首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Species of field mice (genus Apodemus) are the most common rodents inhabiting woodlands and forests of the Palaearctic region. We examined the cytochrome b (cyt b) gene in mitochondrial DNA (1140 bp) and the interphotoreceptor retinoid binding protein (IRBP) gene in nuclear DNA (1152 bp) in nine species of Apodemus. Based on the genetic variation, the nine species were grouped into four lineages: (1) Agrarius group (A. agrarius, A. peninsulae, A. semotus, and A. speciosus), (2) Argenteus group (A. argenteus), (3) Gurkha group (A. gurkha), and (4) Sylvaticus group (A. alpicola, A. flavicollis, and A. sylvaticus). It was shown that these four lineages diverged within a short period of evolutionary time, suggestive of a radiation event. Soon after the radiation, the Agrarius group was likely to have differentiated again into the species lineages simultaneously. In contrast, the European clade, the Sylvaticus group, radiated rather recently. The relative ratio of the extent of sequence divergence among the four main lineages to that among the members of the subfamily Murinae (including Mus and Rattus) was calculated to be 72.4% in the cyt b gene with transversional substitutions, and 58.5% in the IRBP gene with all substitutions, using the Kimura two-parameter method. The value for the three European lineages was 27.6% in the cyt b gene and 12.3% in the IRBP gene. These results may have a correlation with the notion that deciduous broadleaf forests remained in Central East Asia through the late Tertiary to the present, while those in Europe to a large extent had disappeared by the Pliocene.  相似文献   

2.
Arvicolid mitochondrial genomes evolve faster than in any other mammalian lineage. The genetic diversity exhibited by these rodents contrasts sharply with their phenotypic homogeneity. Furthermore, faecal droppings from Arvicolid rodents of similar body size are almost undistinguishable on the basis of pellet morphology and content. In this study, we advantaged from their high genetic diversity vs. phenotypic homogeneity to document the applicability of mtDNA extraction from vole droppings for latter identification of such via a rapid and efficient nested PCR‐based technique using the threatened Microtus cabrerae as a model species. We sequenced the mitochondrial control region from 75 individuals belonging to 11 species of Arvicolinae from Spain, Portugal, Greece and Italy, and an additional 19 sequences from ten Microtus species from other countries were downloaded from Genbank. Based on these control region sequences, we successfully designed and applied a nested PCR for M. cabrerae‐specific and arvicolid‐generic mtDNA markers to differentiate Cabrera’s vole faecal samples among other species of the Arvicolinae subfamily. Although this study used Cabrera’s vole as a model species, similar techniques based on mtDNA sequences may find a broader applicability for noninvasive genetic conservation of vole species and their populations.  相似文献   

3.

Background  

Intraspecific variation within the diverse southern African murine rodents has not been extensively investigated, yet cryptic diversity is evident in several taxa studied to date. The Namaqua rock mouse, Micaelamys namaquensis Smith, 1834 is a widespread endemic murine rodent from the subregion. Currently, a single species with four subspecies is recognised, but in the past up to 16 subspecies were described. Thus, this species is a good candidate for the investigation of patterns and processes of diversification in a diverse but under-studied mammalian subfamily and geographic region. Here, we report genetic differentiation based on mitochondrial DNA (mtDNA) cytochrome b (cyt b) sequences among samples collected over an extensive coverage of the species' range.  相似文献   

