共查询到20条相似文献,搜索用时 15 毫秒
1.
Maria Mbatudde Majaliwa Mwanjololo Esezah Kyomugisha Kakudidi Helmut Dalitz 《African Journal of Ecology》2012,50(4):393-403
Continued harvesting and climate change are affecting the distributions of many plant species and may lead to numerous extinctions over the next century. Endangered species are likely to be a special concern, but the extent to which they are sensitive to climate is currently unclear. Species distribution modelling, if carefully implemented, can be used to assess climate sensitivity and potential climate change impacts, of tree species. We used MaxEnt algorithm for species distribution modelling to assess the potential distribution and climate change risks for a threatened Prunus africana, in East Africa. Data from different herbaria on its distribution were linked to data on climate to test hypotheses on the factors determining its distribution. Predictive models were developed and projected onto a climate scenario for 2050 to assess climate change risks. Precipitation of driest quarter and annual precipitation appeared to be the main factors influencing its distribution. Climate change was predicted to result in reductions of the species' habitats (e.g. Erasmus et al., Glob. Change Biol. 2002; 8 : 679). Prunus africana distribution is thus highly vulnerable to a warming climate and highlights the fact that both in‐situ and ex‐situ conservation will be a solution to global warming. 相似文献
2.
珍稀濒危植物蒙古扁桃的组织培养及植株再生 总被引:12,自引:2,他引:12
对珍稀濒危植物蒙古扁桃进行组织培养获得再生植株。实验结果表明,在MS培养基上蒙古扁桃幼苗茎尖,茎切段和叶片等外植体均可以脱分化形成愈伤组织,并进一步分化形成再生植株。器官的脱分化与再分化决定于培养基中的激素种类及其浓度。诱导愈伤组织形成的最适培养基为MS+6-BA0.8mg/L NAA0.1mg/L,芽分化诱导最适培养基为MS+6-BA0.8mg/L,诱导生根的最适培养基是MS+IBA0.5mg/L。 相似文献
3.
4.
Phylogeny and Classification of Prunus sensu lato (Rosaceae) 总被引:3,自引:0,他引:3
The classification of the economically important genus Prunus L. sensu lato (s.L) is controversial due to the high levels of convergent or the parallel evolution of morphological characters. In the present study, phylogenetic analyses of fifteen main segregates of Prunus s.I. represented by eighty-four species were conducted with maximum parsimony and Bayesian approaches using twelve chloroplast regions (atpB- rbcL, matK, ndhF, psbA-trnH, rbcL, rpL 16, rpoC1, rps16, trnS-G, trnL, trnL-F and ycfl) and three nuclear genes (ITS, s6pdh and Sbel) to explore their infrageneric used to develop a new, phylogeny-based classification relationships. The results of these analyses were of Prunus s.I. Our phylogenetic reconstructions resolved three main clades of Prunus s.I. with strong supports. We adopted a broad-sensed genus, Prunus, and recognised three subgenera corresponding to the three main clades: subgenus Padus, subgenus Cerasus and subgenus Prunus. Seven sections of subgenus Prunus were recognised. The dwarf cherries, which were previously assigned to subgenus Cerasus, were included in this subgenus Prunus. One new section name, Prunus L. subgenus Prunus section Persicae (T. T. yu & L. T. Lu) S. L. Zhou and one new species name, Prunus tianshanica (Pojarkov) S. Shi, were proposed. 相似文献
5.
An understanding of the patterns of variation within and among populations of tropical trees is essential for devising optimum genetic management strategies for their conservation and sustainable utilization. Here, random amplified polymorphic DNA (RAPD) analysis was used to partition variation within and among 10 populations of the endangered Afromontane medicinal tree, Prunus africana, sampled from five countries across the geographical range of the species (Cameroon, Ethiopia, Kenya, Madagascar and Uganda). Analysis of molecular variance ( AMOVA ) employed 48 RAPD markers and revealed most variation among countries (66%, P < 0.001). However, variation among individuals within populations and among populations within Cameroon and Madagascar was also highly significant. Analysis of population product frequency data indicated Ugandan material to be more similar to populations from Cameroon than populations from Kenya and Ethiopia, while Malagash populations were most distinct. The implications of these findings for determining appropriate approaches for conservation of the species, particularly in Cameroon and Madagascar, are discussed. 相似文献
6.
7.
