首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon dioxide (CO2) enhancement (eCO2) and N addition (aN) have been shown to increase net primary production (NPP) and to affect water‐use efficiency (WUE) for many temperate ecosystems, but few studies have been made on subtropical tree species. This study compared the responses of NPP and WUE from a mesocosm composing five subtropical tree species to eCO2 (700 ppm), aN (10 g N m?2 yr?1) and eCO2 × aN using open‐top chambers. Our results showed that mean annual ecosystem NPP did not changed significantly under eCO2, increased by 56% under aN and 64% under eCO2 × aN. Ecosystem WUE increased by 14%, 55%, and 61% under eCO2, aN and eCO2 × aN, respectively. We found that the observed responses of ecosystem WUE were largely driven by the responses of ecosystem NPP. Statistical analysis showed that there was no significant interactions between eCO2 and aN on ecosystem NPP (= 0.731) or WUE (= 0.442). Our results showed that increasing N deposition was likely to have much stronger effects on ecosystem NPP and WUE than increasing CO2 concentration for the subtropical forests. However, different tree species responded quite differently. aN significantly increased annual NPP of the fast‐growing species (Schima superba). Nitrogen‐fixing species (Ormosia pinnata) grew significantly faster only under eCO2 × aN. eCO2 had no effects on annual NPP of those two species but significantly increased annual NPP of other two species (Castanopsis hystrix and Acmena acuminatissima). Differential responses of the NPP among different tree species to eCO2 and aN will likely have significant implications on the species composition of subtropical forests under future global change.  相似文献   

2.
Willow coppice, energy maize and Miscanthus were evaluated regarding their soil‐derived trace gas emission potential involving a nonfertilized and a crop‐adapted slow‐release nitrogen (N) fertilizer scheme. The N application rate was 80 kg N ha?1 yr?1 for the perennial crops and 240 kg N ha?1 yr?1 for the annual maize. A replicated field experiment was conducted with 1‐year measurements of soil fluxes of CH4, CO2 and N2O in weekly intervals using static chambers. The measurements revealed a clear seasonal trend in soil CO2 emissions, with highest emissions being found for the N‐fertilized Miscanthus plots (annual mean: 50 mg C m?² h?1). Significant differences between the cropping systems were found in soil N2O emissions due to their dependency on amount and timing of N fertilization. N‐fertilized maize plots had highest N2O emissions by far, which accumulated to 3.6 kg N2O ha?1 yr?1. The contribution of CH4 fluxes to the total soil greenhouse gas subsumption was very small compared with N2O and CO2. CH4 fluxes were mostly negative indicating that the investigated soils mainly acted as weak sinks for atmospheric CH4. To identify the system providing the best ratio of yield to soil N2O emissions, a subsumption relative to biomass yields was calculated. N‐fertilized maize caused the highest soil N2O emissions relative to dry matter yields. Moreover, unfertilized maize had higher relative soil N2O emissions than unfertilized Miscanthus and willow. These results favour perennial crops for bioenergy production, as they are able to provide high yields with low N2O emissions in the field.  相似文献   

3.
Indigenous broadleaf plantations are increasingly developing as a prospective silvicultural management approach for substituting in place of large pure conifer plantations in subtropical China. However, little information is known about the effects of tree species conversion on soil-atmosphere greenhouse gas (GHG) exchanges. Four adjacent monospecific plantations were selected in subtropical China to examine the effects of tree species on soil-atmosphere exchanges of N2O, CH4 and CO2. One coniferous plantation was composed of Pinus massoniana (PM), and the three broadleaf plantations were Castanopsis hystrix (CH), Michelia macclurei (MM) and Mytilaria laosensis (ML). We found that mean soil N2O and CO2 emissions in the PM plantation were 4.34 μg N m?2?h?1 and 43.25 mg C m?2?h?1, respectively, lower than those in the broadleaf plantations (>5.25 μg N m?2?h?1 and >56.38 mg C m?2?h?1). The PM plantation soil had higher mean CH4 uptake (39.03 μg C m?2?h?1) than the broadleaf plantation soils (<32.67 μg C m?2?h?1). Variations in soil N2O emissions among tree species could be primarily explained by the differences in litter C:N ratio and soil total N stock. Differences in soil CH4 uptake among tree species could be mostly attributed to the differences in mean soil CO2 flux and water filled pore space (WFPS). Litter C:N ratio could largely account for variations in soil CO2 emissions among tree species. This study confirms that there is no GHG benefit of converting PM plantation to broadleaf plantations in subtropical China. Therefore, the future strategy of tree species selection for substituting in place of large coniferous plantations in subtropical China needs to consider the potential effects of tree species on soil-atmosphere GHG exchanges.  相似文献   