4.
Climate change and increasing habitat loss greatly impact species survival, requiring range shifts, phenotypic plasticity and/or evolutionary change for long‐term persistence, which may not readily occur unaided in threatened species. Therefore, defining conservation actions requires a detailed assessment of evolutionary factors. Existing genetic diversity needs to be thoroughly evaluated and spatially mapped to define conservation units (CUs) in an evolutionary context, and we address that here. We also propose a multidisciplinary approach to determine corridors and functional connectivity between CUs by including genetic diversity in the modelling while controlling for isolation by distance and phylogeographic history. We evaluate our approach on a Near Threatened Iberian endemic rodent by analysing genotyping‐by‐sequencing (GBS) genomic data from 107 Cabrera voles (Microtus cabrerae), screening the entire species distribution to define categories of CUs and their connectivity: We defined six management units (MUs) which can be grouped into four evolutionarily significant units (ESUs) and three (putatively) adaptive units (AUs). We demonstrate that the three different categories of CU can be objectively defined using genomic data, and their characteristics and connectivity can inform conservation decision‐making. In particular, we show that connectivity of the Cabrera vole is very limited in eastern Iberia and that the pre‐Pyrenean and part of the Betic geographic nuclei contribute the most to the species genetic diversity. We argue that a multidisciplinary framework for CU definition is essential and that this framework needs a strong evolutionary basis.  相似文献   

5.
The systematic study of Central American moss salamanders has been a challenge to researchers due to their cryptic nature and subsequent difficulty in sampling. In an effort to elucidate relationships among moss salamanders from the Chortís Highlands, we quantified intra- and interspecific variation using data from the mitochondrial genes 16S (the amphibian barcoding gene), cytochrome b (cyt b; widely used in phylogenetic studies of neotropical salamanders), and cytochrome oxidase subunit I (COI, the universal metazoan barcoding gene). All three loci exhibit a bimodal ‘barcoding gap’ between ranges of intra- and interspecific variation, demonstrating unambiguous species boundaries with respect to the mitochondrial loci. A barcoding approach and Bayesian and maximum likelihood analyses of the mtDNA dataset revealed that the nominal species N. barbouri represents a species complex, with two of three populations assigned to this taxon being paraphyletic with respect to a sample from the type locality. These data also revealed an undescribed species from eastern Honduras, and confirmed the identity of allopatric populations of N. lignicola and N. limnospectator. Sequence data from cyt b presented an analytical challenge due to a high level of substitution saturation at the third codon position for some samples. Phylogenetic analyses of the entire dataset including and omitting the third position of cyt b resulted in conflicting results with respect to the position of the new species and N. tomamorum. Based on the molecular data, supplemented with data from external morphology and osteology, we formally describe a new species from Sierra de Agalta.  相似文献   

6.
The leopard tortoise (Stigmochelys pardalis) is the most widely distributed sub‐Saharan tortoise species, with a range extending from the Horn of Africa all over eastern Africa to the Republic of South Africa, Namibia and southernmost Angola. Using 1938 bp of mitochondrial DNA (cyt b gene, partial ND4 gene plus adjacent tRNA genes) from a nearly range‐wide sampling, we examined its phylogeographic structure and compared our findings with previously published GenBank sequences. We identified seven major clades that are largely parapatrically distributed. A few records of distinct haplotypes at the same locality or in close proximity could be the result of translocation of tortoises by man. The greatest diversity occurs in the south of the species’ range, with five out of the seven clades. Testing for isolation‐by‐distance suggests that the observed phylogeographic structure is the result of restricted geographical gene flow and not of historical vicariance. This is in sharp contrast to wide‐ranging thermophilic reptiles from the western Palaearctic, whose phylogeographic structure was significantly shaped by Pleistocene range interruptions, but also by earlier dispersal and vicariant events. Most cyt b sequences of S. pardalis from GenBank turned out to be nuclear pseudogenes, or to be of chimerical origin from such pseudogenes and authentic mitochondrial sequences, which argues for caution regarding uncritical usage of GenBank sequences. The recent revalidation of the two subspecies of S. pardalis was based on such a chimerical sequence that was erroneously identified with the subspecies S. p. babcocki. Furthermore, according to our data, the distribution of mitochondrial clades does match neither the traditional subspecies ranges nor the pronounced geographical size variation of leopard tortoises. We conclude that there is no rationale for recognizing subspecies within S. pardalis.  相似文献   

