首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Divergence of acoustic signals in a geographic scale results from diverse evolutionary forces acting in parallel and affecting directly inter-male vocal interactions among disjunct populations. Pleurodema thaul is a frog having an extensive latitudinal distribution in Chile along which males'' advertisement calls exhibit an important variation. Using the playback paradigm we studied the evoked vocal responses of males of three populations of P. thaul in Chile, from northern, central and southern distribution. In each population, males were stimulated with standard synthetic calls having the acoustic structure of local and foreign populations. Males of both northern and central populations displayed strong vocal responses when were confronted with the synthetic call of their own populations, giving weaker responses to the call of the southern population. The southern population gave stronger responses to calls of the northern population than to the local call. Furthermore, males in all populations were stimulated with synthetic calls for which the dominant frequency, pulse rate and modulation depth were varied parametrically. Individuals from the northern and central populations gave lower responses to a synthetic call devoid of amplitude modulation relative to stimuli containing modulation depths between 30–100%, whereas the southern population responded similarly to all stimuli in this series. Geographic variation in the evoked vocal responses of males of P. thaul underlines the importance of inter-male interactions in driving the divergence of the acoustic traits and contributes evidence for a role of intra-sexual selection in the evolution of the sound communication system of this anuran.  相似文献   

2.
In the present paper we tested the hypothesis that differences in the acoustic communication system of diploid and tetraploid green toads ( Bufo viridis complex) might be due to selection for reproductive character displacement. We recorded two acoustic signals of the toad repertoire − the advertisement call (a long range mate-attracting signal) and the release call (a short-range signal mediating male–male interactions) − from six sympatric Central Asian populations (three diploid and three tetraploid populations) as well as from three allopatric diploid populations from Italy, and compared their patterns of variation with the pattern of among-population genetic distances. Although release and advertisement calls share the same morpho-physiological constraints, they show significantly different patterns of variation. Release calls vary congruently with the pattern of genetic distances, suggesting that mutation and genetic drift have been the major forces responsible for their change both in time and space. By contrast, the pattern of advertisement-call variation is not consistent with the phylogeny of the group, because the advertisement calls of Asian diploid and tetraploid populations differ from each other more than their genetic distances would predict. These results strongly support the hypothesis that selection acted on the advertisement calls of either or both Asian taxa , possibly, to favour reproductive isolation.  © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 77, 379–391.  相似文献   

3.
Acoustic signals for mating are important traits that could drive population differentiation and speciation. Ecology may play a role in acoustic divergence through direct selection (e.g., local adaptation to abiotic environment), constraint of correlated traits (e.g., acoustic traits linked to another trait under selection), and/or interspecific competition (e.g., character displacement). However, genetic drift alone can also drive acoustic divergence. It is not always easy to differentiate the role of ecology versus drift in acoustic divergence. In this study, we tested the role of ecology and drift in shaping geographic variation in the advertisement calls of Microhyla fissipes. We examined three predictions based on ecological processes: (1) the correlation between temperature and call properties across M. fissipes populations; (2) the correlation between call properties and body size across M. fissipes populations; and (3) reproductive character displacement (RCD) in call properties between M. fissipes populations that are sympatric with and allopatric to a congener M. heymonsi. To test genetic drift, we examined correlations among call divergence, geographic distance, and genetic distance across M. fissipes populations. We recorded the advertisement calls from 11 populations of M. fissipes in Taiwan, five of which are sympatrically distributed with M. heymonsi. We found geographic variation in both temporal and spectral properties of the advertisement calls of M. fissipes. However, the call properties were not correlated with local temperature or the callers' body size. Furthermore, we did not detect RCD. By contrast, call divergence, geographic distance, and genetic distance between M. fissipes populations were all positively correlated. The comparisons between phenotypic Qst (Pst) and Fst values did not show significant differences, suggesting a role of drift. We concluded that genetic drift, rather than ecological processes, is the more likely driver for the geographic variation in the advertisement calls of M. fissipes.  相似文献   

