首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Akainothrips francisi sp. nov. is shown to be an inquiline (i.e. it invades, and breeds within, domiciles of another species). Currently, its only known host is Dunatothrips aneurae, a subsocial thrips that creates silken domiciles by securing together phyllodes of mulga (Acacia aneura) in the arid zone of Australia. We found Ak. francisi prolifically breeding inside live D. aneurae host domiciles, both immature and mature. Akainothrips francisi did not kill its host and we saw no evidence of antagonistic host‐inquiline interactions. This is thus the second demonstrably inquiline species of Acacia thrips, although other possible inquilines have been suggested including two Akainothrips. We found that Ak. francisi occurred with positive density dependence, and was associated with moderately reduced host reproduction. This latter association was especially evident in larger host domiciles, suggesting that Ak. francisi either inhibits further host reproduction after invasion or exploits poor quality hosts more successfully. Sex ratios were slightly female biased. Akainothrips francisi males were exceptionally variable in size, colour, and foreleg size compared to females, with morphs co‐occurring within domiciles, suggesting sexual selection and the possibility of different male reproductive strategies. The discovery of Ak. francisi highlights particular morphological affinities among known or suspected inquiline Acacia thrips within Akainothrips and other genera, allowing us to hypothesize a common origin of this lifestyle from within Akainothrips. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

2.
Facultative joint colony founding by social insects (pleometrosis) provides an outstanding opportunity to analyze the costs and benefits of sociality. Pleometrosis has been documented for a range of social insects, but most studies on the adaptive benefits of this behavior are restricted to the Hymenoptera. In this study, we provide the first analysis of costs and benefits associated with pleometrosis for Australian Dunatothrips, which form domiciles by glueing together phyllodes (leaves) of their Acacia host plant. In Dunatothrips aneurae, the distribution of foundress numbers per nest indicated that females formed associations non-randomly. Furthermore, average group size was independent of both the number of foundresses on the host plant and the number of mature colonies, suggesting that this behavior was not simply a response to limited availability of nesting sites. Although per capita reproduction declined with increasing group size, we also identified two benefits of pleometrosis: (1) individual foundresses in groups had higher survival than solitary foundresses during the brood development period, and (2) larger colony sizes resulting from pleometrosis provided a benefit later in colony development, because a higher proportion of D. aneurae adults survived invasions by the kleptoparasite Xaniothrips mulga when colony size was larger. These results demonstrate that the reproductive costs of pleometrosis are at least partially counterbalanced by survival benefits. Received 4 April 2006; revised 9 September 2006; accepted 20 September 2006.  相似文献   

3.
Pleometrosis, or colony founding by more than one female, is common in various social insects and it engenders opportunities for social cooperation as well as cheating. The life cycles of four species of thrips on Australian Acacia trees were examined to elucidate the extent and nature of colony founding by multiple individuals. Data from colonies of three species of thrips from the genus Dunatothrips Moulton and one species of Lichanothrips Mound were used to infer the prevalence of pleometrosis in each species. The results indicate that Dunatothrips species show high levels of cofounding, with up to 50% of colonies having more than one foundress. By contrast, colonies of Lichanothrips are predominantly established by a female and a male. As in some communal insects, pleometrosis is facultative in Dunatothrips , foundresses show more or less constant per capita reproduction with foundress number, and the selective pressures for pleometrosis may involve predation pressure during founding or survivorship insurance for the brood. In Lichanothrips , male founders are probably engaging in mate guarding, which also occurs in some species of gall-inducing thrips on Acacia . The differences in founding patterns between Dunatothrips and Lichanothrips may be due in part the nature of their domiciles: Dunatothrips engage in extensive construction of a domicile using anal secretions, whereas many Lichanothrips primarily improve a pre-existing partial enclosure. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 75 , 467–474.  相似文献   