4.
We studied forest monitoring data collected at permanent plots in Italy over the period 2000–2009 to identify the possible impact of nitrogen (N) deposition on soil chemistry, tree nutrition and growth. Average N throughfall (N‐NO3+N‐NH4) ranged between 4 and 29 kg ha?1 yr?1, with Critical Loads (CLs) for nutrient N exceeded at several sites. Evidence is consistent in pointing out effects of N deposition on soil and tree nutrition: topsoil exchangeable base cations (BCE) and pH decreased with increasing N deposition, and foliar nutrient N ratios (especially N : P and N : K) increased. Comparison between bulk openfield and throughfall data suggested possible canopy uptake of N, levelling out for bulk deposition >4–6 kg ha?1 yr?1. Partial Least Square (PLS) regression revealed that ‐ although stand and meteorological variables explained the largest portion of variance in relative basal area increment (BAIrel 2000–2009) ‐ N‐related predictors (topsoil BCE, C : N, pH; foliar N‐ratios; N deposition) nearly always improved the BAIrel model in terms of variance explained (from 78.2 to 93.5%) and error (from 2.98 to 1.50%). N deposition was the strongest predictor even when stand, management and atmosphere‐related variables (meteorology and tropospheric ozone) were accounted for. The maximal annual response of BAIrel was estimated at 0.074–0.085% for every additional kgN. This corresponds to an annual maximal relative increase of 0.13–0.14% of carbon sequestered in the above‐ground woody biomass for every additional kgN, i.e. a median value of 159 kgC per kgN ha?1 yr?1 (range: 50–504 kgC per kgN, depending on the site). Positive growth response occurred also at sites where signals of possible, perhaps recent N saturation were detected. This may suggest a time lag for detrimental N effects, but also that, under continuous high N input, the reported positive growth response may be not sustainable in the long‐term.  相似文献   

5.
Nitrogen (N) fixation is the main source of ‘new’ N for N-limited ecosystems like subarctic and arctic tundra. This crucial ecosystem function is performed by a wide range of N2 fixer (diazotroph) associations that could differ fundamentally in their timing and amount of N release to the soil. To assess the importance of different associative N2 fixers for ecosystem N cycling, we tracked 15N-N2 into four N2-fixer associations (with a legume, lichen, free-living, moss) and into soil, microbial biomass and non-diazotroph-associated plants 3 days and 5 weeks after in situ labelling. In addition, we tracked 13C from 13CO2 labelling to assess if N and C fixation are linked. Three days after labelling, half of the fixed 15N was recovered in the legume soils, indicating a fast release of fixed N2. Within 5 weeks, the free-living N2 fixers released two-thirds of the fixed 15N into the soil, whereas the lichen and moss retained the fixed 15N. Carbon and N2 fixation were linked in the lichen shortly after labelling, in free-living N2 fixers 5 weeks after labelling, and in the moss at both sampling times. The four investigated N2-fixer associations released fixed N2 at different rates into the soil, and non-diazotroph-associated plants have no access to ‘new’ N within several weeks after N2 fixation. Although legumes and free-living N2 fixers are immediate sources of ‘new’ N for N-limited tundra ecosystems, lichens and especially mosses, do not contribute to increase the N pool via N2 fixation in the short term.  相似文献   

