首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The parasphenoid is located in the cranium of many vertebrates. When present, it is always an unpaired, dermal bone. While most basal vertebrates have a parasphenoid, most placental mammals lack this element and have an unpaired, dermal vomer in a similar position (i.e. associated with the same bones) and with a similar function. As such, the parasphenoid and the vomer were considered homologous by some early twentieth century researchers. However, others questioned this homology based on comparisons between mammals and reptiles. Here we investigate the parasphenoid bone across the major vertebrate lineages (amphibians, reptiles, mammals and teleosts) including both developmental and evolutionary aspects, which until now have not been considered together. We find that within all the major vertebrate lineages there are organisms that possess a parasphenoid and a vomer, while the parasphenoid is absent within caecilians and most placental mammals. Based on our assessment and Patterson's conjunction tests, we conclude that the non‐mammalian parasphenoid and the vomer in mammals cannot be considered homologous. Additionally, the parasphenoid is likely homologous between sarcopterygian and actinopterygian lineages. This research attempts to resolve the issue of the parasphenoid homology and highlights where gaps in our knowledge are still present.  相似文献   

2.
3.
4.
The diural caudal skeleton of teleostean actinopterygians develops phylogeneticaily and ontogenetically from a polyural skeleton. The reduction of the polyural anlage to four, three, two or fewer centra in the adult caudal skeleton takes different pathways in different genera (e.g. compare Elops and Albula) and groups of teleosts. As a result, ural centra are not homologous throughout the teleosts. By numbering the ural centra in a homocercal tail in polyural fashion, one can demonstrate these and the following differences. The ventral elements (hypurals) always occur in sequential series, whereas the dorsal elements (epurals and uroneurals) may alter like the ural centra. The number of epurals, five or four in fossil primitive teleosts, is reduced in other primitive and advanced teleosts, but the same epurals are not always lost. The number of uroneurals, seven in fossil teleosts, is reduced in living teleosts, but it has not been demonstrated that the first uroneural is always derived from the neural arch of the same ural centrum. The landmark in the homocercal tail is the preural centrum I which can be identified by (1) bifurcation of the caudal artery and vein in its ventral element, the parhypural, (2) its position directly caudal to the preural centrum (PU2) which supports the lowermost principal caudal ray with its haemal spine, (3) carrying the third hypaxial element ventral to the course of arteria and vena pinnalis, and (4) by carrying the first haemal spine (parhypural) below the dorsal end of the ventral cartilage plate. The study of the development of the vertebral column reveals that teleosts have different patterns of centrum formation. A vertebral centrum is a complete or partial ring of mineralized, cartilaginous or bony material surrounding at least the lateral sides of the notochord. A vertebral centrum may be formed by arcocentrum alone, or arcocentral arcualia and chordacentrum, or arco-, chorda- and autocentrum, or arcocentral arcualia and autocentrum. This preliminary research demonstrates that a detailed ontogenetic interpretation of the vertebral centra and of the caudal skeleton of different teleosts may be useful tools for further interpretations of teleostean interrelationships.  相似文献   

5.
Geometry of the caudal fin of the mackerel Scomber scombrus was modified to examine the effect of the height of the fin on swimming kinematics. Mackerel with reduced caudal fin height had significantly shorter stride length and higher tail beat amplitude compared with the control having an intact caudal fin ( P  < 0·005).  相似文献   

6.
The potential to regenerate declines with age in a wide range of organisms. A popular model system to study the mechanisms of regeneration is the fin of teleost fish, which has the ability to fully regrow upon amputation. Here, we used the short‐lived killifish Nothobranchius furzeri to analyse the impact of aging on fin regeneration in more detail. We observed that young fish were able to nearly completely (98%) regenerate their amputated caudal fins within 4 weeks, whereas middle‐aged fish reached 78%, old fish 57% and very old fish 46% of their original fin size. The difference in growth rate between young and old fish was already significant at 3 days post amputation (dpa) and increased with time. We therefore hypothesized that early events are crucial for the age‐related differences in regenerative capacity. Indeed, we could observe a higher percentage of proliferating cells in early regenerating fin tissue of young fish compared with aged fish and larger fractions of apoptotic cells in aged fish. Furthermore, young fish showed peak upregulation of several genes involved in fgf and wnt/β‐catenin signalling at an earlier time point than old fish. Our findings suggest that regenerative processes are initiated earlier and that regeneration overall is more efficient in younger fish.  相似文献   

