首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Although the function of nectar is to attract and reward pollinators, secondary metabolites produced by plants as anti‐herbivore defences are frequently present in floral nectars. Greater understanding is needed of the effects of secondary metabolites in nectar on the foraging behaviour and performance of pollinators, and on plant–pollinator interactions. We investigated how nectar‐feeding birds, both specialist (white‐bellied sunbirds Cinnyris talatala) and generalist (dark‐capped bulbuls Pycnonotus tricolor and Cape white‐eyes Zosterops virens), respond to artificial nectar containing the alkaloid nicotine, present in nectar of Nicotiana species. Preference tests were carried out with a range of nicotine concentrations (0.1–300 μM) in two sucrose concentrations (0.25 and 1 M), and for bulbuls also in two sugars (sucrose and hexose). In addition, we measured short‐term feeding patterns in white‐bellied sunbirds that were offered nicotine (0–50 μM) in 0.63 M sucrose. Both nicotine and sugar concentrations influenced the response of bird pollinators to nicotine. The birds showed dose‐dependent responses to nicotine; and their tolerance of high nicotine concentrations was reduced on the dilute 0.25 M sucrose diet, on which they increased consumption to maintain energy intake. White‐bellied sunbirds decreased both feeding frequency and feeding duration as the nicotine concentration in artificial nectar increased. Of the three species, bulbuls showed the highest tolerance for nicotine, and sugar type (sucrose or hexose) had no effect. The indifference of bulbuls to nicotine may be related to their primarily frugivorous diet. However, the response of white‐eyes to nicotine in the dilute sucrose solution was very similar to that of sunbirds, even though white‐eyes are generalist nectar‐feeders. Additional testing of other avian nectarivores and different secondary metabolites is required to further elucidate whether generalist bird pollinators, which utilise dilute nectars in which secondary metabolites have stronger deterrent effects, are more tolerant of ‘toxic’ nectar.  相似文献   

2.
Most floral nectars are clear as water, and the enigmatic coloured nectar in three endemic plant species in Mauritius has puzzled scientists studying it. One hypothesis about the possible ecological function of coloured nectar is that it serves as a visual signal for pollinators. Recent studies have shown that at least two of the three Mauritian plant species with coloured nectar are visited and pollinated by endemic Phelsuma geckos. We here provide experimental evidence for the visual signal hypothesis by showing that Phelsuma ornata geckos prefer coloured over clear nectar in artificial flowers. In flowering plants, coloured nectar could additionally function as an honest signal that allows pollinators to assert the presence and judge the size of a reward prior to flower visitation, and to adjust their behaviour accordingly, leading to increased pollinator efficiency. Our study provides a first step in understanding this rare and intriguing floral trait.  相似文献   

3.
Secondary metabolites produced by plants for herbivore defence are often found in floral nectar, but their effect on the foraging behaviour and physiological performance of pollinators is largely unknown. Nicotine is highly toxic to most herbivores, and nicotine-based insecticides may contribute to current pollinator declines. We examined the effects of nectar nicotine on honeybee foraging choices and worker longevity. Free-flying honeybee (Apis mellifera scutellata) workers from six colonies were given a choice between multiple nicotine concentrations (0-1000 μM) in artificial nectar (0.15-0.63 M sucrose). The dose-dependent deterrent effect of nicotine was stronger in lower sugar concentrations, but even the highest nicotine concentrations did not completely repel honeybees, i.e., bees did not stop feeding on these diets. Nicotine in nectar acts as a partial repellent, which may keep pollinators moving between plants and enhance cross-pollination. In the second part of the study, newly emerged workers from 12 colonies were caged and fed one of four nicotine concentrations (0-300 μM) in 0.63 M sucrose for 21 days. Moderate (≤30 μM) nicotine concentrations had no significant detrimental effect, but high nicotine concentrations reduced the survival of caged workers and their nectar storage in the honey comb. In contrast, worker groups that survived poorly on sugar-only diets demonstrated increased survival on all nicotine diets. In the absence of alternative nectar sources, honeybees tolerate naturally occurring nectar nicotine concentrations; and low concentrations can even be beneficial to honeybees. However, high nicotine concentrations may have a detrimental effect on colony fitness.  相似文献   