7.
Estimating the age of species or their component lineages based on sequence data is crucial for many studies in avian evolutionary biology. Although calibrations of the molecular clock in birds have been performed almost exclusively using cytochrome b (cyt b), they are commonly extrapolated to other mitochondrial genes. The existence of a large, standardized cytochrome c oxidase subunit I (COI) library generated as a result of the DNA barcoding initiative provides the opportunity to obtain a calibration for this mitochondrial gene in birds. In this study we compare the evolutionary rate of COI relative to cyt b across ten different avian orders. We obtained divergence estimates for both genes from nearly 300 phylogenetically independent pairs of species through the analysis of almost 5000 public sequences. For each pair of species we calculated the difference in divergence between COI and cyt b. Our results indicate that COI evolves on average 14% slower than cyt b, but also reveal considerable variation both among and within avian orders, precluding the use of this value as a standard adjustment for the COI molecular clock for birds. Our findings suggest that this variation is partially explained by a clear negative relationship between the difference in divergence in these genes and the age of species. Distances for cyt b are higher than those for COI for closely related species, but the values become similar as the divergence between the species increases. This appears to be the result of a stronger pattern of negative time‐dependency in the rate of cyt b than in that of COI, a difference that could be related to lower functional constraints on a small number of sites in cyt b that allow it to initially accumulate mutations more rapidly than COI.  相似文献   

8.
Glacial refugia protected and promoted biodiversity during the Pleistocene, not only at a broader scale, but also for many endemics that contracted and expanded their ranges within refugial areas. Understanding the evolutionary history of refugial endemics is especially important in the case of endangered species to recognize the origins of their genetic structure and thus produce better informed conservation practices. The Iberian Peninsula is an important European glacial refugium, rich in endemics of conservation concern, including small mammals, such as the Cabrera vole (Microtus cabrerae). This near‐threatened rodent is characterized by an unusual suite of genetic, life history and ecological traits, being restricted to isolated geographic nuclei in fast‐disappearing Mediterranean subhumid herbaceous habitats. To reconstruct the evolutionary history of the Cabrera vole, we studied sequence variation at mitochondrial, autosomal and sex‐linked loci, using invasive and noninvasive samples. Despite low overall mitochondrial and nuclear nucleotide diversities, we observed two main well‐supported mitochondrial lineages, west and east. Phylogeographic modelling in the context of the Cabrera vole's detailed fossil record supports a demographic scenario of isolation of two populations during the Last Glacial Maximum from a single focus in the southern part of the Iberian Peninsula. In addition, our data suggest subsequent divergence within the east, and secondary contact and introgression of the expanding western population, during the late Holocene. This work emphasizes that refugial endemics may have a phylogeographic history as rich as that of more widespread species, and conservation of such endemics includes the preservation of that genetic legacy.  相似文献   

9.
In the present study, a phylogeographical approach was developed to analyse the influence of selection and history on a major histocompatibility complex (Mhc) class II gene polymorphism in European bank vole (Myodes glareolus) populations. We focused on exon 2 of the Dqa gene because it is highly variable in a large array of species and appears to evolve under pathogen‐mediated selection in several rodent species. Using single‐strand conformation polymorphism analysis and sequencing techniques, 17 Dqa‐exon2 alleles, belonging to at least two different copies of Dqa gene, were detected over the distribution range of M. glareolus. Evidence of selection was found using molecular and population analyses. At the molecular level, we detected 13 codons evolving under positive selection pressures, most of them corresponding to regions coding for putative antigen binding sites of the protein. At the European level, we compared patterns of population structure for the Dqa‐exon2 and cytochrome b (cyt b) gene. We did not detect any spatial genetic structure among M. glareolus populations for the Dqa‐exon2. These results strongly differed from those obtained using the cyt b gene, which indicated a recent phylogeographical history closely linked to the last glacial events. Seven mitochondrial lineages have yet been described, which correspond to major glacial refugia. Altogether, our results revealed clear evidence of balancing selection acting on Dqa‐exon2 and maintaining polymorphism over large geographical areas despite M. glareolus history. It is thus likely that Mhc phylogeographical variability could have been shaped by local adaptation to pathogens. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 881–899.  相似文献   