7.
8.
The nymphal stages of Palaeozoic insects differ significantly in morphology from those of their modern counterparts. Morphological details for some previously reported species have recently been called into question. Palaeozoic insect nymphs are important, however – their study could provide key insights into the evolution of wings, and complete metamorphosis. Here we review past work on these topics and juvenile insects in the fossil record, and then present both novel and previously described nymphs, documented using new imaging methods. Our results demonstrate that some Carboniferous nymphs – those of Palaeodictyopteroidea – possessed movable wing pads and appear to have been able to perform simple flapping flight. It remains unclear whether this feature is ancestral for Pterygota or an autapomorphy of Palaeodictyopteroidea. Further characters of nymphal development which were probably in the ground pattern of Pterygota can be reconstructed. Wing development was very gradual (archimetaboly). Wing pads did not protrude from the tergum postero‐laterally as in most modern nymphs, but laterally, and had well‐developed venation. The modern orientation of wing pads and the delay of wing development into later developmental stages (condensation) appears to have evolved several times independently within Pterygota: in Ephemeroptera, Odonatoptera, Eumetabola, and probably several times within Polyneoptera. Selective pressure appears to have favoured a more pronounced metamorphosis between the last nymphal and adult stage, ultimately reducing exploitation competition between the two. We caution, however, that the results presented herein remain preliminary, and the reconstructed evolutionary scenario contains gaps and uncertainties. Additional comparative data need to be collected. The present study is thus seen as a starting point for this enterprise.  相似文献   

9.
目的建立生长激素过表达的转基因斑马鱼,研究生长激素在斑马鱼尾鳍再生过程中的作用。方法利用Gateway技术构建表达质粒"pDestTol2CG2; ubi:GH-polyA",在一细胞期显微注射表达质粒和转座酶mRNA后,通过荧光显微镜和qPCR技术筛选鉴定GH过表达的转基因斑马鱼。将斑马鱼分为对照组(野生型)和生长激素过表达组,尾鳍横切后,记录分析斑马鱼尾鳍再生过程。结果转基因斑马鱼中心脏被绿色荧光蛋白标记。荧光定量PCR检测结果显示GH表达水平显著高于对照组(P<0.05)。斑马鱼尾鳍横断后,生长激素过表达组的再生速度显著提高(P<0.05)。结论建立稳定生长激素过表达的转基因斑马鱼品系,过表达生长激素能够提高斑马鱼尾鳍再生速度。  相似文献   

10.
11.
Hydra are remarkable because they are immortal. Much of immortality can be ascribed to the asexual mode of reproduction by budding, which requires a tissue consisting of stem cells with continuous self‐renewal capacity. Emerging novel technologies and the availability of genomic resources enable for the first time to analyse these cells in vivo. Stem cell differentiation in Hydra is governed through the coordinated actions of conserved signaling pathways. Studies of stem cells in Hydra, therefore, promise critical insights of general relevance into stem cell biology including cellular senescence, lineage programming and reprogramming, the role of extrinsic signals in fate determination and tissue homeostasis, and the evolutionary origin of these cells. With these new facts as a backdrop, this review traces the history of studying stem cells in Hydra and offers a view of what the future may hold.  相似文献   