4.
Causal explanations for host reproductive phenotypes influenced by parasitism fit into three broad evolutionary models: (1) non‐adaptive side effect; (2) adaptive parasitic manipulation; and (3) adaptive host defence. This study demonstrates fecundity compensation, an adaptive non‐immunological host defence, in the three‐spined stickleback fish (Gasterosteus aculeatus) infected by the diphyllobothriidean cestode Schistocephalus solidus. Both infected and uninfected female sticklebacks produced egg clutches at the same age and size. The reproductive capacity of infected females decreased rapidly with increased parasite : host body mass ratio. Body condition was lower in infected females than uninfected females and decreased with increasing parasite : host mass ratio. Females with clutches had greater body condition than those without clutches. A point biserial correlation showed that there was a body condition threshold necessary for clutch production to occur. Host females apparently had the capacity to produce egg clutches until the prolonged effects of nutrient theft by the parasite and the drain on resources from reproduction precluded clutch formation. Clutch mass, adjusted for female body mass, did not differ significantly between infected and uninfected females. Infected females apparently maintained the same level of reproductive allotment (egg mass as proportion of body mass) as uninfected females. Infected females produced larger clutches of smaller eggs than uninfected females, revealing a trade‐off between egg mass and egg number, consistent with the fecundity compensation hypothesis. The rapid loss of reproductive capacity with severity of infection probably reflects the influence of the parasite combined with a trade‐off between current and future reproduction in the host. Inter‐annual differences in reproductive performance may have reflected ecological influences on host pathology and/or intra‐annual seasonal changes. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

5.
Abstract. Domiciles are constructed by adult females of species in several genera of Australian phlaeothripine Thysanoptera. This is done by glueing or sewing together two or more Acacia phyllodes, or by weaving a tentlike structure on a phyllode surface. These thrips then breed within the domiciles, sometimes for multiple generations. Mature females become dealate in seven of twelve species discussed, through fracture of the distal four-fifths of each wing, although young females and all males have complete wings. Of these twelve species, six are placed in Dunatothrips Moulton and six in a new genus, Sartrithrips . Adults of the latter genus have a spinelike structure dorsal to the anus, 'the supra-anal process', that is not found in any other member of Phlaeothripidae. Despite the many structural and biological character states shared by these twelve species, molecular methods using one nuclear gene ( wingless ) and one mitochondrial gene (cytochromome oxidase 1) demonstrated that the two genera are monophyletic but do not have a sister-group relationship. Identification keys are provided to nineteen described phlaeothripine genera that are known to be associated with Acacia phyllodes, and to the twelve species in Dunatothrips and Sartrithrips , of which ten are described as new.  相似文献   

6.
The ultimate causes for predominant male‐biased dispersal (MBD) in mammals and female‐biased dispersal (FBD) in birds are still subject to much debate. Studying exceptions to general patterns of dispersal, for example, FBD in mammals, provides a valuable opportunity to test the validity of proposed evolutionary pressures. We used long‐term behavioural and genetic data on individually banded Proboscis bats (Rhynchonycteris naso) to show that this species is one of the rare mammalian exceptions with FBD. Our results suggest that all females disperse from their natal colonies prior to first reproduction and that a substantial proportion of males are philopatric and reproduce in their natal colonies, although male immigration has also been detected. The age of females at first conception falls below the tenure of males, suggesting that females disperse to avoid father–daughter inbreeding. Male philopatry in this species is intriguing because Proboscis bats do not share the usual mammalian correlates (i.e. resource‐defence polygyny and/or kin cooperation) of male philopatry. They have a mating strategy based on female defence, where local mate competition between male kin is supposedly severe and should prevent the evolution of male philopatry. However, in contrast to immigrant males, philopatric males may profit from acquaintance with the natal foraging grounds and may be able to attain dominance easier and/or earlier in life. Our results on Proboscis bats lent additional support to the importance of inbreeding avoidance in shaping sex‐biased dispersal patterns and suggest that resource defence by males or kin cooperation cannot fully explain the evolution of male philopatry in mammals.  相似文献   

