首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tian Y  Bi J  Shui G  Liu Z  Xiang Y  Liu Y  Wenk MR  Yang H  Huang X 《PLoS genetics》2011,7(4):e1001364
Obesity is characterized by accumulation of excess body fat, while lipodystrophy is characterized by loss or absence of body fat. Despite their opposite phenotypes, these two conditions both cause ectopic lipid storage in non-adipose tissues, leading to lipotoxicity, which has health-threatening consequences. The exact mechanisms underlying ectopic lipid storage remain elusive. Here we report the analysis of a Drosophila model of the most severe form of human lipodystrophy, Berardinelli-Seip Congenital Lipodystrophy 2, which is caused by mutations in the BSCL2/Seipin gene. In addition to reduced lipid storage in the fat body, dSeipin mutant flies accumulate ectopic lipid droplets in the salivary gland, a non-adipose tissue. This phenotype was suppressed by expressing dSeipin specifically within the salivary gland. dSeipin mutants display synergistic genetic interactions with lipogenic genes in the formation of ectopic lipid droplets. Our data suggest that dSeipin may participate in phosphatidic acid metabolism and subsequently down-regulate lipogenesis to prevent ectopic lipid droplet formation. In summary, we have demonstrated a tissue-autonomous role of dSeipin in ectopic lipid storage in lipodystrophy.  相似文献   

2.
Among several potential animal models that can be used for adipogenic studies, Wagyu cattle is the one that presents unique molecular mechanisms underlying the deposit of substantial amounts of intramuscular fat. As such, this review is focused on current knowledge of such mechanisms related to adipose tissue deposition using Wagyu cattle as model. So abundant is the lipid accumulation in the skeletal muscles of these animals that in many cases, the muscle cross-sectional area appears more white (adipose tissue) than red (muscle fibers). This enhanced marbling accumulation is morphologically similar to that seen in numerous skeletal muscle dysfunctions, disease states and myopathies; this might indicate cross-similar mechanisms between such dysfunctions and fat deposition in Wagyu breed. Animal models can be used not only for a better understanding of fat deposition in livestock, but also as models to an increased comprehension on molecular mechanisms behind human conditions. This revision underlies some of the complex molecular processes of fat deposition in animals.  相似文献   

3.
4.
Long-term culture of larval fat body from Periplaneta americana was carried out. The cultures in a chemically defined medium show a strict dependance of the fat body on oxygen. The cultures with serum supplementation give rise to numerous cell migrations. We have studied the development of the different cell types and especially that of the mycetocytes and adipocytes. The mycetocytes can be cultured provided that they remain associated with the adipocytes. In these mycetocytes, the progressive loss of the symbiotes is related to the lipid load. The adipocytes continue to store lipids and glycogen for over 6 months. Then, the selection of different phenotypes gives rise to a homogeneous and adipocyte-like cell population. After 7 months, these cells can be subcultured regularly and a new cell line from P. americana has been established which is the only one isolated from explants of the insect fat body.  相似文献   

5.
Psammomys obesus (the Israeli sand rat) has been well studied as an animal model of Type 2 diabetes. However, obesity phenotypes in these animals have not been fully characterized. We analyzed phenotypic data including body weight, percentage body fat, blood glucose and plasma insulin concentration for over 600 animals from the Psammomys obesus colony at Deakin University to investigate the relationships between body fat, body weight and Type 2 diabetes using regression analysis and general linear modelling. The body weight distribution in Psammomys obesus approximates a normal distribution and closely resembles that observed in human populations. Animals above the 75th percentile for body weight had increased body fat content and a greater risk of developing diabetes. Increased visceral fat content .was also associated with elevated blood glucose and plasma insulin concentrations in these animals. A familial effect was also demonstrated in Psammomys obesus, and accounted for 51% of the variation in body weight, and 23–26% of the variation in blood glucose and plasma insulin concentrations in these animals. Psammomys obesus represents an excellent animal model of.obesity and Type 2 diabetes that exhibits a phenotypic pattern closely resembling that observed in human population studies. The obesity described in these animals was familial in nature and was significantly associated with Type 2 diabetes.  相似文献   