12.
Vertebrate developmental biologists typically rely on a limited number of model organisms to understand the evolutionary bases of morphological change. Unfortunately, a typical model system for squamates (lizards and snakes) has not yet been developed leaving many fundamental questions about morphological evolution unaddressed. New model systems would ideally include clades, rather than single species, that are amenable to both laboratory studies of development and field-based analyses of ecology and evolution. Combining an understanding of development with an understanding of ecology and evolution within and between closely related species has the potential to create a seamless understanding of how genetic variation underlies ecologically and evolutionarily relevant variation within populations and between species. Here we briefly introduce a new model system for the integration of development, evolution, and ecology, the lizard genus Anolis, a diverse group of lizards whose ecology and evolution is well understood, and whose genome has recently been sequenced. We present a developmental staging series for Anolis lizards that can act as a baseline for later comparative and experimental studies within this genus.  相似文献   

13.
14.
The growth dynamics of red, pink and white fibres of the caudal and pectoral fin muscles are described in Carans malabaricus (Cuv. & Val.) in relation to their somatic growth. In all three fibre types growth occurred by an increase in fibre number and diameter in small size classes of fish and by an increase in diameter only in larger fish. The growth dynamics of the three fibre types were similar to those of the myotomal muscle fibres and paralleled the somatic growth pattern of this fish.  相似文献   

15.
16.
Development is the process whereby a fertilized cell becomes a mature individual. In metazoans, this complex process involves the differentiation of somatic cells into committed cell and tissue types; the organization and migration of cells, tissues, and anatomical structures relative to one another; and growth. 1 Development matters to evolution in two ways. First, development carries out heritable genetic instructions contained in zygotes to produce functioning yet phenotypically varied individuals. At the population level, this variation in form and function among individuals provides the “raw material” for evolution. Second, the mechanisms of development influence the magnitude, direction, and interdependence of heritable phenotypic variation among traits. Together with phenomena such as genetic drift, organismal development determines the raw material available to selection and thus influences the rate and direction of phenotypic evolution. 2 , 3  相似文献   

17.
S. Wei  Y. Yu  Q. Qin 《Journal of fish biology》2018,92(6):1675-1686
A new cell line derived from the caudal fin of golden pompano Trachinotus ovatus (TOCF) was successfully established and characterized. TOCF cells grew well at 28° C in L‐15 medium supplemented with 10% foetal bovine serum (FBS). The cell line has been subcultured in more than 100 passages. Molecular characterization of 18S ribosomal (r)RNA and cytochrome oxidase subunit 1 (COI) confirmed that the TOCF cells were derived indeed from T. ovatus. TOCF cells have a modal chromosome number of 54. It was further showed that TOCF cells were transfected successfully with pEGFP‐N3 and pDsRED‐N1 plasmid, suggesting that TOCF cells could be used to research gene functions in vitro. Viral susceptibility tests showed that TOCF cells were susceptible to Singapore grouper iridovirus (SGIV), observed by the occurrence of the cytopathic effect (CPE) with the formation of inclusion bodies. In addition, the expression of major capsid protein (MCP) gene of SGIV changed during virus infection in TOCF cells. Thus, our present results described the characteristic of a TOCF cell line that could be a valuable tool for genetic manipulation, as well as isolation and propagation of iridovirus studies.  相似文献   

18.
We describe the morphology, histology, and histochemical characteristics of the uropygial gland (UG) of the monk parakeet Myiopsitta monachus. The UG has a heart‐shape external appearance and adenomers extensively branched with a convoluted path, covered by a stratified epithelium formed by different cellular strata and divided into three zones (based on the epithelial height and lumen width), a cylindrical papilla with an internal structure of delicate type and two excretory pores surrounded by a feather tuft. Histochemical and lectin‐histochemical techniques performed showed positivity against PAS, AB pH 2.5, AB‐PAS, and some lectines, likely related to the granivorous feeding habits. Also, we describe the morphogenesis of the UG of the monk parakeet, which appears at embryological stage 34 as a pair of ectodermal invaginations. Heterochronic events in the onset development of the UG when compared with other birds could be recognized. Finally, to examine the phylogenetic occurrence of the UG within the Psittaciformes and infer its evolutionary history, we mapped its presence/absence over a molecular phylogeny. The reconstruction of the characters states at ancestral nodes revealed that the presence of the UG was the plesiomorphic feature for Psittaciformes and its loss evolved independently more than once.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号