7.
Sex‐biased dispersal has profound impacts on a species' biology and several factors have been attributed to its evolution, including mating system, inbreeding avoidance, and social complexity. Sex‐biased dispersal and its potential link to individual social interactions were examined in the Qinghai toad‐headed agamid (Phrynocephalus vlangalii). We first determined the pattern of sex‐biased dispersal using population genetic methods. A total of 345 specimens from 32 sites in the Qaidam Basin were collected and genotyped for nine microsatellite DNA loci. Both individual‐based assignment tests and allele frequency‐based analyses were conducted. Females revealed much more genetic structure than males and all results were consistent with male‐biased dispersal. First‐generation migrants were also identified by genetic data. We then examined eight social interaction‐related morphological traits and explored their potential link to sex‐biased dispersal. Female residents had larger heads and longer tails than female migrants. The well‐developed signal system among females, coupled with viviparity, might make remaining on natal sites beneficial, and hence promote female philopatry. Dominant females with larger heads were more likely to stay. Contrary to females, male migrants had larger heads and belly patches than residents, suggesting that dispersal might confer selective advantages for males. Such advantages may include opportunities for multiple mating and escaping from crowded sites. Large belly patches and several other morphological traits may assist their success in obtaining mates during dispersal. Furthermore, a relatively high relatedness (R = 0.06) among females suggested that this species might have rudimentary social structure. Case studies in “less” social species may provide important evidence for a better understanding of sex‐biased dispersal.  相似文献   

8.
Speciation processes initiated by divergent selection often fail to complete; yet, how sexual selection is involved in the progress of ecological speciation is rarely understood. Intraspecific body‐size variation affects mate preference and male–male competition, which can consequently lead to assortative mating based on body size. In the present study, we tested the importance of body size difference in the potential of assortative mating between the two eastern newt subspecies, larger Notophthalmus viridescens viridescens and smaller Notophthalmus viridescens dorsalis. Through differential expression of life‐cycle polyphenism, these two subspecies are adapted to contrasting environments, which has likely led to the subspecific body‐size difference. We found that males of both subspecies preferred larger females of N. v. viridescens as mates presumably because of the fecundity advantage of larger females. On the other hand, no evidence of female choice was found. Larger males of N. v. viridescens exhibited greater competitive ability and gained primary access to larger females of their own kind. However, smaller males were able to overcome their inferior competitive ability by interfering with larger males' spermatophore transfer and sneakily mating with larger females. Thus, the subspecific body‐size difference importantly affected sexual selection processes, resulting in nonrandom but not completely assortative mating patterns between the larger and smaller subspecies. Although life‐cycle polyphenism facilitates the intraspecific ecological divergence within N. v. viridescens sexual selection processes, namely smaller males' mate preference for larger females and sexual interference during spermatophore transfer, may be halting completion of the ecological speciation. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 884–897.  相似文献   

9.
Analysis of spinning and of silk domiciles revealed similarities and differences for three species of embiids: Antipaluria urichi (Saussure), Pararhagadochir trinitatis (Saussure), and Oligotoma saundersii (Westwood). Each exhibited similar routines while spinning; they positioned the silk by touching the substrate with either front tarsus and by moving the leg to the next position, with many silk strands issuing forth at each step. Reinforced pathways developed as they spun while traveling from diurnal retreats and nocturnal foraging zones. Frass from the interior of their domiciles was spun into the silk. O. saundersii was unique in that it plastered its silk with gathered materials. Analysis of field colonies of P. trinitatis and O. saundersii showed that, like A. urichi, adult females share their silk with offspring and, often, with other females.  相似文献   

10.
Amphibians display wide variations in life‐history traits and life cycles that should prove useful to explore the evolution of sex‐biased dispersal, but quantitative data on sex‐specific dispersal patterns are scarce. Here, we focused on Salamandra atra, an endemic alpine species showing peculiar life‐history traits. Strictly terrestrial and viviparous, the species has a promiscuous mating system, and females reproduce only every 3 to 4 years. In the present study, we provide quantitative estimates of asymmetries in male vs. female dispersal using both field‐based (mark–recapture) and genetic approaches (detection of sex‐biased dispersal and estimates of migration rates based on the contrast in genetic structure across sexes and age classes). Our results revealed a high level of gene flow among populations, which stems exclusively from male dispersal. We hypothesize that philopatric females benefit from being familiar with their natal area for the acquisition and defence of an appropriate shelter, while male dispersal has been secondarily favoured by inbreeding avoidance. Together with other studies on amphibians, our results indicate that a species' mating system alone is a poor predictor of sex‐linked differences in dispersal, in particular for promiscuous species. Further studies should focus more directly on the proximate forces that favour or limit dispersal to refine our understanding of the evolution of sex‐biased dispersal in animals.  相似文献   

