首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
转录因子Egr-1参与长期性恐惧记忆和焦虑   总被引:1,自引:0,他引:1  
Ko SW  Ao HS  Mendel AG  Qiu CS  Wei F  Milbrandt J  Zhuo M 《生理学报》2005,57(4):421-432
锌指转录因子点Egr-1在将细胞外信号和胞内基因表达的变化相耦联过程中发挥重要的作用。海马和杏仁体是记忆形成和储存的两个主要的脑区。在海马和杏仁体中,Egr-1可被长时程增强(long-term potentiation,LTP)和学习过程上调。在Egr-1敲除小鼠上观察到晚时相声音恐惧记忆受损,而短时的痕迹和场景记忆却不受影响;另外,在Egr-1敲除小鼠上,用theta burst刺激杏仁体和听觉皮层所引起的突触增强被明显减弱或完全阻断。因此,我们的研究表明,转录因子Egr-1选择性地在晚时相听觉恐惧记忆中发挥作用。  相似文献   

2.
Mice lacking the serotonin receptor 1A (Htr1a knockout, Htr1a KO ) show increased innate and conditioned anxiety. This phenotype depends on functional receptor activity during the third through fifth weeks of life and thus appears to be the result of long-term changes in brain function as a consequence of an early deficit in serotonin signaling. To evaluate whether this phenotype can be influenced by early environmental factors, we subjected Htr1a knockout mice to postnatal handling, a procedure known to reduce anxiety-like behavior and stress responses in adulthood. Offspring of heterozygous Htr1a knockout mice were separated from their mother and exposed 15 min each day from postnatal day 1 (PD1) to PD14 to clean bedding. Control animals were left undisturbed. Maternal behavior was observed during the first 13 days of life. Adult male offspring were tested in the open field, social approach and resident–intruder tests and assessed for corticosterone response to restraint stress. Knockout mice showed increased anxiety in the open field and in the social approach test as well as an enhanced corticosterone response to stress. However, while no effect of postnatal handling was seen in wild-type mice, handling reduced anxiety-like behavior in the social interaction test and the corticosterone response to stress in knockout mice. These findings extend the anxiety phenotype of Htr1a KO mice to include social anxiety and demonstrate that this phenotype can be moderated by early environmental factors.  相似文献   

3.
Neuropeptide B/W receptor 1 (NPBWR1) is a G-protein coupled receptor, which was initially reported as an orphan receptor, and whose ligands were identified by this and other groups in 2002 and 2003. To examine the physiological roles of NPBWR1, we examined phenotype of Npbwr1 −/− mice. When presented with an intruder mouse, Npbwr1 −/− mice showed impulsive contact with the strange mice, produced more intense approaches toward them, and had longer contact and chasing time along with greater and sustained elevation of heart rate and blood pressure compared to wild type mice. Npbwr1 −/− mice also showed increased autonomic and neuroendocrine responses to physical stress, suggesting that impairment of NPBWR1 leads to stress vulnerability. We also observed that these mice show abnormality in the contextual fear conditioning test. These data suggest that NPBWR1 plays a critical role in limbic system function and stress responses. Histological and electrophysiological studies showed that NPBWR1 acts as an inhibitory regulator on a subpopulation of GABAergic neurons in the lateral division of the CeA and terminates stress responses. These findings suggest important roles of NPBWR1 in regulating amygdala function during physical and social stress.  相似文献   