6.
7.
Accumulating evidence suggests that oxidized fats and lipid oxidation products in the diet can contribute to the pathogenesis of atherosclerosis. The present review summarizes studies that show that oxidized fat and lipid oxidation products are present in human foods; that these compounds are absorbed by the intestine and appear in the blood circulation; and that these ingested substances can have deleterious cardiovascular effects in both humans and experimental animals. However, considerable additional research is required to establish the extent to which dietary fat oxidation poses a threat to human health and/or longevity.  相似文献   

8.
Apoptosis is a unique cell suicide process that plays important roles in a wide variety of developmental and normal physiological processes in animal species, and causes diseases when inappropriately controlled. Although yeast do not possess the proteases ultimately responsible for the morphological events recognized as apoptosis, these simple unicellular eukaryotes can serve as a powerful tool for apoptosis researchers. Ectopic expression of several human and animal apoptosis proteins in either budding or fission yeast results in phenotypes that create opportunities for genetic screens. Recent exploitation of yeast as tools for studying human apoptosis-regulatory proteins has yielded novel insights into cell death mechanisms, suggesting strategies for identification of genes and drugs that modulate the functions of proteins involved in apoptosis control.  相似文献   

9.
Studies of dietary fat absorption are generally conducted by using an animal model equipped with a lymph cannula. Although this animal model is widely accepted as the in vivo model of dietary fat absorption, the surgical techniques involved are challenging and expensive. Genetic manipulation of the animal model is also costly and time consuming. The alternative in vitro model is arguably more affordable, timesaving, and less challenging. Importantly, the in vitro model allows investigators to examine the enterocytes as an isolated system, reducing the complexity inherent in the whole organism model. This paper describes how human colon carcinoma cells (Caco-2) can serve as an in vitro model to study the enterocyte transport of lipids, and lipid-soluble drugs and vitamins. It explains the proper maintenance of Caco-2 cells and the preparation of their lipid mixture; and it further discusses the valuable option of using the permeable membrane system. Since differentiated Caco-2 cells are polarized, the main advantage of using the permeable membrane system is that it separates the apical from the basolateral compartment. Consequently, the lipid mixture can be added to the apical compartment while the lipoproteins can be collected from the basolateral compartment. In addition, the effectiveness of the lentivirus expression system in upregulating gene expression in Caco-2 cells is discussed. Lastly, this paper describes how to confirm the successful isolation of intestinal lipoproteins by transmission electron microscopy (TEM).  相似文献   

10.
Dietary restriction (DR) extends lifespan in man species and modulates evolutionary conserved signalling and metabolic pathways. Most of these studies were done in adult animals. Here we investigated fat phenotypes of C. elegans larvae and adults which were exposed to DR during development. This approach was named “developmental-DR” (dDR). Moderate as well as stringent dDR increased the triglyceride to protein ratio in L4 larvae and adult worms. This alteration was accompanied by a marked expansion of intestinal and hypodermal lipid droplets. In comparison to ad libitum condition, the relative proportion of fat stored in large lipid droplets (>50 µm3) was increased by a factor of about 5 to 6 in larvae exposed to dDR. Microarray-based expression profiling identified several dDR-regulated genes of lipolysis and lipogenesis which may contribute to the observed fat phenotypes. In conclusion, dDR increases the triglyceride to protein ratio, enlarges lipid droplets and alters the expression of genes functioning in lipid metabolism in C. elegans. These changes might be an effective adaptation to conserve fat stores in animals subjected to limiting food supply during development.  相似文献   

11.
Schmitz G  Liebisch G  Langmann T 《FEBS letters》2006,580(23):5597-5610
The majority of the human ATP-binding cassette (ABC)-transporters function in cellular lipid trafficking and in the regulation of membrane lipid composition associating their dysfunction with human disease phenotypes related to sterol, phospholipid and fatty acid homeostasis. Based on findings from monogenetic disorders, animal models, and in vitro systems, major clues on the expression, function and cellular localization of human ABC-transporters have been gained. Here we review novel lipidomic technologies including quantitative mRNA expression monitoring by realtime RT-PCR and DNA-microarrays, lipid mass spectrometry, cellular fluorescence imaging and flow cytometry as promising tools to further define regulatory networks, lipid species patterns and subcellular domains important for ABC-transporter-mediated lipid trafficking.  相似文献   