6.
Mineral elements in plants have been strongly affected by increased atmospheric carbon dioxide (CO2) concentrations and nitrogen (N) deposition due to human activities. However, such understanding is largely limited to N and phosphorus in grassland. Using open-top chambers, we examined the concentrations of potassium (K), calcium (Ca), magnesium (Mg), aluminum (Al), copper (Cu) and manganese (Mn) in the leaves and roots of the seedlings of five subtropical tree species in response to elevated CO2 (ca. 700 μmol CO2 mol-1) and N addition (100 kg N ha-1 yr-1) from 2005 to 2009. These mineral elements in the roots responded more strongly to elevated CO2 and N addition than those in the leaves. Elevated CO2 did not consistently decrease the concentrations of plant mineral elements, with increases in K, Al, Cu and Mn in some tree species. N addition decreased K and had no influence on Cu in the five tree species. Given the shifts in plant mineral elements, Schima superba and Castanopsis hystrix were less responsive to elevated CO2 and N addition alone, respectively. Our results indicate that plant stoichiometry would be altered by increasing CO2 and N deposition, and K would likely become a limiting nutrient under increasing N deposition in subtropics.  相似文献   

7.
The effects of increased reactive nitrogen (N) deposition in forests depend largely on its fate in the ecosystems. However, our knowledge on the fates of deposited N in tropical forest ecosystems and its retention mechanisms is limited. Here, we report the results from the first whole ecosystem 15N labeling experiment performed in a N‐rich old‐growth tropical forest in southern China. We added 15N tracer monthly as 15NH415NO3 for 1 year to control plots and to N‐fertilized plots (N‐plots, receiving additions of 50 kg N ha?1 yr?1 for 10 years). Tracer recoveries in major ecosystem compartments were quantified 4 months after the last addition. Tracer recoveries in soil solution were monitored monthly to quantify leaching losses. Total tracer recovery in plant and soil (N retention) in the control plots was 72% and similar to those observed in temperate forests. The retention decreased to 52% in the N‐plots. Soil was the dominant sink, retaining 37% and 28% of the labeled N input in the control and N‐plots, respectively. Leaching below 20 cm was 50 kg N ha?1 yr?1 in the control plots and was close to the N input (51 kg N ha?1 yr?1), indicating N saturation of the top soil. Nitrogen addition increased N leaching to 73 kg N ha?1 yr?1. However, of these only 7 and 23 kg N ha?1 yr?1 in the control and N‐plots, respectively, originated from the labeled N input. Our findings indicate that deposited N, like in temperate forests, is largely incorporated into plant and soil pools in the short term, although the forest is N‐saturated, but high cycling rates may later release the N for leaching and/or gaseous loss. Thus, N cycling rates rather than short‐term N retention represent the main difference between temperate forests and the studied tropical forest.  相似文献   