10.
The present study examines the population genetic structure of fifty‐nine specimens of Glis glis (Linneaus, 1766) from thirteen localities in central Europe, sequencing a 400‐bp segment of the mitochondrial cytochrome b (cyt b) gene and a 673‐bp segment of the cytochrome c oxidase subunit I (COI) gene. The consensus tree obtained from Bayesian analysis revealed a robust dichotomy, showing two sister groups: one clade includes samples from a wide geographical area, extending from north‐central Europe to northern Italy (major branch sensu Bilton), and the other comprises samples collected in central and southern Italy and in Sicily (Italian branch). According to the Tajima–Nei model, the two phylogroups were separated by a sequence divergence of 0.8% (cyt b) – 2.6% (COI), showing the COI gene to be more informative than cyt b. On a smaller geographical scale, the Italian clade was further substructured, displaying geographical differentiation along the Peninsula. The gene pool in this area was patchy; whereas populations from Sicily Island demonstrated fixed cyt b and COI haplotypes, assuming processes of isolation and selection. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 11–21.  相似文献   

11.
Fan Z  Liu S  Liu Y  Zhang X  Yue B 《Genetica》2011,139(3):339-351
Phylogeographical studies that focus on the southeastern margin of the Tibetan Plateau are limited. The complex terrain and unique geological history make it a particularly unusual region of the Tibetan Plateau. We carried out a phylogeographical study of two rodent species Neodon irene and Apodemus latronum using the mitochondrial cytochrome b gene sequences. High genetic diversities and deep phylogenetic splits were detected in both rodents. Some haplotypes from one sampling region fell into different evolutionary clades, but most haplotypes from the same sampling regions were clustered together with each other. The results of isolation by distance analysis further substantiated that their genetic diversities were structured along geography. Thus, there were high levels of geographical structure for both rodents. Demographic analyses implied a relatively constant population size for all samples of N. irene and A. latronum in history. However, clade B of N. irene and clade 3 of A. latronum experienced population expansions at 105–32 and 156–47 Kya, respectively. Through comparison with previous studies, we suggest the high mitochondrial DNA diversities in them are probably not a species-specific feature, but a common pattern for small mammals in this unique area. Details of the historical demography of these rodents revealed in this study could provide new insights into how rodents and possibly other small mammals in this region responded to the geological and climatic events.  相似文献   

12.
All crocodilians are under varying degrees of threat due to over exploitation and these species have been listed in Appendix I or II of CITES. The lack of molecular techniques for the identification of confiscated samples makes it difficult to enforce the law. Conclusive forensic identification of species requires a complete gene sequence which is difficult in case of degraded samples. We have developed two novel sets of primers to amplify two partial cytochrome b gene sequences of six crocodile species i.e. Crocodylus palustris, Crocodylus porosus, Crocodylus siamensis, Crocodylus niloticus, Gavialis gangeticus and Caiman crocodilus. These partial sequences were edited to give a complete cyt b gene sequence, which can be used as an effective tool for forensic authentication of crocodile species. A phylogeny of crocodile species was reconstructed using these sequences. The described primers hold great promise in forensic identification of crocodile species, which can aid in the effective enforcement of law and conservation of these ancient species.  相似文献   

13.
Woody bamboos that undergo masting on a cyclic basis constitute large‐scale endogenous disturbances in forests of America, Africa and Asia, driving long‐ and short‐term effects on community structure and dynamics. Among the transient effects of these nonequilibrial phenomena are rodent outbreaks whose potential bottom‐up consequences on top predators have never been explored. We investigated the effects of unpredictable rodent outbreaks on the assemblage of nocturnal raptors of the southern Andes after a large‐scale (>140 000 ha), spatially heterogeneous, Chusquea culeou masting event in north Argentine Patagonia. We compared owl numbers and behaviours between pre‐masting (2009) and post‐masting (2011) at subsidized (outbreaking rodents) and unsubsidized (normal rodents) contiguous sites. Both generalist (opportunistic forest resident) and rodent‐specialist (forest‐facultative) owls were monitored, with emphasis on the resident territorial rufous‐legged owl (Strix rufipes). The resident owls behaved as predicted, perceiving the rodent increases soon and gathering at subsidized sites, while apparently relaxing territoriality. Contrary to our predictions, later at the rodent outbreak phase, resident territorial owls turned inconspicuous, coinciding – causally or not – with an irruption of forest‐facultative barn owls (Tyto alba tuidara), and influx of some open country short‐eared owls (Asio flammeus suinda, some of which took a chance to breed in the woods). Considering the whole rodent outbreak period, besides significant changes in owls’ numbers, we recorded a notable adjustment in owls’ foraging modes in response to food surplus (consuming prey heads only), and null interference behaviours among all observed species. This study provides a first quantitative assessment of the effects of bamboo episodic masting on top carnivores globally, and contributes novel data on the indirect effects of these events in forests of South America.  相似文献   