4.
5.
T lymphocyte survival, proliferation, and death in the periphery are dependent on several cytokines. Many of these cytokines induce the expression of suppressor of cytokine signaling-1 (SOCS1), a feedback inhibitor of JAK kinases. However, it is unclear whether the cytokines that regulate T lymphocyte homeostasis are critically regulated by SOCS1 in vivo. Using SOCS1(-/-)IFN-gamma(-/-) mice we show that SOCS1 deficiency causes a lymphoproliferative disorder characterized by decreased CD4/CD8 ratio due to chronic accumulation of CD8+CD44(high) memory phenotype T cells. SOCS1-deficient CD8+ T cells express elevated levels of IL-2Rbeta, show increased proliferative response to IL-15 and IL-2 in vitro, and undergo increased bystander proliferation and vigorous homeostatic expansion in vivo. Sorted CD8+CD44(high) T cells from SOCS1(-/-)IFN-gamma(-/-) mice respond 5 times more strongly than control cells, indicating that SOCS1 is a critical regulator of IL-15R signaling. Consistent with this idea, IL-15 stimulates sustained STAT5 phosphorylation in SOCS1-deficient CD8+ T cells. IL-15 strongly induces TNF-alpha production in SOCS1-deficient CD8+ T cells, indicating that SOCS1 is also a critical regulator of CD8+ T cell activation by IL-15. However, IL-15 and IL-2 induce comparable levels of Bcl-2 and Bcl-x(L) in SOCS1-deficient and SOCS1-sufficient CD8+ T cells, suggesting that cytokine receptor signals required for inducing proliferation and cell survival signals are not identical. These results show that SOCS1 differentially regulates common gamma-chain cytokine signaling in CD8+ T cells and suggest that CD8+ T cell homeostasis is maintained by distinct mechanisms that control cytokine-mediated survival and proliferation signals.  相似文献   

6.
Cadherin-mediated interactions are integral to synapse formation and potentiation. Here we show that N-cadherin is required for memory formation and regulation of a subset of underlying biochemical processes. N-cadherin antagonistic peptide containing the His-Ala-Val motif (HAV-N) transiently disrupted hippocampal N-cadherin dimerization and impaired the formation of long-term contextual fear memory while sparing short-term memory, retrieval, and extinction. HAV-N impaired the learning-induced phosphorylation of a distinctive, cytoskeletally associated fraction of hippocampal Erk-1/2 and altered the distribution of IQGAP1, a scaffold protein linking cadherin-mediated cell adhesion to the cytoskeleton. This effect was accompanied by reduction of N-cadherin/IQGAP1/Erk-2 interactions. Similarly, in primary neuronal cultures, HAV-N prevented NMDA-induced dendritic Erk-1/2 phosphorylation and caused relocation of IQGAP1 from dendritic spines into the shafts. The data suggest that the newly identified role of hippocampal N-cadherin in memory consolidation may be mediated, at least in part, by cytoskeletal IQGAP1/Erk signaling.  相似文献   

7.
Receptor tyrosine kinase (RTK) activation involves ligand-induced receptor dimerization and transphosphorylation on tyrosine residues. Colony-stimulating factor-1 (CSF-1)-induced CSF-1 receptor (CSF-1R) tyrosine phosphorylation and ubiquitination were studied in mouse macrophages. Phosphorylation of CSF-1R Tyr-559, required for the binding of Src family kinases (SFKs), was both necessary and sufficient for these responses and for c-Cbl tyrosine phosphorylation and all three responses were inhibited by SFK inhibitors. In c-Cbl-deficient macrophages, CSF-1R ubiquitination and tyrosine phosphorylation were substantially inhibited. Reconstitution with wild-type, but not ubiquitin ligase-defective C381A c-Cbl rescued these responses, while expression of C381A c-Cbl in wild-type macrophages suppressed them. Analysis of site-directed mutations in the CSF-1R further suggests that activated c-Cbl-mediated CSF-1R ubiquitination is required for a conformational change in the major kinase domain that allows amplification of receptor tyrosine phosphorylation and full receptor activation. Thus the results indicate that CSF-1-mediated receptor dimerization leads to a Tyr-559/SFK/c-Cbl pathway resulting in receptor ubiquitination that permits full receptor tyrosine phosphorylation of this class III RTK in macrophages.  相似文献   