8.
Reduced soil N availability under elevated CO2 may limit the plant's capacity to increase photosynthesis and thus the potential for increased soil C input. Plant productivity and soil C input should be less constrained by available soil N in an N2‐fixing system. We studied the effects of Trifolium repens (an N2‐fixing legume) and Lolium perenne on soil N and C sequestration in response to 9 years of elevated CO2 under FACE conditions. 15N‐labeled fertilizer was applied at a rate of 140 and 560 kg N ha?1 yr?1 and the CO2 concentration was increased to 60 Pa pCO2 using 13C‐depleted CO2. The total soil C content was unaffected by elevated CO2, species and rate of 15N fertilization. However, under elevated CO2, the total amount of newly sequestered soil C was significantly higher under T. repens than under L. perenne. The fraction of fertilizer‐N (fN) of the total soil N pool was significantly lower under T. repens than under L. perenne. The rate of N fertilization, but not elevated CO2, had a significant effect on fN values of the total soil N pool. The fractions of newly sequestered C (fC) differed strongly among intra‐aggregate soil organic matter fractions, but were unaffected by plant species and the rate of N fertilization. Under elevated CO2, the ratio of fertilizer‐N per unit of new C decreased under T. repens compared with L. perenne. The L. perenne system sequestered more 15N fertilizer than T. repens: 179 vs. 101 kg N ha?1 for the low rate of N fertilization and 393 vs. 319 kg N ha?1 for the high N‐fertilization rate. As the loss of fertilizer‐15N contributed to the 15N‐isotope dilution under T. repens, the input of fixed N into the soil could not be estimated. Although N2 fixation was an important source of N in the T. repens system, there was no significant increase in total soil C compared with a non‐N2‐fixing L. perenne system. This suggests that N2 fixation and the availability of N are not the main factors controlling soil C sequestration in a T. repens system.  相似文献   

9.
This study examines the role of tree canopies in processing atmospheric nitrogen (Ndep) for four forests in the United Kingdom subjected to different Ndep: Scots pine and beech stands under high Ndep (HN, 13–19 kg N ha?1 yr?1), compared to Scots pine and beech stands under low Ndep (LN, 9 kg N ha?1 yr?1). Changes of NO3‐N and NH4‐N concentrations in rainfall (RF) and throughfall (TF) together with a quadruple isotope approach, which combines δ18O, Δ17O and δ15N in NO3? and δ15N in NH4+, were used to assess N transformations by the canopies. Generally, HN sites showed higher NH4‐N and NO3‐N concentrations in RF compared to the LN sites. Similar values of δ15N‐NO3? and δ18O in RF suggested similar source of atmospheric NO3? (i.e. local traffic), while more positive values for δ15N‐NH4+ at HN compared to LN likely reflected the contribution of dry NHx deposition from intensive local farming. The isotopic signatures of the N‐forms changed after interacting with tree canopies. Indeed, 15N‐enriched NH4+ in TF compared to RF at all sites suggested that canopies played an important role in buffering dry Ndep also at the low Ndep site. Using two independent methods, based on δ18O and Δ17O, we quantified for the first time the proportion of NO3? in TF, which derived from nitrification occurring in tree canopies at the HN site. Specifically, for Scots pine, all the considered isotope approaches detected biological nitrification. By contrast for the beech, only using the mixing model with Δ17O, we were able to depict the occurrence of nitrification within canopies. Our study suggests that tree canopies play an active role in the N cycling within forest ecosystems. Processing of Ndep within canopies should not be neglected and needs further exploration, with the combination of multiple isotope tracers, with particular reference to Δ17O.  相似文献   

10.
In this study, we quantify the impacts of climate and land use on soil N2O and CH4 fluxes from tropical forest, agroforest, arable and savanna ecosystems in Africa. To do so, we measured greenhouse gases (GHG) fluxes from 12 different ecosystems along climate and land‐use gradients at Mt. Kilimanjaro, combining long‐term in situ chamber and laboratory soil core incubation techniques. Both methods showed similar patterns of GHG exchange. Although there were distinct differences from ecosystem to ecosystem, soils generally functioned as net sources and sinks for N2O and CH4 respectively. N2O emissions correlated positively with soil moisture and total soil nitrogen content. CH4 uptake rates correlated negatively with soil moisture and clay content and positively with SOC. Due to moderate soil moisture contents and the dominance of nitrification in soil N turnover, N2O emissions of tropical montane forests were generally low (<1.2 kg N ha?1 year?1), and it is likely that ecosystem N losses are driven instead by nitrate leaching (~10 kg N ha?1 year?1). Forest soils with well‐aerated litter layers were a significant sink for atmospheric CH4 (up to 4 kg C ha?1 year?1) regardless of low mean annual temperatures at higher elevations. Land‐use intensification significantly increased the soil N2O source strength and significantly decreased the soil CH4 sink. Compared to decreases in aboveground and belowground carbon stocks enhanced soil non‐CO2 GHG emissions following land‐use conversion from tropical forests to homegardens and coffee plantations were only a small factor in the total GHG budget. However, due to lower ecosystem carbon stock changes, enhanced N2O emissions significantly contributed to total GHG emissions following conversion of savanna into grassland and particularly maize. Overall, we found that the protection and sustainable management of aboveground and belowground carbon and nitrogen stocks of agroforestry and arable systems is most crucial for mitigating GHG emissions from land‐use change.  相似文献   