4.
The evolution of acoustic behaviour and that of the morphological traits mediating its production are often coupled. Lack of variation in the underlying morphology of signalling traits has the potential to constrain signal evolution. This relationship is particularly likely in field crickets, where males produce acoustic advertisement signals to attract females by stridulating with specialized structures on their forewings. In this study, we characterize the size and geometric shape of the forewings of males from six allopatric populations of the black field cricket (Teleogryllus commodus) known to have divergent advertisement calls. We sample from each of these populations using both wild‐caught and common‐garden‐reared cohorts, allowing us to test for multivariate relationships between wing morphology and call structure. We show that the allometry of shape has diverged across populations. However, there was a surprisingly small amount of covariation between wing shape and call structure within populations. Given the importance of male size for sexual selection in crickets, the divergence we observe among populations has the potential to influence the evolution of advertisement calls in this species.  相似文献   

5.
We surveyed the geographical variation in male advertisement calls of the wide‐ranging canyon treefrog, Hyla arenicolor, and found large call differences among geographically distant lineages that had been characterized by a recent phylogeographical study. To test whether these call differences were biologically relevant and could allow reproductive isolation of different lineages should they come into secondary contact, we assessed female preference in a lineage occurring in southern Utah and north‐western Arizona, USA. These females exhibited a strong preference for their own lineage's call type over the calls of two Mexican lineages, but not over the calls from the geographically nearest lineage. We also identified traits that female frogs probably use to discriminate between lineage‐specific advertisement calls. Our behavioural results, together with recent molecular estimates of phylogenetic relationships among lineages, will guide future work addressing the evolutionary forces that have led to this biologically significant variation in male sexual signals. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ??, ??–??.  相似文献   

6.
Behavioural isolation from divergence in male advertisement calls and female preferences is hypothesized to cause genetic divergence and speciation in the Amazonian frogs Physalaemus petersi and P. freibergi, yet the importance of call variation and landscape features in genetic divergence is unresolved. We tested for correlations between genetic divergence at microsatellite loci and (1) call variables; and (2) landscape variables among 10 populations of these frogs. Genetic divergence was not correlated with geographical distance, rivers or elevation. There was a strong positive relationship, however, between genetic divergence and inter‐population differences in one call variable, whine dominant frequency. Effective population sizes varied among sites (range = 15–846) and were often small, suggesting that genetic drift could influence call evolution. Evidence for fine‐scale genetic structure within sites was also found. Our results support the hypothesis that behavioural isolation from divergence in male calls and female preferences causes genetic divergence and speciation.  相似文献   

7.
Ecologists and evolutionary biologists have a long‐standing interest in the patterns and causes of geographical variation in animals’ acoustic signals. Nonetheless, the processes driving acoustic divergence are still poorly understood. Here, we studied the geographical variation in echolocation vocalizations (commonly referred to as echolocation ‘pulses’ given their short duration and relatively stereotypic nature, and to contrast them from the communicative vocalizations or ‘calls’) of a widespread bat species Hipposideros armiger in south China, and assessed whether the acoustic divergence was driven by either ecological selection, or cultural or genetic drift. Our results revealed that the peak frequency of echolocation pulses varied significantly across populations sampled, with the maximum variation of about 6 kHz. The peak frequency clustered into three groups: eastern and western China, Hainan and southern Yunnan. The population differences in echolocation pulses were not significantly related to the variation in climatic (mean annual temperature, mean annual relative humidity, and mean annual precipitable water) or genetic (genetic distance) factors, but significantly related to morphological (forearm length) variation which was correlated with mean annual temperature. Moreover, the acoustic differences were significantly correlated with geographical and latitudinal distance after controlling for ‘morphological distance’. Thus, neither direct ecological selection nor genetic drift contributed to the acoustic divergence observed in H. armiger. Instead, we propose that the action of both indirect ecological selection (i.e. selection on body size) as well as cultural drift promote, in part, divergence in echolocation vocalizations of individuals within geographically distributed populations.  相似文献   