14.
Aim The Llanos de Ojuelos in Mexico’s Central High Plateau supports unique Opuntia scrublands and the southernmost Chihuahuan grasslands. Although human activities have modified strongly its landscape and impacted its biodiversity at an unknown scale, such impacts are poorly known. We aimed at understanding how nocturnal rodent species distributed across the landscape and formed assemblages and on the role and integration of the different habitats at the landscape level. Location The study was carried out at 43 sites in a study area of approximately 3350 km2 in the Llanos de Ojuelos. Methods During the Spring of 2008, we surveyed nocturnal rodents, through live‐trapping. We redefined habitat classes based on log‐linear multinomial regressions of rodent captures. Species rarefaction curves and true alpha, beta and gamma diversities were calculated for the different habitat classes. A map of the different habitats was constructed based on Landsat imagery. Results We captured 458 individuals of 20 rodent species. Multinomial regressions caused the merger of 11 a priori defined habitat classes into 7. Leguminous scrub and mixed nopaleras, both secondary habitats, had the highest alpha and gamma diversity values. Closed arboreal nopaleras and grasslands had the highest within‐habitat variability (1Dβ) and the lowest area coverage. Within‐habitat 1Dβ was larger than landscape 1Dβ, because of the great overlap in rodent assemblage composition between the habitats. Main conclusions There are no ‘typical’ rodent assemblages per habitat class, but they are organized loosely and have fuzzy borders. Rodent community organization was highly species‐centred. At the landscape level, secondary habitats have a profound effect on rodent diversity and should be included in management schemes for biological conservation. The most endangered habitats seem to be the closed arboreal nopaleras and grasslands. Any conservation efforts must consider their conservation and an increase in the size of remaining patches.  相似文献   

15.
16.
The identification of field mice Apodemus flavicollis, Apodemus sylvaticus, and Apodemus alpicola represents a challenge for field scientists due to their highly overlapping morphological traits and habitats. Here, we propose a new fast real‐time PCR method to discriminate the three species by species‐specific TaqMan assays. Primers and probes were designed based on the alignment of 54 cyt‐b partial sequences from 25 different European countries retrieved from GenBank. TaqMan assays were then tested on 133 samples from three different areas of Italy. Real‐time PCR analysis showed 92 samples classified as A. flavicollis, 13 as A. sylvaticus, and 28 as A. alpicola. We did not observe any double amplification and DNA sequencing confirmed species assignment obtained by the TaqMan assays. The method is implementable on different matrices (ear tissues, tail, and blood). It can be used on dead specimens or on alive animals with minimally invasive sampling, and given the high sensitivity, the assay may be also suitable for degraded or low‐DNA samples. The method proved to work well to discriminate between the species analyzed. Furthermore, it gives clear results (amplified or not) and it does not require any postamplification handling of PCR product, reducing the time needed for the analyses and the risk of carryover contamination. It therefore represents a valuable tool for field ecologists, conservationists, and epidemiologists.  相似文献   