11.
The temporal variations in CO2, CH4 and N2O fluxes were measured over two consecutive years from February 2007 to March 2009 from a subtropical rainforest in south‐eastern Queensland, Australia, using an automated sampling system. A concurrent study using an additional 30 manual chambers examined the spatial variability of emissions distributed across three nearby remnant rainforest sites with similar vegetation and climatic conditions. Interannual variation in fluxes of all gases over the 2 years was minimal, despite large discrepancies in rainfall, whereas a pronounced seasonal variation could only be observed for CO2 fluxes. High infiltration, drainage and subsequent high soil aeration under the rainforest limited N2O loss while promoting substantial CH4 uptake. The average annual N2O loss of 0.5 ± 0.1 kg N2O‐N ha?1 over the 2‐year measurement period was at the lower end of reported fluxes from rainforest soils. The rainforest soil functioned as a sink for atmospheric CH4 throughout the entire 2‐year period, despite periods of substantial rainfall. A clear linear correlation between soil moisture and CH4 uptake was found. Rates of uptake ranged from greater than 15 g CH4‐C ha?1 day?1 during extended dry periods to less than 2–5 g CH4‐C ha?1 day?1 when soil water content was high. The calculated annual CH4 uptake at the site was 3.65 kg CH4‐C ha?1 yr?1. This is amongst the highest reported for rainforest systems, reiterating the ability of aerated subtropical rainforests to act as substantial sinks of CH4. The spatial study showed N2O fluxes almost eight times higher, and CH4 uptake reduced by over one‐third, as clay content of the rainforest soil increased from 12% to more than 23%. This demonstrates that for some rainforest ecosystems, soil texture and related water infiltration and drainage capacity constraints may play a more important role in controlling fluxes than either vegetation or seasonal variability.  相似文献   

12.
A field trial was carried out on a 15 year old Miscanthus stand, subject to nitrogen fertilizer treatments of 0, 63 and 125 kg‐N ha?1, measuring N2O emissions, as well as annual crop yield over a full year. N2O emission intensity (N2O emissions calculated as a function of above‐ground biomass) was significantly affected by fertilizer application, with values of 52.2 and 59.4 g N2O‐N t?1 observed at 63 and 125 kg‐N ha?1, respectively, compared to 31.3 g N2O‐N t?1 in the zero fertilizer control. A life cycle analyses approach was applied to calculate the increase in yield required to offset N2O emissions from Miscanthus through fossil fuel substitution in the fuel chain. For the conditions observed during the field trial yield increases of 0.33 and 0.39 t ha?1 were found to be required to offset N2O emissions from the 63 kg‐N ha?1 treatment, when replacing peat and coal, respectively, while increases of 0.71 and 0.83 t ha?1 were required for the 125 kg‐N ha?1 treatment, for each fuel. These values are considerably less than the mean above‐ground biomass yield increases observed here of 1.57 and 2.79 t ha?1 at fertilization rates 63 and 125 kg‐N ha?1 respectively. Extending this analysis to include a range of fertilizer application rates and N2O emission factors found increases in yield necessary to offset soil N2O emissions ranging from 0.26 to 2.54 t ha?1. These relatively low yield increase requirements indicate that where nitrogen fertilizer application improves yield, the benefits of such a response will not be offset by soil N2O emissions.  相似文献   