8.
Structural variation in acoustic signals may be related either to the factors affecting sound production such as bird morphology, or to vocal adaptations to improve sound transmission in different environments. Thus, variation in acoustic signals can influence intraspecific communication processes. This will ultimately influence divergence in allopatric populations. The study of geographical variation in vocalizations of suboscines provides an opportunity to compare acoustic signals from different populations, without additional biases caused by song learning and cultural evolution typical of oscines. The aim of this study was to compare vocalizations of distinct populations of a suboscine species, the Thorn‐tailed Rayadito. Four types of vocalizations were recorded in five populations, including all three currently accepted subspecies. Comparisons of each type of vocalization among the five populations showed that some variation existed in the repetitive trill, whereas no differences were found among alarm calls and loud trills. Variation in repetitive trills among populations and forest types suggests that sound transmission is involved in vocal differences in suboscines. Acoustic differences are also consistent with distinguishing subspecies bullocki from spinicauda and fulva, but not the two latter subspecies from each other. Our results suggest that the geographical differentiation in vocalizations observed among Thorn‐tailed Rayadito populations is likely to be a consequence of different ecological pressures. Therefore, incipient genetic isolation of these populations is suggested, based on the innate origin of suboscine vocalizations.  相似文献   

9.
Invasive species are a leading cause of the current biodiversity decline, and hence examining the major traits favouring invasion is a key and long-standing goal of invasion biology. Despite the prominent role of the advertisement calls in sexual selection and reproduction, very little attention has been paid to the features of acoustic communication of invasive species in nonindigenous habitats and their potential impacts on native species. Here we compare for the first time the transmission efficiency of the advertisement calls of native and invasive species, searching for competitive advantages for acoustic communication and reproduction of introduced taxa, and providing insights into competing hypotheses in evolutionary divergence of acoustic signals: acoustic adaptation vs. morphological constraints. Using sound propagation experiments, we measured the attenuation rates of pure tones (0.2–5 kHz) and playback calls (Lithobates catesbeianus and Pelophylax perezi) across four distances (1, 2, 4, and 8 m) and over two substrates (water and soil) in seven Iberian localities. All factors considered (signal type, distance, substrate, and locality) affected transmission efficiency of acoustic signals, which was maximized with lower frequency sounds, shorter distances, and over water surface. Despite being broadcast in nonindigenous habitats, the advertisement calls of invasive L. catesbeianus were propagated more efficiently than those of the native species, in both aquatic and terrestrial substrates, and in most of the study sites. This implies absence of optimal relationship between native environments and propagation of acoustic signals in anurans, in contrast to what predicted by the acoustic adaptation hypothesis, and it might render these vertebrates particularly vulnerable to intrusion of invasive species producing low frequency signals, such as L. catesbeianus. Our findings suggest that mechanisms optimizing sound transmission in native habitat can play a less significant role than other selective forces or biological constraints in evolutionary design of anuran acoustic signals.  相似文献   

10.
Patterns of geographic variation in communication systems can provide insight into the processes that drive phenotypic evolution. Although work in birds, anurans, and insects demonstrates that acoustic signals are sensitive to diverse selective and stochastic forces, processes that shape variation in mammalian vocalizations are poorly understood. We quantified geographic variation in the advertisement songs of sister species of singing mice, montane rodents with a unique mode of vocal communication. We tested three hypotheses to explain spatial variation in the song of the lower altitude species, Scotinomys teguina: selection for species recognition in sympatry with congener, S. xerampelinus, acoustic adaptation to different environments, and stochastic divergence. Mice were sampled at seven sites in Costa Rica and Panamá; genetic distances were estimated from mitochondrial control region sequences, between‐site differences in acoustic environment were estimated from climatic data. Acoustic, genetic and geographic distances were all highly correlated in S. teguina, suggesting that population differentiation in song is largely shaped by genetic drift. Contrasts between interspecific genetic‐acoustic distances were significantly greater than expectations derived from intraspecific contrasts, indicating accelerated evolution of species‐specific song. We propose that, although much intraspecific acoustic variation is effectively neutral, selection has been important in shaping species differences in song.  相似文献   