11.
In anurans, female polyandry under male harassment is distributed across taxa because of external aquatic fertilization. According to the sexual selection theory, male–male competition for access to females is affected by the operational sex ratio (OSR) and population density. The Japanese common toad, Bufo japonicus, is widespread in mainland Japan, and like the European common toad, B. bufo, it engages in explosive breeding. In this study, we observed the breeding behaviour of B. japonicus in isolated local populations for over four years in two breeding ponds with different population sizes and densities: large‐low (L‐pond) and small‐high (S‐pond). We analysed the relative polyandry ratio in egg clutches laid by females and estimated the size‐assortative mating pattern to be an indicator of male–male competition in the two ponds. Both ponds tended to exhibit a size‐assortative mating pattern; however, the frequency of polyandry was different in the two ponds (L‐pond = 20% and S‐pond = 90%). Our results showed that polyandry could occur without multiple amplexus with a high population density, i.e. eggs were often fertilized by free‐swimming sperm in the small shallow pond. We propose that high female polyandry ratios without continuous male harassment are generated because of a male‐biased OSR and a high population density in the small pond. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 236–242.  相似文献   

12.
Recent studies of female insects indicate that reproductive activities, such as mating and oviposition, can impair immune ability. Using the two tropical damselfly species Argia anceps Garrison and Hetaerina americana (Fabricius), egg production and phenoloxidase (PO) activity, a key enzyme in insect immunity, are measured in mating, ovipositing and perching females in December and March. Perching females of both species have fewer eggs compared with mating and ovipositing females, which suggests that perching females are not engaged in reproduction. There is seasonal variation in egg number for the three categories in H. americana but not in A. anceps, which can be interpreted in terms of adaptive changes in egg production depending on female–male interactions in the former species but not in the latter species. There is no difference in PO activity among mating, ovipositing or perching females within either species, although measurements in December and March indicate distinct seasonal changes. Juvenile Hormone (JH) is known to reduce the effectiveness of the immune system by favouring the use of resources for reproduction. A possible role for JH is examined in H. americana, using the JH analogue methoprene to manipulate hormone activity, revealing that PO activity is reduced in methoprene‐treated H. americana females. Thus, although the results of the present study are indicative of possible hormone‐driven changes in PO, there is not necessarily a down‐regulation of immune function (as determined by PO activity) during mating or oviposition. The results complement some recent studies countering the idea that reproductive activities reduce the immune ability in insects.  相似文献   

13.
Fruit dimorphism and the production of glucosinolates (GSLs) are two specific life history traits found in the members of Brassicales, which aid to optimize seed dispersal and defence against antagonists, respectively. We hypothesized that the bipartite dispersal strategy demands a tight control over the production of fruit morphs with expectedly differential allocation of defensive anticipins (GSLs). In dimorphic Aethionema, herbivory by Plutella xylostella at a young stage triggered the production of more dehiscent (seeds released from fruit) than indehiscent fruit morphs (seeds enclosed within persistent pericarp) on the same plant upon maturity. Total GSL concentrations were highest in the mature seeds of dehiscent fruits from Aethionema arabicum and Aethionema saxatile among the different ontogenetic stages of the diaspores. Multivariate analyses of GSL profiles indicated significantly higher concentrations of specific indole GSLs in the diaspores, which require optimal defence after dispersal (i.e., seeds of dehiscent and fruit/pericarp of indehiscent fruit). Bioassays with a potentially coinhabitant fungus, Aspergillus quadrilineatus, support the distinct defensive potential of the diaspores corresponding to their GSL allocation. These findings indicate a two‐tier morpho‐chemical defence tactic of Aethionema via better protected fruit morphs and strategic provision of GSLs that optimize protection to the progeny for survival in nature.  相似文献   