12.
目的高脂膳食对机体血液、组织匀浆中各种生化指标的影响,尤其是对胆固醇等脂质代谢的影响,为研究高胆固醇引起的心血管等疾病建立模型。方法将C57BL/6 j小鼠63只随机分为2组。普食组(用普通饲料饲喂)12只,雌雄各6只,高脂组(用高脂饲料饲喂)51只,雌26只、雄25只。单笼饲喂,饲喂期为67 d。观察动物体重、摄食量、比较血液以及肝、肾组织匀浆中有关脂类代谢和抗氧化方面的生化指标以及组织病理学观察。结果高脂组血液中胆固醇(TC)和低密度脂蛋白胆固醇(LDLC)均显著高于普食组(P〈0.05);高脂组肝、肾脏组织匀浆中T-AOC、CuZn-SOD、SOD、AKP、NOS、MDA的水平与普食组相比均无统计学差异;与普食组相比,雄性小鼠摄食量差异显著(P〈0.05)、体重差异不显著;病理观察可见高脂组中肝细胞空泡变性。结论通过高脂膳食成功的建立了高胆固醇血症模型,该模型有可能在胆固醇浓度升高引起的脂质代谢异常、动脉粥样硬化、冠心病和其他代谢性疾病的研究中发挥作用。  相似文献   

13.
This paper presents the 12th update of the human obesity gene map, which incorporates published results up to the end of October 2005. Evidence from single-gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, transgenic and knockout murine models relevant to obesity, quantitative trait loci (QTL) from animal cross-breeding experiments, association studies with candidate genes, and linkages from genome scans is reviewed. As of October 2005, 176 human obesity cases due to single-gene mutations in 11 different genes have been reported, 50 loci related to Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and causal genes or strong candidates have been identified for most of these syndromes. There are 244 genes that, when mutated or expressed as transgenes in the mouse, result in phenotypes that affect body weight and adiposity. The number of QTLs reported from animal models currently reaches 408. The number of human obesity QTLs derived from genome scans continues to grow, and we now have 253 QTLs for obesity-related phenotypes from 61 genome-wide scans. A total of 52 genomic regions harbor QTLs supported by two or more studies. The number of studies reporting associations between DNA sequence variation in specific genes and obesity phenotypes has also increased considerably, with 426 findings of positive associations with 127 candidate genes. A promising observation is that 22 genes are each supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. The electronic version of the map with links to useful publications and relevant sites can be found at http://obesitygene.pbrc.edu.  相似文献   

14.
We investigated the effects of various dietary fibers or their likenesses on the apparent fat digestibility by rats fed on a high-fat diet. Each of 23 different fibers was added at 5% (w/w) to a purified diet containing 20% (w/w) corn oil. The rats were fed these diets for 2 weeks, and the feces were collected from each animal during the last 3 days. When compared with cellulose (control), 10 of the tested fibers significantly increased the fecal lipid excretion. Among these fibers, chitosan markedly increased the fecal lipid excretion and reduced the apparent fat digestibility to about a half relative to the control. The apparent protein digestibility was not greatly affected by chitosan. The fatty acid composition of the fecal lipids closely reflected that of the dietary fat. These results suggest that chitosan has potency for interfering with fat digestion and absorption in the intestinal tract, and for facilitating the excretion of dietary fat into the feces.  相似文献   

15.
RIFL (refeeding induced in fat and liver) is highly expressed in brown and white fat as well as in liver. In white adipose tissue and liver, RIFL expression is induced by refeeding and is also elevated in ob/ob mice. The function of RIFL is unknown, and there is some evidence to suggest it may be secreted. RIFL expression is induced during adipogenesis in rodent and human model systems, and cellular knockdown and mouse knockout studies demonstrate that RIFL expression correlates with lipid levels. Overall, these studies indicate that RIFL is a new important player in lipid metabolism.  相似文献   