8.
In neuronal signalling mediated by the endocannabinoid 2-arachidonoylglycerol, both synthetic and inactivating enzymes operate within close proximity to the G(i/o)-coupled pre-synaptic CB(1) receptors, thus allowing for rapid onset and transient duration of this lipid modulator. In rat brain, 2-arachidonoylglycerol is inactivated mainly via hydrolysis by serine hydrolase inhibitor-sensitive monoacylglycerol lipase activity. We show in this study that comprehensive pharmacological elimination of this activity in brain cryosections by methyl arachidonylfluorophosphonate or hexadecylsulphonyl fluoride results in endocannabinoid-mediated CB(1) receptor activity, which can be visualized by functional autoradiography. URB597, a specific inhibitor of anandamide hydrolysis proved ineffective. TLC indicated that the bioactivity resided in 2-arachidonoylglycerol-containing fraction and gas chromatography-mass spectroscopy detected elevated levels of monoacylglycerols, including 2-arachidonoylglycerol in this fraction. Although two diacylglycerol lipase inhibitors, tetrahydrolipstatin (THL) and RHC80267, blocked the bulk of 2-arachidonoylglycerol accumulation in methyl arachidonylfluorophosphonate-treated sections, only THL reversed the endocannabinoid-dependent CB(1) receptor activity. Further studies indicated that at the used concentrations, THL rather specifically antagonized the CB(1) receptor. These findings confirm that in brain sections there is preservation of enzymatic pathways regulating the production of endogenous receptor ligands. Furthermore, the presently described methodology may serve as an elegant and intuitive approach to identify novel membrane-derived lipid modulators operating in the CNS.  相似文献   

9.
The search for cannabinoid receptors other than CB1R and CB2R has been ongoing for over a decade. A number of orphan receptors have been proposed as potential cannabinoid receptors primarily based on phylogenic arguments and reactivity towards known endocannabinoids and phytocannabinoids. Seven putative cannabinoid receptors are described and discussed, and evidence for and against their inclusion in this category are presented.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12079-021-00622-6.  相似文献   

10.
Synapsin III is a neuron‐specific phosphoprotein that plays an important role in synaptic transmission and neural development. While synapsin III is abundant in embryonic brain, expression of the protein in adults is reduced and limited primarily to the hippocampus, olfactory bulb and cerebral cortex. Given the specificity of synapsin III to these brain areas and because it plays a role in neurogenesis in the dentate gyrus, we investigated whether it may affect learning and memory processes in mice. To address this point, synapsin III knockout mice were examined in a general behavioral screen, several tests to assess learning and memory function, and conditioned fear. Mutant animals displayed no anomalies in sensory and motor function or in anxiety‐ and depressive‐like behaviors. Although mutants showed minor alterations in the Morris water maze, they were deficient in object recognition 24 h and 10 days after training and in social transmission of food preference at 20 min and 24 h. In addition, mutants displayed abnormal responses in contextual and cued fear conditioning when tested 1 or 24 h after conditioning. The synapsin III knockout mice also showed aberrant responses in fear‐potentiated startle. As synapsin III protein is decreased in schizophrenic brain and because the mutant mice do not harbor obvious anatomical deficits or neurological disorders, these mutants may represent a unique neurodevelopmental model for dissecting the molecular pathways that are related to certain aspects of schizophrenia and related disorders.  相似文献   

11.
Impairment of working memory is one of the most important deleterious effects of marijuana intoxication in humans, but its underlying mechanisms are presently unknown. Here, we demonstrate that the impairment of spatial working memory (SWM) and in vivo long-term depression (LTD) of synaptic strength at hippocampal CA3-CA1 synapses, induced by an acute exposure of exogenous cannabinoids, is fully abolished in conditional mutant mice lacking type-1 cannabinoid receptors (CB(1)R) in brain astroglial cells but is conserved in mice lacking CB(1)R in glutamatergic or GABAergic neurons. Blockade of neuronal glutamate N-methyl-D-aspartate receptors (NMDAR) and of synaptic trafficking of glutamate α-amino-3-hydroxy-5-methyl-isoxazole propionic acid receptors (AMPAR) also abolishes cannabinoid effects on SWM and LTD induction and expression. We conclude that the impairment of working memory by marijuana and cannabinoids is due to the activation of astroglial CB(1)R and is associated with astroglia-dependent hippocampal LTD in vivo.  相似文献   