11.
Courtship behaviors of insect populations can vary across the range of a species. Populations exhibiting divergent courtship behavior may indicate genetic divergence or cryptic species. Courtship acoustic signals produced by male wing fanning and genetic structure (using amplified fragment length polymorphisms) were examined for seven allopatric populations of the Cotesia flavipes (Hymenoptera: Braconidae) species complex, using four C. sesamiae (Cameron) and three C. flavipes Cameron populations. Members of this species complex parasitize lepidopteran pests in gramineous crops including sugarcane, maize, and rice . Significant variation was detected in courtship acoustic signals and genetic structure among populations of both species. For C. sesamiae, courtship acoustic signals varied more between populations of two biotypes that were collected near an area of sympatry. The two biotypes of C. sesamiae were also genetically divergent. For C. flavipes, significant differences in acoustic signals and genetic structure occurred among allopatric populations; these differences support the recent designation of one population as a new species. Courtship acoustics play a role in reproductive isolation in this species complex, and are likely used in conjunction with chemical signals. Ecological factors such as host range and host plant use may also influence the divergence of both courtship acoustic signals and genetic structure among populations in the C. flavipes complex.  相似文献   

12.
Developmental plasticity may promote divergence by exposing genetic variation to selection in novel ways in new environments. We tested for this effect in the static allometry (i.e. scaling on body size) of traits in advertisement signals, body and genitalia. We used a member of the Enchenopa binotata species complex of treehoppers – a clade of plant‐feeding insects in which speciation is associated with colonization of novel environments involving marked divergence in signals, subtle divergence in body size and shape, and no apparent divergence in genitalia. We found no change in mean allometric slopes across environments, but substantial genetic variation and genotype × environment interaction (G × E) in allometry. The allometry of signal traits showed the most genetic variation and G × E, and that of genitalia showed the weakest G × E. Our findings suggest that colonizing novel environments may have stronger diversifying consequences for signal allometry than for genitalia allometry. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 187–196.  相似文献   

13.
In this paper, we compare the advertisement calls of 207 neotropical strawberry poison frogs (Dendrobates pumilio) collected in 21 localities along a transect from northern Costa Rica to western Panama. Populations varied most in call duration and call rate, while pulse rate and duty cycle were less variable. Multivariate analyses showed that call variation followed a cline with higher call rates, shorter calls, lower duty cycles and higher pulse rates in the southeast. Body size decreased towards the southeast and explained most variation in dominant frequency, as well as some residual variation in call rate. We conclude that a combination of geography and morphology is largely responsible for call variation within this species. Two inferred bio‐acoustic groups were roughly in accordance with two genetic groups, geographically separated in central Costa Rica. However, genetic distances among populations did not co‐vary with call dissimilarity after correction for geographic distances. Thus, differences in calls between genetic groups are probably mainly a result of clinal variation. These findings agree with the general observation that bio‐acoustic variation is often not (highly) associated with genetic divergence. Moreover, colour polymorphism observed among Panamanian populations was not reflected in a higher variability in call parameters relative to the monomorphic Costa Rican populations.  相似文献   

14.
The matched filter hypothesis proposes that the tuning of females' auditory sensitivity matches the spectral energy distribution of males' signals. Such correspondence is expected to arise over evolutionary time, as it promotes conspecific information transfer and reduces interference from other sound sources. Our main objective was to determine the correspondence between the acoustic sensitivity of female frogs of Eupsophus roseus and the spectral characteristics of advertisement vocalizations produced by conspecific males. We also aimed to determine how auditory sensitivity is related to the characteristics of background noise. We analysed data on the auditory sensitivity of E. roseus females, and recordings of conspecific male vocalizations and of the acoustic environment during the breeding period of this species. Our results indicate a concordance between the auditory sensitivity of females and call spectra that would provide an appropriate detection of these signals. In addition, this matching is large relative to the correspondence between auditory sensitivity with the spectra of the abiotic and biotic background noise, with the last component being associated with calls of the related species Eupsophus vertebralis. This may be an adaptation of receivers confronting sound interference, which improves the capability of E. roseus to communicate sexually by means of acoustic signals. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 814–827.  相似文献   