13.
Hybrid poplar short‐rotation coppices (SRC) provide feedstocks for bioenergy production and can be established on lands that are suboptimal for food production. The environmental consequences of deploying this production system on marginal agricultural land need to be evaluated, including the investigation of common management practices i.e., fertilization and irrigation. In this work, we evaluated (1) the soil‐atmosphere exchange of carbon dioxide, methane, and nitrous oxide (N2O); (2) the changes in soil organic carbon (SOC) stocks; (3) the gross ammonification and nitrification rates; and (4) the nitrate leaching as affected by the establishment of a hybrid poplar SRC on a marginal agricultural land in southern Germany. Our study covered one 3‐year rotation period and 2 years after the first coppicing. We combined field and laboratory experiments with modeling. The soil N2O emissions decreased from 2.2 kg N2O‐N ha?1 a?1 in the year of SRC establishment to 1.1–1.4 kg N2O‐N ha?1 a?1 after 4 years. Likewise, nitrate leaching reduced from 13 to 1.5–8 kg N ha?1 a?1. Tree coppicing induced a brief pulse of soil N2O flux and marginal effects on gross N turnover rates. Overall, the N losses diminished within 4 years by 80% without fertilization (irrespective of irrigation) and by 40% when 40–50 kg N ha?1 a?1 were applied. Enhanced N losses due to fertilization and the minor effect of fertilization and irrigation on tree growth discourage its use during the first rotation period after SRC establishment. A SOC accrual rate of 0.4 Mg C ha?1 a?1 (uppermost 25 cm, P = 0.2) was observed 5 years after the SRC establishment. Overall, our data suggest that SRC cultivation on marginal agricultural land in the region is a promising option for increasing the share of renewable energy sources due to its net positive environmental effects.  相似文献   

14.
The effects of elevated CO2 concentration upon rhizodeposition of nitrogen were investigated on field-grown Lolium perenne planted in soil cores set into the resident soil of a intensively managed ryegrass sward treated with elevated CO2 for nine consecutive years, under two contrasted N fertilisation regimes (Swiss FACE Experiment). The planted cores were excavated from the ambiant (35 Pa pCO2) and enriched (60 Pa pCO2) rings at two dates during the growing season (spring and early autumn). The cores were brought back to the laboratory for a pulse-labelling of ryegrass shoots with 15NH3, in order to quantify 15N-rhizodeposition.A recovery of 10–16% of the total 15N administred to the plant was recovered in the plant–soil system 48 h after the pulse-labelling; significant amounts of 15N were released into the soil adhering (adhering soil: AS) to the roots (0.44 μg 15N g AS−1 and 0.60 μg g AS−1 in the spring and the autumn samplings, respectively).In the spring sampling, there was no effect of atmospheric CO2 concentration on N rhizodeposition. In the autumn sampling, elevated CO2 stimulated N rhizodeposition that amounted to 7.2 and 5.2 mg 15N m−2, under elevated and ambient CO2, respectively. Nitrogen rhizodeposition was higher at high N (56 gN m−2) than at low N fertilisation (14 gN m−2), whatever the sampling date investigated.The mechanisms by which elevated atmospheric CO2 leads to a stimulation of the net root-released N flux remains to be investigated: was it caused by a higher nitrogen immobilisation by the microbial biomass and a reduced re-assimilation of mineralized N and/or by a stimulation of N efflux from roots? Concomitant to the observed reduction of C rhizodeposition, the stimulation of net N efflux suggests that the quality of root released compounds was modified under elevated CO2 concentration.  相似文献   