17.
Triant DA  Dewoody JA 《Genetica》2006,128(1-3):95-108
Microtus is one of the most taxonomically diverse mammalian genera, including over 60 extant species. These rodents have evolved rapidly, as the genus originated less than 2 million years ago. If these numbers are taken at face value, then an average of 30 microtine speciation events have occurred every million years. One explanation for the rapid rate of cladogenesis in Microtus could be the karyotypic differentiation exhibited across the genus: diploid numbers range from 17 to 64. Despite the striking chromosomal variability within Microtus, phenotypic variation is unremarkable. To determine whether nucleotide substitution rates are also elevated in voles, we sequenced the entire mitochondrial DNA (mtDNA) genome of the Eurasian sibling vole (Microtus rossiaemeridionalis). We compared this genome to another previously sequenced vole mtDNA genome (Microtus kikuchii) and performed pairwise sequence comparisons with the mtDNA genomes of ten additional mammalian genera. We found that microtine mtDNA genomes are evolving more rapidly than any other mammalian lineage we sampled, as gauged by the rate of nucleotide substitution across the entire mtDNA genome as well as at each individual protein-coding gene. Additionally, we compared substitution rates within the cytochrome b gene to seven other rodent genera and found that Microtus mtDNA is evolving fastest. The root cause of accelerated evolution in Microtus remains uncertain, but merits further investigation. The mitochondrial genome sequence from this article has been deposited with the GenBank database under accession number DQ015676.  相似文献   

18.
There are currently 25 recognized species of the chipmunk genus Tamias. In this study we sequenced the complete mitochondrial cytochrome b (cyt b) gene of 23 Tamias species. We analyzed the cyt b sequence and then analyzed a combined data set of cyt b along with a previous data set of cytochrome oxidase subunit II (COII) sequence. Maximum-likelihood was used to further test the fit of models of evolution to the cyt b data. Other sciurid cyt b sequence was added to examine the evolution of Tamias in the context of other sciurids. Relationships among Tamias species are discussed, particularly the possibility of a current sorting event among taxa of the southwestern United States and the extreme divergences among the three subgenera (Neotamias, Eutamias, and Tamias).  相似文献   

19.
Reliable population estimates are an important aspect of sustainable wildlife management and conservation but can be difficult to obtain for rare and elusive species. Here, we test a new census method based on pedigree reconstruction recently developed by Creel and Rosenblatt (2013). Using a panel of 96 single‐nucleotide polymorphisms (SNPs), we genotyped fecal samples from two Swedish brown bear populations for pedigree reconstruction. Based on 433 genotypes from central Sweden (CS) and 265 from northern Sweden (NS), the population estimates (= 630 for CS,= 408 for NS) fell within the 95% CI of the official estimates. The precision and accuracy improved with increasing sampling intensity. Like genetic capture–mark–recapture methods, this method can be applied to data from a single sampling session. Pedigree reconstruction combined with noninvasive genetic sampling may thus augment population estimates, particularly for rare and elusive species for which sampling may be challenging.  相似文献   

20.
The phylogeographic architecture of the common vole, Microtus arvalis, has been well‐studied using mitochondrial DNA and used to test hypotheses relating to glacial refugia. The distribution of the five described cytochrome b (cyt b) lineages in Europe west of Russia has been interpreted as a consequence of postglacial expansion from both southern and central European refugia. A recently proposed competing model suggests that the ‘cradle’ of the M. arvalis lineages is in western central Europe from where they dispersed in different directions after the Last Glacial Maximum. In the present study, we report a new cyt b lineage of the common vole from the Balkans that is not closely related to any other lineage and whose presence might help resolve these issues of glacial refugia. The Balkan phylogroup occurs along the southern distributional border of M. arvalis in central and eastern Bosnia and Herzegovina, Montenegro, and eastern Serbia. Further north and west in Slovenia, Bosnia and Herzegovina, and Serbia, common voles belong to the previously‐described Eastern lineage, whereas both lineages are sympatric in one site in Bosnia and Herzegovina. The Balkan phylogroup most reasonably occupied a glacial refugium already known for various Balkan endemic species, in contrast to the recently proposed model. South‐east Europe is an absolutely crucial area for understanding the postglacial colonization history of small mammals in Europe and the present study adds to the very few previous detailed phylogeographic studies of this region. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 788–796.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号