BACKGROUND AND AIMS: Prunus, subgenus Padus, exhibits two completely different calcium oxalate crystal macropatterns in mature leaves. Foliar macropattern development has been described previously in P. virginiana, representing one version. Prunus serotina, in the group exhibiting the second macropattern, is described here. The goal was to describe developmental details for comparison with P. virginiana, and to extend the sparse current knowledge of crystal macropatterns. METHODS: Leaves at various developmental stages were removed from local trees and from herbarium specimens. Early leaf stages and freehand leaf and stem sections were mounted directly in aqueous glycerine; larger leaves were processed whole or in representative pieces in household bleach, dehydrated in alcohol/xylol, and mounted in Permount. Crystals were detected microscopically between crossed polarizers. KEY RESULTS: Bud scales have a dense druse population. Druses appear first at the stipule tip and proliferate basipetally but soon stop forming; growing stipules therefore have a declining density of druses. Druses appear at the tip of leaves <1 mm long, then proliferate basipetally in the midrib. Lamina druses appear in the distal marginal teeth of leaves 3 cm long; from here they proliferate basipetally and towards midrib along major veins. In about two-thirds-grown leaves (6-9 cm length) druses are all adaxial to veins of most orders; a shift occurs then to formation of prisms, which appear first abaxial to, then all around, veins. Mature leaves have virtually all prisms encrusting all major veins, more sparsely along smaller minor veins. Late season leaves form epitactic crystals on existing prismatics. CONCLUSIONS: The developing and mature macropattern of P. serotina is almost the reverse of the pattern described previously in P. virginiana, and shows that two closely related species can develop radically different modes of crystallization. The few detailed macropattern studies to date reveal striking variations that indicate a new level of organization that must be integrated with the anatomical, physiological and molecular approaches that have been dominant so far. 相似文献
8.
9.
Lack of genetic diversity across diverse immune genes in an endangered mammal,the Tasmanian devil (Sarcophilus harrisii) 下载免费PDF全文
Katrina M. Morris Belinda Wright Catherine E. Grueber Carolyn Hogg Katherine Belov 《Molecular ecology》2015,24(15):3860-3872
The Tasmanian devil (Sarcophilus harrisii) is threatened with extinction due to the spread of devil facial tumour disease. Polymorphisms in immune genes can provide adaptive potential to resist diseases. Previous studies in diversity at immune loci in wild species have almost exclusively focused on genes of the major histocompatibility complex (MHC); however, these genes only account for a fraction of immune gene diversity. Devils lack diversity at functionally important immunity loci, including MHC and Toll‐like receptor genes. Whether there are polymorphisms at devil immune genes outside these two families is unknown. Here, we identify polymorphisms in a wide range of key immune genes, and develop assays to type single nucleotide polymorphisms (SNPs) within a subset of these genes. A total of 167 immune genes were examined, including cytokines, chemokines and natural killer cell receptors. Using genome‐level data from ten devils, SNPs within coding regions, introns and 10 kb flanking genes of interest were identified. We found low polymorphism across 167 immune genes examined bioinformatically using whole‐genome data. From this data, we developed long amplicon assays to target nine genes. These amplicons were sequenced in 29–220 devils and found to contain 78 SNPs, including eight SNPS within exons. Despite the extreme paucity of genetic diversity within these genes, signatures of balancing selection were exhibited by one chemokine gene, suggesting that remaining diversity may hold adaptive potential. The low functional diversity may leave devils highly vulnerable to infectious disease, and therefore, monitoring and preserving remaining diversity will be critical for the long‐term management of this species. Examining genetic variation in diverse immune genes should be a priority for threatened wildlife species. This study can act as a model for broad‐scale immunogenetic diversity analysis in threatened species. 相似文献
10.
Xi Wang Jun‐Ru Wang Si‐Yu Xie Xiao‐Hui Zhang Zhao‐Yang Chang Liang Zhao Louis Ronse De Craene Jun Wen 《植物分类学报:英文版》2022,60(5):1062-1077
Although the vast majority of Prunus L. (Rosaceae) species have clearly differentiated sepals and petals, two former genera Maddenia and Pygeum have been described as having an undifferentiated perianth. However, floral morphological and morphogenetic data are scarce, and a renewed investigation is essential to understand the evolution of the perianth differentiation. Here, floral morphogenesis in Prunus hypoleuca (Koehne) J.Wen (=Maddenia hypoleuca Koehne) and Prunus topengii (Merr.) J. Wen & L. Zhao (=Pygeum topengii Merr.) were examined with scanning electron microscopy. The floral development demonstrates that the ten perianth parts can be distinguished as five sepals in an external whorl and five petals in an internal whorl. The sepal primordia are broad, crescent-shaped, and truncate. The petal primordia are rounded and initially resemble the androecium. However, at maturity petals and sepals look much the same in the two species, differing from other Prunus species. The ovule is anatropous and unitegmic, but there is a basal appendage near the ovule of P. hypoleuca which is absent in P. topengii. The direction of development of floral nectaries in the hypanthium is basipetal in P. hypoleuca but acropetal in P. topengii. Perianth segments are differentiated in the two groups and the similarity of the perianth parts is secondarily acquired. Our results support the separation of the Maddenia and Pygeum groups as well as their inclusion in a broader monophyletic Prunus based on molecular phylogenetic studies. We herein provide a new nomenclatural change: Prunus topengii (Merr.) J. Wen & L. Zhao, comb. nov. 相似文献
11.