15.
Short‐rotation woody biomass crops (SRWC) have been proposed as a major feedstock source for bioenergy generation in the Northeastern US. To quantify the environmental effects and greenhouse gas (GHG) balance of crops including SRWC, investigators need spatially explicit data which encompass entire plantation cycles. A knowledge gap exists for the establishment period which makes current GHG calculations incomplete. In this study, we investigated the effects of converting pasture and hayfields to willow (Salix spp.) and hybrid‐poplar (Populus spp.) SRWC plantations on soil nitrogen (N) cycling, nitrous oxide (N2O) emissions, and nitrate (NO3?) leaching at six sites of varying soil and climate conditions across northern Michigan and Wisconsin, following these plantations from pre conversion through their first 2 years. All six sites responded to establishment with increased N2O emissions, available inorganic N, and, where it was measured, NO3? leaching; however, the magnitude of these impacts varied dramatically among sites. Soil NO3? levels varied threefold among sites, with peak extractable NO3? concentrations ranging from 15 to 49 g N kg?1 soil. Leaching losses were significant and persisted through the second year, with 44–112 kg N ha?1 leached in SRWC plots. N2O emissions in the first growing season varied 30‐fold among sites, from 0.5 to 17.0 Mg‐CO2eq ha?1 (carbon dioxide equivalents). N2O emissions over 2 years resulted in N2O emissions due to plantation establishment that ranged from 0.60 to 22.14 Mg‐CO2eq ha?1 above baseline control levels across sites. The large N losses we document herein demonstrate the importance of including direct effects of land conversion in life‐cycle analysis (LCA) studies of SRWC GHG balance. Our results also demonstrate the need for better estimation of spatial variability of N cycling processes to quantify the full environmental impacts of SRWC plantations.  相似文献   

16.
Increasing atmospheric CO2 concentration can influence the growth and chemical composition of many plant species, and thereby affect soil organic matter pools and nutrient fluxes. Here, we examine the effects of ambient (initially 362 μL L?1) and elevated (654 μL L?1) CO2 in open‐top chambers on the growth after 6 years of two temperate evergreen forest species: an exotic, Pinus radiata D. Don, and a native, Nothofagus fusca (Hook. F.) Oerst. (red beech). We also examine associated effects on selected carbon (C) and nitrogen (N) properties in litter and mineral soil, and on microbial properties in rhizosphere and hyphosphere soil. The soil was a weakly developed sand that had a low initial C concentration of about 1.0 g kg?1 at both 0–100 and 100–300 mm depths; in the N. fusca system, it was initially overlaid with about 50 mm of forest floor litter (predominantly FH material) taken from a Nothofagus forest. A slow‐release fertilizer was added during the early stages of plant growth; subsequent foliage analyses indicated that N was not limiting. After 6 years, stem diameters, foliage N concentrations and C/N ratios of both species were indistinguishable (P>0.10) in the two CO2 treatments. Although total C contents in mineral soil at 0–100 mm depth had increased significantly (P<0.001) after 6 years growth of P. radiata, averaging 80±0.20 g m?2 yr?1, they were not significantly influenced by elevated CO2. However, CO2‐C production in litter, and CO2‐C production, microbial C, and microbial C/N ratios in mineral soil (0–100 mm depth) under P. radiata were significantly higher under elevated than ambient CO2. CO2‐C production, microbial C, and numbers of bacteria (but not fungi) were also significantly higher under elevated CO2 in hyphosphere soil, but not in rhizosphere soil. Under N. fusca, some incorporation of the overlaid litter into the mineral soil had probably occurred; except for CO2‐C production and microbial C in hyphosphere soil, none of the biochemical properties or microbial counts increased significantly under elevated CO2. Net mineral‐N production, and generally the potential utilization of different substrates by microbial communities, were not significantly influenced by elevated CO2 under either tree species. Physiological profiles of the microbial communities did, however, differ significantly between rhizosphere and hyphosphere samples and between samples under P. radiata and N. fusca. Overall, results support the concept that a major effect on soil properties after prolonged exposure of trees to elevated CO2 is an increase in the amounts, and mineralization rate, of labile organic components.  相似文献   

