0.090, P < 0.001); this isolation may also influence social and genetic structure within Hawai’i. Our results illustrate that genetic and social structure are flexible traits that can vary between even closely‐related populations. 相似文献
19.
Pinus densata is an intriguingly successful homoploid hybrid species that occupies vast areas of the southeastern Tibetan Plateau in which neither of its parental species are present, but the colonization processes involved are poorly understood. To shed light on how this species colonized and became established on the plateau, we surveyed paternally inherited chloroplast (cp) and maternally inherited mitochondrial (mt) DNA variation within and among 54 populations of P. densata and its putative parental species throughout their respective ranges. Strong spatial genetic structure of both cp and mtDNA were detected in P. densata populations. Mitotypes specific to P. densata were likely generated by complex recombination events. A putative ancestral hybrid zone in the northeastern periphery of P. densata was identified, and we propose that the species then colonized the plateau by migrating westwards. Along the colonization route, consecutive bottlenecks and surfing of rare alleles caused a significant reduction in genetic diversity and strong population differentiation. The direction and intensity of introgression from parental species varied among geographic regions. In western parts of its range, the species seems to have been isolated from seed and pollen flow from its parent species for a long time. The observed spatial distribution of genetic diversity in P. densata also appears to reflect the persistence of this species on the plateau during the last glaciation. Our results indicate that both ancient and contemporary population dynamics have contributed to the spatial distribution of genetic diversity in P. densata, which accordingly reflects its evolutionary history. 相似文献
20.
David P. Padilla Lewis G. Spurgin Eleanor A. Fairfield Juan Carlos Illera David S. Richardson 《Ecology and evolution》2015,5(1):36-45
Studying the population history and demography of organisms with important ecological roles can aid understanding of evolutionary processes at the community level and inform conservation. We screened genetic variation (mtDNA and microsatellite) across the populations of the southern grey shrike (Lanius meridionalis koenigi) in the Canary Islands, where it is an endemic subspecies and an important secondary seed disperser. We show that the Canarian subspecies is polyphyletic with L. meridionalis elegans from North Africa and that shrikes have colonized the Canary Islands from North Africa multiple times. Substantial differences in genetic diversity exist across islands, which are most likely the product of a combination of historical colonization events and recent bottlenecks. The Eastern Canary Islands had the highest overall levels of genetic diversity and have probably been most recently and/or frequently colonized from Africa. Recent or ongoing bottlenecks were detected in three of the islands and are consistent with anecdotal evidence of population declines due to human disturbance. These findings are troubling given the shrike's key ecological role in the Canary Islands, and further research is needed to understand the community‐level consequences of declines in shrike populations. Finally, we found moderate genetic differentiation among populations, which largely reflected the shrike's bottleneck history; however, a significant pattern of isolation‐by‐distance indicated that some gene flow occurs between islands. This study is a useful first step toward understanding how secondary seed dispersal operates over broad spatial scales. 相似文献