12.
New oximes short-acting CB1 agonists were explored by the introduction of an internal oxime and polar groups at the C3 alkyl tail of Δ8-THC. The scope of the research was to drastically alter two important physicochemical properties hydrophobicity (log P) and topological surface area (tPSA) of the compound, which play a critical role in tissue distribution and sequestration (depot effect). Key synthesized analogs demonstrated sub-nanomolar affinity for CB1, marked reduction in hydrophobicity (ClogP~2.5–3.5 vs 9.09 of Δ8-THC-DMH), and found to function as either agonists (trans-oximes) or neutral antagonists (cis-oximes) in a cAMP functional assay. All oxime analogs showed comparable affinity at the CB2 receptor, but surprisingly they were found to function as inverse agonists for CB2. In behavioral studies (i.e. analgesia, hypothermia) trans-oxime 8a exhibited a predictable fast onset (~20?min) and short duration of pharmacological action (~180?min), in contrast to the very prolonged duration of Δ8-THC-DMH (>24?h), thus limiting the potential for severe psychotropic side-effects associated with persistent activation of the CB1 receptor. We have conducted 100?ns molecular dynamic (MD) simulations of CB1 complexes with AM11542 (CB1 agonist) and both trans-8a and cis-8b isomeric oximes. These studies revealed that the C3 alkyl tail of cis-8b orientated within the CB1 binding pocket in a manner that triggered a conformational change that stabilized the CB1 receptor at its inactive-state (antagonistic functional effect). In contrast, the trans-8a isomer’s conformation was coincided with that of the AM11542 CB1 agonist-bound structure, stabilizing the CB1 receptor at the active-state (agonistic functional effect). We have selected oxime trans-8a based on its potency for CB1, and favorable pharmacodynamic profile, such as fast onset and predictable duration of pharmacological action, for evaluation in pre-clinical models of anorexia nervosa.  相似文献   

13.
Antagonists (inverse agonists) of the cannabinoid-1 (CB1) receptor showed promise as new therapies for controlling obesity and related metabolic function/liver disease. These agents, representing diverse chemical series, shared the property of brain penetration due to the initial belief that therapeutic benefit was mainly based on brain receptor interaction. However, undesirable CNS-based side effects of the only marketed agent in this class, rimonabant, led to its removal, and termination of the development of other clinical candidates soon followed. Re-evaluation of this approach has focused on neutral or peripherally restricted (PR) antagonists. Supporting these strategies, pharmacological evidence indicates most if not all of the properties of globally acting agents may be captured by molecules with little brain presence. Methodology that can be used to eliminate BBB penetration and the means (in vitro assays, tissue distribution and receptor occupancy determinations, behavioral paradigms) to identify potential agents with little brain presence is discussed. Focus will be on the pharmacology supporting the contention that reported agents are truly peripherally restricted. Notable examples of these types of compounds are: TM38837 (structure not disclosed); AM6545 (8); JD5037 (15b); RTI-12 (19).  相似文献   