4.
? Some plants secrete coloured nectar to attract pollinators, but little is known about the chemical origins of nectar colouration and its ecological function. Leucosceptrum canum stands out as the only plant with coloured nectar recorded in the Himalayas. Here, we focused on the compound associated with the dark colour of the nectar, as well as its secretion dynamics during the flowering season and its relationship to pollinators. ? Fresh nectar was analysed by semi-preparative reversed-phase high-performance liquid chromatography (HPLC), LC-MS and HRESIMS (high resolution electronspray ionization mass spectroscopy) to determine which compound causes the nectar colouration. Behavioural experiments were conducted with birds and honeybees to elucidate the effect of the nectar colour and volume on pollinators. ? We identified a purple anthocyanidin, 5-hydroxyflavylium, as a natural nectar product for the first time. Two short-billed birds were found to pollinate this plant, which employs two nectar-based mechanisms to direct bird pollinators to reproductively active flowers, controlling nectar palatability and presenting a foraging signal for birds by altering nectar volume and colour in a developmental stage-specific manner. ? 5-Hydroxyflavylium was found to be the cause of the nectar colouration, the function of which is to act as a foraging signal to increase pollination efficiency through nectar visibility and palatability.  相似文献   

5.
Flowers produce a plethora of secondary metabolites but only nectar sugars, floral pigments and headspace volatiles have been examined in the context of pollinator behavior. We identify secondary metabolites in the headspace and nectar of glasshouse- and field-grown Nicotiana attenuata plants, infer within-flower origins by analyzing six flower parts, and compare the attractiveness of 16 constituents in standardized choice tests with two guilds of natural pollinators (Manducasexta moths and Archilochus alexandri and Selasphorus rufus hummingbirds) and one nectar thief (Solenopsis xyloni ants) to determine whether nectar metabolites can 'filter' flower visitors: only two could. Moths responded more strongly than did hummingbirds to headspace presentation of nicotine and benzylacetone, the most abundant repellent and attractant compounds, respectively. For both pollinators, nectar repellents decreased nectaring time and nectar volume removed, but increased visitation number, particularly for hummingbirds. Fewer ants visited if the nectar contained repellents. To determine whether nicotine reduced nectar removal rates in nature, we planted transformed, nicotine-silenced plants into native populations in Utah over 2 years. Plants completely lacking nicotine in their nectar had 68-70% more nectar removed per night by the native community of floral visitors than did wild-type plants. We hypothesize that nectar repellents optimize the number of flower visitors per volume of nectar produced, allowing plants to keep their nectar volumes small.  相似文献   

6.
Nectar contains water, sugars and amino acids to attract pollinators and defenders and is protected from nectar robbers and microorganisms by secondary compounds and antimicrobial proteins. Floral and extrafloral nectar secretion can be induced by jasmonic acid, it is often adjusted to consumer identity and consumption rate and depends on invertase activity. Invertases are likely to play at least three roles: the uploading of sucrose from the phloem, carbohydrate mobilization during active secretion and the postsecretory adjustment of the sucrose:hexose ratio of nectar. However, it remains to be studied how plants produce and secrete non-carbohydrate components. More research is needed to understand how plants produce nectar, the most important mediator of their interactions with mutualistic animals.  相似文献   

7.
Secondary metabolites in fruit are compounds that are not directly associated with plant growth; some are directly related to plant reproductive processes, specifically seed protection and dispersion. There is a complex and species‐specific interaction between these plant compounds and their avian seed dispersers. To determine whether two important secondary metabolites in wine grapes – tannins and colour pigments – might be important cues to two of the avian species that forage on wine grapes, and how species‐specific this interaction might be, comparative field experiments were run with Australasian silvereyes (Zosterops lateralis) and European blackbirds (Turdus merula). Both species were offered a glucose/fructose artificial nectar with increasing concentrations of grape tannins. In a second experiment, they were offered both green and purple artificial grapes where only the colour differed. Both species showed aversion to tannins; silvereyes appeared to have greater tolerance than blackbirds of tannin concentrations above 5%. In summer no preference was shown between green and purple coloured artificial grapes, but in late autumn blackbirds took only purple grapes whereas silvereyes pecked mostly at green. Links between tannin for seed protection and colour signals to birds are discussed. Colour may cue the two species to different species‐specific aspects of fruit nutritive value.  相似文献   

8.