15.
Species with specialized ecological interactions present significant conservation challenges. In plants that attract pollinators with pollinator‐specific chemical signals, geographical variation in pollinator species may indicate the presence of cryptic plant taxa. We investigated this phenomenon in the rare sexually deceptive orchid Drakaea elastica using a molecular phylogenetic analysis to resolve pollinator species boundaries, pollinator choice experiments and a population genetic study of the orchid. Pollinator choice experiments demonstrated the existence of two ecotypes within D. elastica, each attracting their own related but phylogenetically distinct pollinator species. Despite the presence of ecotypes, population genetic differentiation was low across populations at six microsatellite loci (FST = 0.026). However, Bayesian STRUCTURE analysis revealed two genetic clusters, broadly congruent with the ecotype distributions. These ecotypes may represent adaptation to regional variation in pollinator availability and perhaps the early stages of speciation, with pronounced morphological and genetic differences yet to evolve. Resolution of the taxonomic status of the D. elastica ecotypes is required as this has implications for conservation efforts and allocation of management funding. Furthermore, any reintroduction programmes must incorporate knowledge of ecotype distribution and pollinator availability to ensure reproductive success in restored populations. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177 , 124–140.  相似文献   

16.
Geographic variation in courtship behavior can affect reproductive success of divergent phenotypes via mate choice. Over time, this can lead to reproductive isolation and ultimately to speciation. The Neotropical red‐eyed treefrog (Agalychnis callidryas) exhibits high levels of phenotypic variation among populations in Costa Rica and Panama, including differences in color pattern, body size, and skin peptides. To test the extent of behavioral premating isolation among differentiated populations, we quantified male advertisement calls from six sites and female responses to male stimuli (acoustic and visual signals) from four sites. Our results show that both male advertisement calls and female behavior vary among populations: Discriminant function analyses can predict the population of origin for 99.3% ± 0.7 of males based on male call (dominant frequency and bandwidth) and 76.1% ± 6.6 of females based on female response behavior (frequency and duration of visual displays). Further, female mate choice trials (= 69) showed that population divergence in male signals is coupled with female preference for local male stimuli. Combined, these results suggest that evolved differences among populations in male call properties and female response signals could have consequences for reproductive isolation. Finally, population variation in male and female behavior was not well explained by geographic or genetic distance, indicating a role for localized selection and/or drift. The interplay between male courtship and female responses may facilitate the evolution of local variants in courtship style, thus accelerating premating isolation via assortative mating.  相似文献   

17.
Patterns of intraspecific geographic variation in morphology and behaviour, when examined in a phylogenetic context, can provide insight into the microevolutionary processes driving population divergence and ultimately speciation. In the present study, we quantified behavioural and phenotypic variation among populations from genetically divergent regions in the Central American treefrog, Dendropsophus ebraccatus . Our fine-scale population comparisons demonstrated regional divergence in body size, colour pattern frequencies, and male advertisement call. None of the characters covaried with phylogenetic history or geographic proximity among sampled populations, indicating the importance of highly localized selection pressures and genetic drift in shaping character divergence among isolated regions. The study underscores how multiple phenotypic characters can evolve independently across relatively small spatial scales.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 298–313.  相似文献   