14.
Src-like adaptor protein 2 (SLAP-2) is a hematopoietic adaptor protein previously implicated as a negative regulator of T-cell antigen receptor (TCR)-mediated signaling. SLAP-2 contains an SH3 and an SH2 domain, followed by a unique carboxyl-terminal tail, which is important for c-Cbl binding. Here we describe a novel role for SLAP-2 in regulation of the colony-stimulating factor 1 receptor (CSF-1R), a receptor tyrosine kinase important for growth and differentiation of myeloid cells. SLAP-2 co-immunoprecipitates with c-Cbl and CSF-1R in primary bone marrow-derived macrophages. Using murine myeloid cells expressing CSF-1R (FD-Fms cells), we show that SLAP-2 is tyrosine-phosphorylated upon stimulation with CSF-1 and associates constitutively with both c-Cbl and CSF-1R. In addition, we show that expression of a dominant negative form of SLAP-2 impairs c-Cbl association with the CSF-1R and receptor ubiquitination. Impaired c-Cbl recruitment also correlated with changes in the kinetics of CSF-1R down-regulation and trafficking. CSF-1-mediated differentiation of FD-Fms cells and activation of downstream signaling events was also enhanced in cells stably expressing dominant negative SLAP-2. Together, these results demonstrate that SLAP-2 plays a role in c-Cbl-dependent down-regulation of CSF-1R signaling.  相似文献   

15.
16.
Phosphorylated platelet-derived growth factor (PDGF) receptor becomes internalized and then is dephosphorylated by protein-tyrosine phosphatase (PTP) 1B at the endoplasmic reticulum (ER). However, it remains unclear where PTP1B dephosphorylates insulin receptor and inhibits its activity. To clarify how and where PTP1B could interact with insulin receptor, we overexpressed a phosphatase-inactive mutant, PTP1BC/S, in 3T3-L1 adipocytes. Although PDGF receptor was maximally associated with PTP1BC/S at 30 min after PDGF stimulation, the maximal association of insulin receptor with PTP1BC/S was attained at 5 min after insulin stimulation. Furthermore, dansylcadaverine, a blocker of receptor internalization, inhibited this PDGF-induced association of PTP1BC/S with its receptor. However, dansylcadaverine did not affect the insulin-stimulated association of PTP1BC/S with insulin receptor, as well as dephosphorylation of insulin receptor by PTP1B. These results indicate that PTP1B might interact with insulin receptor and deactivate it without internalization. Finally, we overexpressed the wild-type and cytosolic-form of PTP1B to determine the role of ER-anchoring of PTP1B, and found that both inhibited insulin signaling equally. Thus, our data indicate that localization of PTP1B at the ER is not needed for insulin receptor dephosphorylation by PTP1B.  相似文献   

17.
The D(1) dopamine receptor (D(1) DAR) is robustly phosphorylated by multiple protein kinases, yet the phosphorylation sites and functional consequences of these modifications are not fully understood. Here, we report that the D(1) DAR is phosphorylated by protein kinase C (PKC) in the absence of agonist stimulation. Phosphorylation of the D(1) DAR by PKC is constitutive in nature, can be induced by phorbol ester treatment or through activation of Gq-mediated signal transduction pathways, and is abolished by PKC inhibitors. We demonstrate that most, but not all, isoforms of PKC are capable of phosphorylating the receptor. To directly assess the functional role of PKC phosphorylation of the D(1) DAR, a site-directed mutagenesis approach was used to identify the PKC sites within the receptor. Five serine residues were found to mediate the PKC phosphorylation. Replacement of these residues had no effect on D(1) DAR expression or agonist-induced desensitization; however, G protein coupling and cAMP accumulation were significantly enhanced in PKC-null D(1) DAR. Thus, constitutive or heterologous PKC phosphorylation of the D(1) DAR dampens dopamine activation of the receptor, most likely occurring in a context-specific manner, mediated by the repertoire of PKC isozymes within the cell.  相似文献   