Background

Floral nectar contains sugars and amino acids to attract pollinators. In addition, nectar also contains different secondary compounds, but little is understood about their origin or function. Does nectar composition reflect phloem composition, or is nectar synthesized and/or modified in nectaries? Studies where both, the nectar as well as the phloem sap taken from the same plant species were analyzed in parallel are rare. Therefore, phloem sap and nectar from different plant species (Maurandya barclayana, Lophospermum erubescens, and Brassica napus) were compared.

Methodology and Principal Findings

Nectar was collected with microcapillary tubes and phloem sap with the laser-aphid-stylet technique. The nectar of all three plant species contained high amounts of sugars with different percentages of glucose, fructose, and sucrose, whereas phloem sap sugars consisted almost exclusively of sucrose. One possible reason for this could be the activity of invertases in the nectaries. The total concentration of amino acids was much lower in nectars than in phloem sap, indicating selective retention of nitrogenous solutes during nectar formation. Nectar amino acid concentrations were negatively correlated with the nectar volumes per flower of the different plant species. Both members of the tribe Antirrhineae (Plantaginaceae) M. barclayana and L. erubescens synthesized the iridoid glycoside antirrhinoside. High amounts of antirrhinoside were found in the phloem sap and lower amounts in the nectar of both plant species.

Conclusions/Significance

The parallel analyses of nectar and phloem sap have shown that all metabolites which were found in nectar were also detectable in phloem sap with the exception of hexoses. Otherwise, the composition of both aqueous solutions was not the same. The concentration of several metabolites was lower in nectar than in phloem sap indicating selective retention of some metabolites. Furthermore, the existence of antirrhinoside in nectar could be based on passive secretion from the phloem.  相似文献   

9.
While coloured nectar has been known to science at least since 1785, it has only recently received focused scientific attention. However, information about this rare floral trait is scattered and hard to find. Here, we document coloured nectar in 67 taxa worldwide, with a wide taxonomical and geographical distribution. We summarise what is currently known about coloured nectar in each of the lineages where it occurs. The most common nectar colours are in the spectrum from yellow to red, but also brown, black, green, and blue colours are found. Colour intensity of the nectar varies, sometimes even within one taxa, as does the level of contrast between flower petals and nectar. Coloured nectar has evolved independently throughout the angiosperms at least 15 times at the level of family, and is in many cases correlated with one or more of three parameters: (1) vertebrate pollination, known or hypothesised, (2) insularity -- many species are from islands or insular mainland habitats, and (3) altitude -- many species are found at relatively high altitudes. We discuss the evolution and speculate on possible ecological functions of coloured nectar. Apart from being a non-functional, perhaps pleiotropic, trait, we present several hypotheses on possible ecological functions of coloured nectar. Firstly, for some plant species it can be interpreted as an honest signal, leading to high pollination efficiency. Secondly, it can function as a deterrent against nectar-thieves or inefficient pollinators, thus acting as a floral filter. Thirdly, nectar colour-pigments can have anti-microbial qualities that may protect the nectar in long-lived flowers. Neither of these possibilities are mutually exclusive. Recent studies have provided experimental evidence for the first two hypotheses, and we suggest promising avenues for future research into this little-known floral trait.  相似文献   