Sequences of the chloroplast ndhF gene and the nuclear ribosomal ITS regions are employed to reconstruct the phylogeny of Prunus (Rosaceae), and evaluate the classification schemes of this genus. The two data sets are congruent in that the genera Prunus s.l. and Maddenia form a monophyletic group, with Maddenia nested within Prunus. However, the ndhF data set is incongruent with the ITS data supporting two major groups within Prunus one consisting of subgenera Laurocerasus (including Pygeum) and Padus as well as the genus Maddenia and another of subgenera Amygdalus, Cerasus, and Prunus. The ITS data, on the other hand, support a clade composed of subgenera Amygdalus and Prunus and Prunus sect. Microcerasus in addition to a paraphyletic grade of subgenera Laurocerasus and Padus (and the genus Maddenia) taxa. In general, the subgeneric classifications of Prunus s.l. are not supported. The ITS and ndhF phylogenies differ mainly in interspecific relationships and the relative position of the Padus/Laurocerasus group. Both ITS and ndhF data sets suggest that the formerly recognized genus Pygeum is polyphyletic and that the distinction of the subgenera Padus and Laurocerasus is not supported. The biogeographic interactions of the temperate and tropical members in the Padus/Laurocera- sus/Maddenia alliance including Pygeum are shown to be highly dynamic and complex. 相似文献
12.
13.
Marie Pairon Blaise Petitpierre Michael Campbell Antoine Guisan Olivier Broennimann Philippe V. Baret Anne-Laure Jacquemart Guillaume Besnard 《Annals of botany》2010,105(6):881-890
Background and Aims
Black cherry (Prunus serotina) is a North American tree that is rapidly invading European forests. This species was introduced first as an ornamental plant then it was massively planted by foresters in many countries but its origins and the process of invasion remain poorly documented. Based on a genetic survey of both native and invasive ranges, the invasion history of black cherry was investigated by identifying putative source populations and then assessing the importance of multiple introductions on the maintenance of gene diversity.Methods
Genetic variability and structure of 23 populations from the invasive range and 22 populations from the native range were analysed using eight nuclear microsatellite loci and five chloroplast DNA regions.Key Results
Chloroplast DNA diversity suggests there were multiple introductions from a single geographic region (the north-eastern United States). A low reduction of genetic diversity was observed in the invasive range for both nuclear and plastid genomes. High propagule pressure including both the size and number of introductions shaped the genetic structure in Europe and boosted genetic diversity. Populations from Denmark, The Netherlands, Belgium and Germany showed high genetic diversity and low differentiation among populations, supporting the hypothesis that numerous introduction events, including multiple individuals and exchanges between sites, have taken place during two centuries of plantation.Conclusions
This study postulates that the invasive black cherry has originated from east of the Appalachian Mountains (mainly the Allegheny plateau) and its invasiveness in north-western Europe is mainly due to multiple introductions containing high numbers of individuals. 相似文献14.
Isolation by Distance (IBD) is a genetic pattern in which populations geographically closer to one another are more genetically similar to each other than populations which are farther apart. Black cherry (Prunus serotina Ehrh.) (Rosaceae) is a forest tree species widespread in eastern North America, and found sporadically in the southwestern United States, Mexico, and Guatemala. IBD has been studied in relatively few North American plant taxa, and no study has rigorously sampled across the range of such a widespread species. In this study, IBD and overall genetic structure were assessed in eastern black cherry (P. serotina Ehrh. var. serotina), the widespread variety of eastern North America. Eastern North America. Prunus serotina Ehrh. var. serotina (Rosaceae). Dense sampling across the entire range of eastern black cherry was made possible by genotyping 15 microsatellite loci in 439 herbarium samples from all portions of the range. Mantel tests and STRUCTURE analyses were performed to evaluate the hypothesis of IBD and genetic structure. Mantel tests demonstrated significant but weak IBD, while STRUCTURE analyses revealed no clear geographic pattern of genetic groups. The modest geographic/genetic structure across the eastern black cherry range suggests widespread gene flow in this taxon. This is consistent with P. serotina's status as a disturbance‐associated species. Further studies should similarly evaluate IBD in species characteristic of low‐disturbance forests. 相似文献
15.