18.
The cannabinoid system is known to be important in neuronal regulation, but is also capable of modulating immune function. Although the CNS resident microglial cells have been shown to express the CB2 subtype of cannabinoid receptor during non-immune-mediated pathological conditions, little is known about the expression of the cannabinoid system during immune-mediated CNS pathology. To examine this question, we measured CB2 receptor mRNA expression in the CNS of mice with experimental autoimmune encephalomyelitis (EAE) and, by real-time PCR, found a 100-fold increase in CB2 receptor mRNA expression during EAE onset. We next determined whether microglial cells specifically express the CB2 receptor during EAE, and found that activated microglial cells expressed 10-fold more CB2 receptor than microglia in the resting state. To determine the signals required for the up-regulation of the CB2 receptor, we cultured microglial cells with combinations of gamma-interferon (IFN-gamma) and granulocyte) macrophage-colony stimulating factor (GM-CSF), which both promote microglial cell activation and are expressed in the CNS during EAE, and found that they synergized, resulting in an eight to 10-fold increase in the CB2 receptor. We found no difference in the amount of the CB2 receptor ligand, 2-arachidonylglycerol (2-AG), in the spinal cord during EAE. These data demonstrate that microglial cell activation is accompanied by CB2 receptor up-regulation, suggesting that this receptor plays an important role in microglial cell function in the CNS during autoimmune-induced inflammation.  相似文献   

19.
The human mu opioid receptor was expressed stably in Flp-In T-REx HEK293 cells. Occupancy by the agonist DAMGO (Tyr-d-Ala-Gly-N-methyl-Phe-Gly-ol) resulted in phosphorylation of the ERK1/2 MAP kinases, which was blocked by the opioid antagonist naloxone but not the cannabinoid CB1 receptor inverse agonist SR141716A. Expression of the human cannabinoid CB1 receptor in these cells from the inducible Flp-In T-REx locus did not alter expression levels of the mu opioid receptor. This allowed the cannabinoid CB1 agonist WIN55212-2 to stimulate ERK1/2 phosphorylation but resulted in a large reduction in the capacity of DAMGO to activate these kinases. Although lacking affinity for the mu opioid receptor, co-addition of SR141716A caused recovery of the effectiveness of DAMGO. In contrast co-addition of the CB1 receptor neutral antagonist O-2050 did not. Induction of the CB1 receptor also resulted in an increase of basal [(35)S]guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) binding and thereby a greatly reduced capacity of DAMGO to further stimulate [(35)S]GTPgammaS binding. CB1 inverse agonists attenuated basal [(35)S]GTPgammaS binding and restored the capacity of DAMGO to stimulate. Flp-In T-REx HEK293 cells were generated, which express the human mu opioid receptor constitutively and harbor a modified D163N cannabinoid CB1 receptor that lacks constitutive activity. Induction of expression of the modified cannabinoid CB1 receptor did not limit DAMGO-mediated ERK1/2 MAP kinase phosphorylation and did not allow SR141716A to enhance the function of DAMGO. These data indicate that it is the constitutive activity inherent in the cannabinoid CB1 receptor that reduces the capacity of co-expressed mu opioid receptor to function.  相似文献   

20.
The endocannabinoid system is an important regulator of the hormonal and behavioral stress responses, which critically involve corticotropin-releasing factor (CRF) and its receptors. While it has been shown that CRF and the cannabinoid type 1 (CB1) receptor are co-localized in several brain regions, the physiological relevance of this co-expression remains unclear. Using double in situ hybridization, we confirmed co-localization in the piriform cortex, the lateral hypothalamic area, the paraventricular nucleus, and the Barrington's nucleus, albeit at low levels. To study the behavioral and physiological implications of this co-expression, we generated a conditional knockout mouse line that selectively lacks the expression of CB1 receptors in CRF neurons. We found no effects on fear and anxiety-related behaviors under basal conditions nor after a traumatic experience. Additionally, plasma corticosterone levels were unaffected at baseline and after restraint stress. Only acoustic startle responses were significantly enhanced in male, but not female, knockout mice. Taken together, the consequences of depleting CB1 in CRF-positive neurons caused a confined hyperarousal phenotype in a sex-dependent manner. The current results suggest that the important interplay between the central endocannabinoid and CRF systems in regulating the organism's stress response is predominantly taking place at the level of CRF receptor-expressing neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号