16.
The storage of lipids is an evolutionarily conserved process that is important for the survival of organisms during shifts in nutrient availability. Triglycerides are stored in lipid droplets, but the mechanisms of how lipids are stored in these structures are poorly understood. Previous in vitro RNAi screens have implicated several components of the spliceosome in controlling lipid droplet formation and storage, but the in vivo relevance of these phenotypes is unclear. In this study, we identify specific members of the splicing machinery that are necessary for normal triglyceride storage in the Drosophila fat body. Decreasing the expression of the splicing factors U1-70K, U2AF38, U2AF50 in the fat body resulted in decreased triglyceride levels. Interestingly, while decreasing the SR protein 9G8 in the larval fat body yielded a similar triglyceride phenotype, its knockdown in the adult fat body resulted in a substantial increase in lipid stores. This increase in fat storage is due in part to altered splicing of the gene for the β-oxidation enzyme CPT1, producing an isoform with less enzymatic activity. Together, these data indicate a role for mRNA splicing in regulating lipid storage in Drosophila and provide a link between the regulation of gene expression and lipid homeostasis.  相似文献   

17.
18.
Because resolving human complex diseases is difficult, appropriate biomedical models must be developed and validated. In the past, researchers have studied diseases either by characterizing a human clinical disease and choosing the most appropriate animal model, or by characterizing a naturally occurring or induced mutant animal and identifying which human disease it best resembled. Although there has been a great deal of progress through the use of these methods, such models have intrinsic faults that limit their relevance to clinical medicine. The recent advent of techniques in molecular biology, genomics, transgenesis, and cloning furnishes investigators with the ability to study vertebrates (e.g., pigs, cows, chickens, dogs) with greater precision and utilize them as model organisms. Comparative and functional genomics and proteomics provide effective approaches for identifying the genetic and environmental factors responsible for complex diseases and in the development of prevention and treatment strategies and therapeutics. By identifying and studying homologous genes across species, researchers are able to accurately translate and apply experimental data from animal experiments to humans. This review supports the hypothesis that associated enabling technologies can be used to create, de novo, appropriate animal models that recapitulate the human clinical manifestation. Comparative and functional genomic and proteomic techniques can then be used to identify gene and protein functions and the interactions responsible for disease phenotypes, which aids in the development of prevention and treatment strategies.  相似文献   

19.
This paper presents the eleventh update of the human obesity gene map, which incorporates published results up to the end of October 2004. Evidence from single‐gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, transgenic and knockout murine models relevant to obesity, quantitative trait loci (QTLs) from animal cross‐breeding experiments, association studies with candidate genes, and linkages from genome scans is reviewed. As of October 2004, 173 human obesity cases due to single‐gene mutations in 10 different genes have been reported, and 49 loci related to Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and causal genes or strong candidates have been identified for most of these syndromes. There are 166 genes which, when mutated or expressed as transgenes in the mouse, result in phenotypes that affect body weight and adiposity. The number of QTLs reported from animal models currently reaches 221. The number of human obesity QTLs derived from genome scans continues to grow, and we have now 204 QTLs for obesity‐related phenotypes from 50 genome‐wide scans. A total of 38 genomic regions harbor QTLs replicated among two to four studies. The number of studies reporting associations between DNA sequence variation in specific genes and obesity phenotypes has also increased considerably with 358 findings of positive associations with 113 candidate genes. Among them, 18 genes are supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. Overall, >600 genes, markers, and chromosomal regions have been associated or linked with human obesity phenotypes. The electronic version of the map with links to useful publications and genomic and other relevant sites can be found at http:obesitygene.pbrc.edu .  相似文献   

20.
Fat storage disorders including obesity are pandemic human health problems. As a genetically amenable model organism, Caeno- rhabditis elegans has often been used to explore the molecular mechanisms of fat storage regulation. Dye staining of fixed animals and stimulated Raman scattering (SRS) microscopy methods have been used successfully to study fat storage, but a genetic screening system that takes full advantage of C. elegans transparency to perform live imaging of fluorescent protein reporters has not yet been reported. Here, we investigated the tissue-specific expression of the GFP fusion of Perilipin 1 (PLIN1), a Drosophila lipid droplet-associated protein, in C. elegans. Our results indicate that PLINI::GFP labels lipid droplets and can be used as a fat storage indicator in live worms. Through an RNAi screen, we further identified several previously uncharacterized new fat storage regulators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号