10.
Diet has a significant effect on pathogen infections in animals and the consumption of secondary metabolites can either enhance or mitigate infection intensity. Secondary metabolites, which are commonly associated with herbivore defense, are also frequently found in floral nectar. One hypothesized function of this so-called toxic nectar is that it has antimicrobial properties, which may benefit insect pollinators by reducing the intensity of pathogen infections. We tested whether gelsemine, a nectar alkaloid of the bee-pollinated plant Gelsemium sempervirens, could reduce pathogen loads in bumble bees infected with the gut protozoan Crithidia bombi. In our first laboratory experiment, artificially infected bees consumed a daily diet of gelsemine post-infection to simulate continuous ingestion of alkaloid-rich nectar. In the second experiment, bees were inoculated with C. bombi cells that were pre-exposed to gelsemine, simulating the direct effects of nectar alkaloids on pathogen cells that are transmitted at flowers. Gelsemine significantly reduced the fecal intensity of C. bombi 7 days after infection when it was consumed continuously by infected bees, whereas direct exposure of the pathogen to gelsemine showed a non-significant trend toward reduced infection. Lighter pathogen loads may relieve bees from the behavioral impairments associated with the infection, thereby improving their foraging efficiency. If the collection of nectar secondary metabolites by pollinators is done as a means of self-medication, pollinators may selectively maintain secondary metabolites in the nectar of plants in natural populations.  相似文献   

11.
Although the tremendous variability in floral colour among angiosperms is often attributed to divergent selection by pollinators, it is usually difficult to preclude the possibility that floral colour shifts were driven by non-pollinator processes. Here, we examine the adaptive significance of flower colour in Disa ferruginea, a non-rewarding orchid that is thought to attract its butterfly pollinator by mimicking the flowers of sympatric nectar-producing species. Disa ferruginea has red flowers in the western part of its range and orange flowers in the eastern part--a colour shift that we hypothesized to be the outcome of selection for resemblance to different local nectar-producing plants. Using reciprocal translocations of red and orange phenotypes as well as arrays of artificial flowers, we found that the butterfly Aeropetes tulbaghia, the only pollinator of the orchid, preferred both the red phenotype and red artificial flowers in the west where its main nectar plant also has red flowers, and both the orange phenotype and orange artificial flowers in the east, where its main nectar plant has orange flowers. This phenotype by environment interaction demonstrates that the flower colour shift in D. ferruginea is adaptive and driven by local colour preference in its pollinator.  相似文献   

12.
We report on flowering phenology, floral morphology, pollinators, and nectar for eight species and a putative natural hybrid belonging to Agarista, Gaultheria and Gaylussacia that occur syntopically in a montane area. The campanulate to tubular flowers of eight out of nine Ericaceae taxa are primarily pollinated by either hummingbirds or bees. Flowering overlaps in all species but slight differences of floral shape, colour, and nectar characterize pollination by each pollinator group. Differences in floral traits are not large enough to exclude secondary pollinators. Thus, either the main pollinators of a species belonging to its syndrome, or secondary pollinators of a species belonging to different syndromes, may allow for inter-specific crosses.  相似文献   

13.
Many orchids lack floral nectar rewards and therefore rely on deception to attract pollinators. To determine the effect that a mutation for nectar production would have on overall pollination success of the deceptive orchid Dactylorhiza sambucina, we recorded pollen deposition and removal in flowers of plants that had either been supplemented with an artificial nectar solution or left unmanipulated as controls. Nectar supplementation resulted in significant increases in the proportion of flowers pollinated, regardless of morph colour and the density of plants supplemented in the population. However, nectar supplementation had a significant positive effect on pollinaria removal only for the yellow morph in one experiment in which a low proportion of plants were supplemented. Thus a mutation for nectar production would have a positive effect on overall pollination success in D. sambucina, particularly the female component. The observed patterns are discussed in relation to other factors, such as cross-pollination and the reallocation of nectar resources for other plant functions, which are traditionally considered to shape the rewardless strategies of orchids.  相似文献   