14.
We tested whether territorial defence is adaptive in male collared lizards by examining the extent to which territory owners monopolize females. We also tested whether females benefit by mating with multiple males using alternative tactics when local sex ratios varied. Surprisingly, neither the number of offspring that males sired, nor the number of females that males mated with varied as a consequence of highly variable local sex ratios. Moreover, both the number of offspring sired and the number of female mates were independent of male social status. Courtship frequency was under positive directional sexual selection for mating success for territorial males. None of the phenotypic traits that we examined were targets of sexual selection in nonterritorial males. Although offspring survivorship decreased with the degree of multiple mating, females mated multiply with similar numbers of territorial and nonterritorial males during all three seasons. Females did not obtain material or genetic benefits that balanced the apparent offspring survival cost imposed by mating with multiple males. Instead, females appeared to be ‘making the best of a bad job’, perhaps because the abundance of hiding places used by subordinate males makes it difficult for females to avoid male harassment. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 115 , 423–436.  相似文献   

15.
Cooperation and group living are extremely rare in spiders and only few species are known to be permanently social. Inbreeding is a key characteristic of social spiders, resulting in high degrees of within‐colony relatedness that may foster kin‐selected benefits of cooperation. Accordingly, philopatry and regular inbreeding are suggested to play a major role in the repeated independent origins of sociality in spiders. We conducted field observations and laboratory experiments to investigate the mating system of the subsocial spider Stegodyphus tentoriicola. The species is suggested to resemble the ‘missing link’ in the transition from subsociality to permanent sociality in Stegodyphus spiders because its social period is prolonged in comparison to other subsocial species. Individuals in our two study populations were spatially clustered around maternal nests, indicating that clusters consist of family groups as found in the subsocial congener Stegodyphus lineatus. Male mating dispersal was limited and we found no obvious pre‐copulatory inbreeding avoidance, suggesting a high likelihood of mating with close kin. Rates of polygamy were low, a pattern ensuring high relatedness within broods. In combination with ecological constraints, such as high costs of dispersal, our findings are consistent with the hypothesis that the extended social period in S. tentoriicola is accompanied with adaptations that facilitate the transition towards permanent sociality. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98 , 851–859.  相似文献   

16.
Extremely divergent traits between males and females are often the result of different requirements and behaviours of the sexes and will evolve relatively rapidly under selection forces. Sexual dimorphism in Rhopalapion longirostre is predominately manifested in the length and structure of the rostrum. To estimate how sexual selection shapes mating success in this weevil we compared paired and unpaired individuals collected from three populations in Austria. The mating process in this species is complex and lengthy. Statistical analyses based on detailed observations of their mating behaviour revealed that matched pairs show functional affinities in body size. Females and males with larger elytra, as well as males with large overall body size, are favoured mating partners, while males that are too small have no mating success. This arrangement ensures copulation and consequently successful egg deposition. For efficient egg channel boring into the flower buds of the host plant, Alcea rosea, the extremely long female rostrum is a crucial tool. Natural selection promotes longer rostra in females whereas sexual selection favours the shorter rostra in males. The major evolutionary forces, natural and sexual selection, enhance the sexual dimorphism in this species. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 115 , 38–47.  相似文献   

17.
The evolution and expression of mate choice behaviour in either sex depends on the sex‐specific combination of mating costs, benefits of choice and constraints on choice. If the benefits of choice are larger for one sex, we would expect that sex to be choosier, assuming that the mating costs and constraints on choice are equal between sexes. Because deliberate inbreeding is a powerful genetic method for experimental manipulation of the quality of study organisms, we tested the effects of both male and female inbreeding on egg and offspring production in Drosophila littoralis. Female inbreeding significantly reduced offspring production (mostly due to lower egg‐to‐adult viability), whereas male inbreeding did not affect offspring production (despite a slight effect of paternal inbreeding on egg‐to‐adult viability). As inbreeding depressed female quality more than male quality, the benefits of mate choice were larger for males than for females. In mate choice experiments, inbreeding did not affect male mating success (measured as a probability to be accepted as a mate in a large group), suggesting that females did not discriminate among inbred and outbred males. In contrast, female mating success was affected by inbreeding, with outbred females having higher mating success than inbred females. This result was not explained by lower activity of inbred females. Our results show that D. littoralis males benefit from mating with outbred females of high genetic quality and suggest adaptive male mate choice for female genetic quality in this species. Thus, patterns of mating success in mate choice trials mirrored the benefits of choice: the sex that benefited more from choice (i.e. males) was more choosy.  相似文献   