18.
The deep ocean supports a highly diverse and mostly endemic fauna, yet little is known about how or where new species form in this remote ecosystem. How speciation occurs is especially intriguing in the deep sea because few obvious barriers exist that would disrupt gene flow. Geographic and bathymetric patterns of genetic variation can provide key insights into how and where new species form. We quantified the population genetic structure of a protobranch bivalve, Neilonella salicensis, along a depth gradient (2200–3800 m) in the western North Atlantic using both nuclear (28S and calmodulin intron) and mitochondrial (cytochrome c oxidase subunit I) loci. A sharp genetic break occurred for each locus between populations above 2800 m and below 3200 m, defining two distinct clades with no nuclear or mitochondrial haplotypes shared between depth regimes. Bayesian phylogenetic analyses provided strong support for two clades, separated by depth, within N. salicensis. Although no morphological divergence was apparent, we suggest that the depth‐related population genetic and phylogenetic divergence is indicative of a cryptic species. The frequent occurrence of various stages of divergence associated with species formation along bathymetric gradients suggests that depth, and the environmental gradients that attend changes in depth, probably play a fundamental role in the diversification of marine organisms, especially in deep water. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 897–913.  相似文献   

19.
In vertebrates, genome size has been shown to correlate with nuclear and cell sizes, and influences phenotypic features, such as brain complexity. In three different anuran families, advertisement calls of polyploids exhibit longer notes and intervals than diploids, and difference in cellular dimensions have been hypothesized to cause these modifications. We investigated this phenomenon in green toads (Bufo viridis subgroup) of three ploidy levels, in a different call type (release calls) that may evolve independently from advertisement calls, examining 1205 calls, from ten species, subspecies, and hybrid forms. Significant differences between pulse rates of six diploid and four polyploid (3n, 4n) green toad forms across a range of temperatures from 7 to 27 °C were found. Laboratory data supported differences in pulse rates of triploids vs. tetraploids, but failed to reach significance when including field recordings. This study supports the idea that genome size, irrespective of call type, phylogenetic context, and geographical background, might affect call properties in anurans and suggests a common principle governing this relationship. The nuclear‐cell size ratio, affected by genome size, seems the most plausible explanation. However, we cannot rule out hypotheses under which call‐influencing genes from an unexamined diploid ancestral species might also affect call properties in the hybrid‐origin polyploids. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 584–590.  相似文献   

20.
Acoustic signals sometimes act as premating isolating barriers between animal species, but we know little about the circumstances that dictate the presence and strength of these barriers. Among insects, barriers to backcrossing are strengthened by acoustic signals that are under genetic control. Hybrid signals tend to be intermediate to parental signals, and signals are recognized only by like‐types, which results in reinforced species boundaries. This is not typically the case in avian taxa. Instead, acoustic signal transmission is controlled by some combination of genes and learning, and perhaps as a consequence of this variation, vocalizations play a diversity of roles in avian hybrid zones. I used California and Gambel's quail (Callipepla californica and C. gambelii), hybridizing birds that do not learn to vocalize, to explore whether genetically determined vocalizations function as a species barrier. Using spectral analysis, I measured temporal features of calls of uniquely colour‐banded quail that were recorded across one area of the California and Gambel's quail hybrid zone. Species discrimination is known to occur under captive conditions, though its basis is unexplored. Here I show that differences in the calls of parental species are likely great enough to permit species discrimination. Hybrid call components were intermediate to those of the parental species and covaried with genetic traits, as assessed with seven highly polymorphic microsatellite loci. Contrary to expectation, males as frequently called in response to unlike‐ as like‐type females who had initiated antiphonal calling, which is a courtship call between a female and a male. Furthermore, paired males and females did not share like‐type assembly calls, nor was there a correlation between the female's genetic or plumage traits and her mate's advertisement call. Based on these results, I conclude that California and Gambel's quail recognize each other and hybrids as potential mates and backcrossing occurs frequently. Thus, compatible mating signals could contribute to increased mixing of gene pools and slow the rate of speciation. I suggest that selection to respond to wide signal variation within species and imprinting on calls of mixed‐species coveys may cause mating signal compatibility between classes within the area of hybridization. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 86 , 253–264.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号