14.
Are insects flower constant because they use search images to find flowers?   总被引:2,自引:0,他引:2  
Dave Goulson 《Oikos》2000,88(3):547-552
Many insects which gather nectar or pollen exhibit flower constancy, a learned fidelity to a particular species of plant. Recent studies suggest that foraging insects may use a perceptual mechanism akin to a search image to detect flowers, in a manner analogous to the way that predators search for prey. This has emerged as an alternative (but not mutually exclusive) explanation for flower constancy to that proposed by Darwin, who suggested that it may result from a limited ability to learning or remember the handling skills appropriate for particular flowers. However, search images are thought to be a mechanism for locating cryptic prey. Plants which are pollinated by animals have evolved brightly coloured flowers to attract the attention of their pollinators. It thus seems implausible to argue that flowers may actually be cryptic. One possible explanation for this apparent contradiction is that flowers are effectively cryptic when viewed against a background which contains many other flowers of similar colour. I present experimental evidence which suggests that a background of flowers of similar colour does reduce foraging efficiency of bumblebees, but that a background of dissimilarly coloured flowers has no effect. This I interpret as evidence that flowers may be cryptic, suggesting that pollinators may indeed use a search image in location of flowers. However, the relative importance of constraints on foragers' abilities to locate flowers versus their abilities to handle them as causes of flower constancy remain to be elucidated.  相似文献   

15.

The plant kingdom produces an extraordinary diversity of secondary metabolites and the majority of the literature supports a defensive ecological role for them, particularly against invertebrate herbivores (antagonists). Plants also produce secondary compounds in floral nectar and pollen and these are often similar to those produced for defense against invertebrates elsewhere in the plant. This is largely because the chemical armoury within a single plant species is typically restricted to a few biochemical pathways and limited chemical products but how their occurrence in floral rewards is regulated to mediate both defence and enhanced pollination is not well understood. Several phytochemicals are reviewed here comparing the defensive function alongside their benefit to flower visiting mutualists. These include caffeine, aconitine, nicotine, thymol, linalool, lupanine and grayanotoxins comparing the evidence for their defensive function with their impacts on pollinators, their behaviour and well-being. Drivers of adaptation and the evolution of floral traits are discussed in the context of recent studies. Ultimately more research is required that helps determine the impacts of floral chemicals in free flying bees, and how compounds are metabolized, sequestered or excreted by flower feeding insects to understand how they may then affect the pollinators or their parasites. More work is also required on how plants regulate nectar and pollen chemistry to better understand how secondary metabolites and their defensive and pollinator supporting functions are controlled, evolve and adapt.

  相似文献   

16.
The New Zealand alpine flora displays a range of unusual characteristics compared with other alpine floras, in particular the high frequency of species with small white flowers. The presence of both white and bright purple flowers on the same plant in the New Zealand alpine annual creeping eyebright (Euphrasia dyeri Wettst.) provides an ideal opportunity to investigate the significance of flower colour in an environment where coloured flowers are rare. The relationships among flower age, gender phase, reward availability and petal colour were assessed in natural populations of E. dyeri. The effect of pollination on flower colour was tested using hand pollination of bagged flowers. Direct observations and videos of flowers were used to assess patterns of flower visitation by native and introduced pollinators. Unpollinated white E. dyeri flowers changed from white to purple within 6 days. However, pollination of white flowers triggered a significantly faster colour change, typically within 1–2 days. White flowers had receptive stigmas, large amounts of lipid‐rich pollen and small amounts of nectar, whereas stigmas of purple flowers are not receptive and flowers did not provide pollen or nectar rewards. Flowers were mainly visited by native syrphid flies. Both native syrphids and introduced Bombus bees showed a marked avoidance of purple flowers, tending to preferentially visit white flowers. Our study suggests that flower colour change from white to bright purple in E. dyeri functions to direct pollinators to rewarding, receptive flowers. As many Euphrasia L. species are described as having variably coloured flowers, this mechanism may be more widespread in the genus. Furthermore, our results add to the growing evidence that the dominance of white flowers in the New Zealand alpine is not simply due to a lack of colour discrimination among pollinators.  相似文献   