Katayama H Uematsu C 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2005,111(7):1430-1439
In order to understand the evolutionary aspects of the chloroplast DNA (cpDNA) structures in Rosaceous plants, a physical
map of peach (Prunus persica cv. Hakuhou) cpDNA was constructed. Fourteen lambda phage clones which covered the entire sequence of the peach cpDNA were
digested by restriction enzymes (SalI, XhoI, BamHI, SacI, and PstI) used singly or in combination. The molecular size of peach cpDNA was estimated to be about 152 kb. The gene order and contents
were revealed to be equivalent to those of standard type of angiosperms by the localization of 31 genes on the physical map.
Eighteen accessions from 14 Prunus species (P. persica, P. mira, P. davidiana, P. cerasis, P. cerasifera, P. domestica, P. insititia, P. spinosa, P. salicina, P. maritima, P. armeniaca, P. mume, P. tomentosa, P. zippeliana, and P. salicifolia) and one interspecific hybrid were used for the structural analysis of cpDNAs. Seventeen mutations (16 recognition site changes
and one length mutation) were found in the cpDNA of these 18 accessions by RFLP analysis allowing a classification into 11
genome types. Although the base substitution rate in the recognition site (100p = 0.72) of cpDNA in Prunus was similar to that of other plants, i.e., Triticum–Aegilops, Brassica, and Pisum, it differed from Pyrus (100p = 0.15) in Rosaceae. Seven mutations including one length mutation were densely located within a region of about 9.1 kb which
includes psbA and atpA in the left border of a large single-copy region of Prunus cpDNAs. The length mutation was detected only in P. persica and consisted of a 277 bp deletion which occurred in a spacer region between the trnS and trnG genes within the 9.1 kb region. Additional fragment length mutations (insertion/deletion), which were not detected by RFLP
analysis, were revealed by PCR and sequence analyses in P. zippeliana and P. salicifolia. All of these length mutations occurred within the 9.1 kb region between psbA and atpA. This region could be an intra-molecular recombinational hotspot in Prunus species. 相似文献
16.
Min-Jee Lee Yeong-Geun Lee You Jin Lim Kyeong-Hwa Seo Seok-Hyun Eom Se Chan Kang Nam-In Baek Youn-Hyung Lee 《化学与生物多样性》2023,20(1):e202200823
This research was supported by Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ014204032019) and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2020R1A6A3A01100042). 相似文献
17.
Bruce G. Marcot Isa Woo Karen M. Thorne Chase M. Freeman Glenn R. Guntenspergen 《Ecology and evolution》2020,10(2):662-677
Understanding habitat associations is vital for conservation of at‐risk marsh‐endemic wildlife species, particularly those under threat from sea level rise. We modeled environmental and habitat associations of the marsh‐endemic, Federally endangered salt marsh harvest mouse (Reithrodontomys raviventris, RERA) and co‐occurrence with eight associated small mammal species from annual trap data, 1998–2014, in six estuarine marshes in North San Francisco Bay, California. Covariates included microhabitat metrics of elevation and vegetation species and cover; and landscape metrics of latitude–longitude, distance to anthropogenic features, and habitat patch size. The dominant cover was pickleweed (Salicornia pacifica) with 86% mean cover and 37 cm mean height, and bare ground with about 10% mean cover. We tested 38 variants of Bayesian network (BN) models to determine covariates that best account for presence of RERA and of all nine small mammal species. Best models had lowest complexity and highest classification accuracy. Among RERA presence models, three best BN models used covariates of latitude–longitude, distance to paved roads, and habitat patch size, with 0% error of false presence, 20% error of false nonpresence, and 20% overall error. The all‐species presence models suggested that within the pickleweed marsh environment, RERA are mostly habitat generalists. Accounting for presence of other species did not improve prediction of RERA. Habitat attributes compared between RERA and the next most frequently captured species, California vole (Microtus californicus), suggested substantial habitat overlap, with RERA habitat being somewhat higher in marsh elevation, greater in percent cover of the dominant plant species, closer to urban areas, further from agricultural areas, and, perhaps most significant, larger in continuous size of marsh patch. Findings will inform conservation management of the marsh environment for RERA by identifying best microhabitat elements, landscape attributes, and adverse interspecific interactions. 相似文献
18.