18.
The evolution of exaggerated male traits is frequently driven by competition between males to control resources critical for female survival and/or reproductive success. For flightless arthropods specializing on patchy habitats, dispersal agents may represent one such critical resource. The Neotropical pseudoscorpion, Semeiochernes armiger, disperses to new habitats by attaching to the giant timber fly, Pantophthalmus tabaninus, as it ecloses from pupal boreholes within decaying Ficus trees. In a study that combined field observations of mating with experimental removal of individuals from a large, pre‐dispersal population, our morphometric analyses revealed that S. armiger is among the most highly sexually dimorphic pseudoscorpions known, with males possessing unusual, triangular‐shaped pedipalpal chelae (hands) and a male‐specific, dimorphic chela peg that exhibits threshold trait expression. Several lines of evidence indicate that extreme sexual dimorphism in S. armiger results from male competition to monopolize pantophthalmid bores as strategic sites for inseminating females on the verge of dispersal. Sexually dimorphic pedipalpal characters were significantly larger in males located in and around pantophthalmid boreholes, compared with males collected at the periphery of the pantophthalmid emergence zone. Removal of pseudoscorpions resulted in a significant decline in pedipalpal size of males associated with pantophthalmid bores, followed by a rebound in size after collected individuals were returned to the tree. Most significantly, field observations of mating indicate that this competition translates into intense selection for exaggerated male traits, with all traits of the sexually dimorphic chelae exhibiting highly significant sexual selection differentials in males. © 2013 The Linnean Society of London  相似文献   

19.
Hymenopterans under single‐locus complementary sex determination (sl‐CSD) face inbreeding costs due to this sex determination mode. Under sl‐CSD, homozygote eggs at the sl‐CSD locus usually develop into unviable or sterile diploid males. Production of such costly males increases when sib‐mating happens because related individuals share half of their genome. In the hymenopteran Venturia canescens (a solitary parasitoid wasp), diploid males are sterile, leading to fitness costs through genetic incompatibility between parents. Whereas the costs of producing diploid males and behavioural strategies that would reduce such costs have been studied in females, the potential fitness costs faced by males have not. Here, we aimed to investigate fitness costs that males endure after a single sib‐mating and tested whether they have the ability to avoid sib‐mating through kin recognition. Our results show that males have a reduced fitness (i.e. they produce fewer daughters) when mating with their sibs. We also show that males have the ability to distinguish between non‐sib and sib females (i.e. kin). They use chemical marks emitted by the females to discriminate kin from non‐kin. We discuss the evolution of kin recognition in males in the context of mate choice for genetic compatibility. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 279–286.  相似文献   

20.
To capture how sexual selection shapes male reproductive success across different stages of reproduction in Tribolium castaneum (Coleoptera, Tenebrionidae), we combined sequential sperm defence (P1) and sperm offence (P2) trials with additional trials where both males were added simultaneously to the female. We found a positive correlation between the relative paternity share in simultaneous male–male competition trials and the P2 trial. This suggests that males preferred by females as sires achieve superior fertilization success during sperm competition in the second male position. In simultaneous male–male competition trials, where pre‐, peri‐ and postcopulatory sexual selection were all allowed to act, the relative paternity share of preferred males was more than 20% higher than in P2 sperm competition trials where precopulatory female choice was disabled. Additional behavioural observations revealed that mating with more attractive males resulted significantly more frequently in offspring production than mating with less attractive males. Thus, by comparing male fertilization success in trials where precopulatory choice was turned off with more inclusive estimates of fertilization success where pre‐ and pericopulatory choice could occur, we show that female mate choice may effectively inhibit sperm competition. Female mate choice and sperm competition (P2) are positively correlated, which is consistent with directional sexual selection in this species. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112 , 67–75.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号