17.
Floral nectar is considered the most important reward animal-pollinated plants offer to attract pollinators. Here we explore whether honeybees, which act as pollinators, affect the composition of bacterial communities in the nectar. Nectar and honeybees were sampled from two plant species: Amygdalus communis and Citrus paradisi. To prevent the contact of nectar with pollinators, C. paradisi flowers were covered with net bags before blooming (covered flowers). Comparative analysis of bacterial communities in the nectar and on the honeybees was performed by the 454-pyrosequencing technique. No significant differences were found among bacterial communities in honeybees captured on the two different plant species. This resemblance may be due to the presence of dominant bacterial OTUs, closely related to the Arsenophonus genus. The bacterial communities of the nectar from the covered and uncovered C. paradisi flowers differed significantly; the bacterial communities on the honeybees differed significantly from those in the covered flowers’ nectar, but not from those in the uncovered flowers’ nectar. We conclude that the honeybees may introduce bacteria into the nectar and/or may be contaminated by bacteria introduced into the nectar by other sources such as other pollinators and nectar thieves.  相似文献   

18.
Keasar T 《Animal behaviour》2000,60(5):639-646
Many species of orchids that do not offer food rewards to pollinators bloom in clusters, early in the season, and are polymorphic for corolla colour. Previous studies suggest that the foraging behaviour of insect pollinators may select for early blooming and colour polymorphism. I tested whether pollinator behaviour can also favour aggregated flowering in these species, in a two-stage laboratory experiment on na?ve bumblebees, Bombus terrestris (L.). In the first stage, the bees were allowed to forage on three colours of artificial flowers that contained sucrose rewards. In the second stage, I added nonrewarding flowers of a fourth colour and recorded the bees' visits to them. The four types of artificial flowers were either arranged in spatially distinct clusters, or were randomly intermingled. I used two reward schedules for each spatial arrangement: constant refilling of reward-containing flowers and probabilistic refilling. Bees that foraged on clustered flowers flew more often to the nonrewarding patch, and made more visits to nonrewarding flowers, than bees that foraged on intermingled flowers. This tendency was obtained both in the constant reward and in the probabilistic reward schedules. The results support the hypothesis that pollinator attraction may select for clustered, synchronized blooming in flowers that do not contain nectar and pollen rewards. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

19.
Many plants use sophisticated strategies to maximize their reproductive success via outcrossing. Nicotiana attenuata flowers produce nectar with nicotine at concentrations that are repellent to hummingbirds, increasing the number of flowers visited per plant. In choice tests using native hummingbirds, we show that these important pollinators learn to tolerate high‐nicotine nectar but prefer low‐nicotine nectar, and show no signs of nicotine addiction. Nectar nicotine concentrations, unlike those of other vegetative tissues, are unpredictably variable among flowers, not only among populations, but also within populations, and even among flowers within an inflorescence. To evaluate whether variations in nectar nicotine concentrations increase outcrossing, polymorphic microsatellite markers, optimized to evaluate paternity in native N. attenuata populations, were used to compare outcrossing in plants silenced for expression of a biosynthetic gene for nicotine production (Napmt1/2) and in control empty vector plants, which were antherectomized and transplanted into native populations. When only exposed to hummingbird pollinators, seeds produced by flowers with nicotine in their nectar had a greater number of genetically different sires, compared to seeds from nicotine‐free flowers. As the variation in nectar nicotine levels among flowers in an inflorescence decreased in N. attenuata plants silenced in various combinations of three Dicer‐like (DCL) proteins, small RNAs are probably involved in the unpredictable variation in nectar nicotine levels within a plant.  相似文献   

20.
Flowers have developed different strategies to attract pollinators through visual or olfactory signals. Most flowers offer pollinators a reward (e.g. nectar and pollen) for the pollination service. However, one‐third of Orchidaceae have been shown not to provide a reward. Calanthe are terrestrial orchids distributed throughout China, Nepal, Japan and tropical Asia. Despite its high diversity, the pollination biology of Calanthe remains largely unknown, even though it is an important aspect of plant conservation. In the study, through field surveying, there were three Hesperiidae butterflies pollinating two species of Calanthe and the pollination behavior differed between the two species of Calanthe, which might lead to different fruit setting rates. There was no nectar in the flowers of the two species, indicating deceptive pollination. Using a glass cylinder experiment, it was deduced that the two species of Calanthe were most likely to attract pollinators by generalized food deception. Interestingly, Hesperiidae butterflies were traditionally thought to be nectar thieves and generally do not transmit pollinia. However, our findings showed that, in this case, the thieves were deceived by the plants and pollinated them for free.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号