Emily T. Johnston Kyatt R. Dixon John A. West Nurliah Buhari Morgan L. Vis 《Journal of phycology》2018,54(2):159-170
The freshwater red algal order Thoreales has triphasic life history composed of a diminutive diploid “Chantransia” stage, a distinctive macroscopic gametophyte with multi‐axial growth and carposporophytes that develop on the gametophyte thallus. This order is comprised of two genera, Thorea and Nemalionopsis. Thorea has been widely reported with numerous species, whereas Nemalionopsis has been more rarely observed with only a few species described. DNA sequences from three loci (rbcL, cox1, and LSU) were used to examine the phylogenetic affinity of specimens collected from geographically distant locations including North America, South America, Europe, Pacific Islands, Southeast Asia, China, and India. Sixteen species of Thorea and two species of Nemalionopsis were recognized. Morphological observations confirmed the distinctness of the two genera and also provided some characters to distinguish species. However, many of the collections were in “Chantransia” stage rather than gametophyte stage, meaning that key diagnostic morphological characters were unavailable. Three new species are proposed primarily based on the DNA sequence data generated in this study, Thorea kokosinga‐pueschelii, T. mauitukitukii, and T. quisqueyana. In addition to these newly described species, one DNA sequence from GenBank was not closely associated with other Thorea clades and may represent further diversity in the genus. Two species in Nemalionopsis are recognized, N. shawii and N. parkeri nom. et stat. nov. Thorea harbors more diversity than had been recognized by morphological data alone. Distribution data indicated that Nemalionopsis is common in the Pacific region, whereas Thorea is more globally distributed. Most species of Thorea have a regional distribution, but Thorea hispida appears to be cosmopolitan. 相似文献
19.
Kristin E. Brzeski David R. Rabon Jr Michael J. Chamberlain Lisette P. Waits Sabrina S. Taylor 《Molecular ecology》2014,23(17):4241-4255
In natural populations, the expression and severity of inbreeding depression can vary widely across taxa. Describing processes that influence the extent of inbreeding and inbreeding depression aid in our understanding of the evolutionary history of mating systems such as cooperative breeding and nonrandom mate selection. Such findings also help shape wildlife conservation theory because inbreeding depression reduces the viability of small populations. We evaluated the extent of inbreeding and inbreeding depression in a small, re‐introduced population of red wolves (Canis rufus) in North Carolina. Since red wolves were first re‐introduced in 1987, pedigree inbreeding coefficients (f) increased considerably and almost every wild born wolf was inbred (average f = 0.154 and max f = 0.383). The large inbreeding coefficients were due to both background relatedness associated with few founders and numerous close relative matings. Inbreeding depression was most evident for adult body size and generally absent for direct fitness measures such as reproductive success and survival; no lethal equivalents (LE = 0.00) were detected in juvenile survival. The lack of strong inbreeding depression in direct measures of fitness could be due to a founder effect or because there were no outbred individuals for comparison. Our results highlight the variable expression of inbreeding depression across traits and the need to measure a number of different traits when evaluating inbreeding depression in a wild population. 相似文献
20.
Matthew E. Horning Theresa R. McGovern Dale C. Darris Nancy L. Mandel Randy Johnson 《Restoration Ecology》2010,18(2):235-243
An important goal for land managers is the incorporation of appropriate (e.g., locally adapted and genetically diverse) plant materials in restoration and revegetation activities. To identify these materials, researchers need to characterize the variability in essential traits in natural populations and determine how they are related to environmental conditions. This common garden study was implemented to characterize the variability in growth and phenological traits relative to climatic and geographic variables of 39 Holodiscus discolor (Pursh) Maxim. accessions from locations throughout the Pacific Northwest, U.S.A. Principal component analysis of 12 growth and phenological traits explained 48.2% of the observed variability in the first principal component (PC‐1). With multiple regressions, PC‐1 was compared to environmental values at each source location. Regression analysis identified a four‐variable model containing elevation, minimum January temperature, maximum October temperature, and February precipitation that explained 86% of the variability in PC‐1 (r2= 0.86, p < 0.0001). Spatial analysis using this regression model identified patterns of genetic diversity within the Pacific Northwest that can help guide germplasm selection (i.e., seed collections) for restoration and revegetation activities. 相似文献