17.
Sea level rise will change inundation regimes in salt marshes, altering redox dynamics that control nitrification – a potential source of the potent greenhouse gas, nitrous oxide (N2O) – and denitrification, a major nitrogen (N) loss pathway in coastal ecosystems and both a source and sink of N2O. Measurements of net N2O fluxes alone yield little insight into the different effects of redox conditions on N2O production and consumption. We used in situ measurements of gross N2O fluxes across a salt marsh elevation gradient to determine how soil N2O emissions in coastal ecosystems may respond to future sea level rise. Soil redox declined as marsh elevation decreased, with lower soil nitrate and higher ferrous iron in the low marsh compared to the mid and high marshes (P < 0.001 for both). In addition, soil oxygen concentrations were lower in the low and mid‐marshes relative to the high marsh (P < 0.001). Net N2O fluxes differed significantly among marsh zones (P = 0.009), averaging 9.8 ± 5.4 μg N m?2 h?1, ?2.2 ± 0.9 μg N m?2 h?1, and 0.67 ± 0.57 μg N m?2 h?1 in the low, mid, and high marshes, respectively. Both net N2O release and uptake were observed in the low and high marshes, but the mid‐marsh was consistently a net N2O sink. Gross N2O production was highest in the low marsh and lowest in the mid‐marsh (P = 0.02), whereas gross N2O consumption did not differ among marsh zones. Thus, variability in gross N2O production rates drove the differences in net N2O flux among marsh zones. Our results suggest that future studies should focus on elucidating controls on the processes producing, rather than consuming, N2O in salt marshes to improve our predictions of changes in net N2O fluxes caused by future sea level rise.  相似文献   

18.
With the ability to symbiotically fix atmospheric N2, legumes may lack the N-limitations thought to constrain plant response to elevated concentrations of atmospheric CO2. The growth and photosynthetic responses of two perennial grassland species were compared to test the hypotheses that (1) the CO2 response of wild species is limited at low N availability, (2) legumes respond to a greater extent than non-fixing forbs to elevated CO2, and (3) elevated CO2 stimulates symbiotic N2 fixation, resulting in an increased amount of N derived from the atmosphere. This study investigated the effects of atmospheric CO2 concentration (365 and 700 mol mol–1) and N addition on whole plant growth and C and N acquisition in an N2-fixing legume (Lupinus perennis) and a non-fixing forb (Achillea millefolium) in controlled-chamber environments. To evaluate the effects of a wide range of N availability on the CO2 response, we incorporated six levels of soil N addition starting with native field soil inherently low in N (field soil + 0, 4, 8, 12, 16, or 20 g N m–2 yr–1). Whole plant growth, leaf net photosynthetic rates (A), and the proportion of N derived from N2 fixation were determined in plants grown from seed over one growing season. Both species increased growth with CO2enrichment, but this response was mediated by N supply only for the non-fixer, Achillea. Its response depended on mineral N supply as growth enhancements under elevated CO2 increased from 0% in low N soil to +25% at the higher levels of N addition. In contrast, Lupinus plants had 80% greater biomass under elevated CO2 regardless of N treatment. Although partial photosynthetic acclimation to CO2 enrichment occurred, both species maintained comparably higher A in elevated compared to ambient CO2 (+38%). N addition facilitated increased A in Achillea, however, in neither species did additional N availability affect the acclimation response of A to CO2. Elevated CO2 increased plant total N yield by 57% in Lupinus but had no effect on Achillea. The increased N in Lupinus came from symbiotic N2 fixation, which resulted in a 47% greater proportion of N derived from fixation relative to other sources of N. These results suggest that compared to non-fixing forbs, N2-fixers exhibit positive photosynthetic and growth responses to increased atmospheric CO2 that are independent of soil N supply. The enhanced amount of N derived from N2 fixation under elevated CO2 presumably helps meet the increased N demand in N2-fixing species. This response may lead to modified roles of N2-fixers and N2-fixer/non-fixer species interactions in grassland communities, especially those that are inherently N-poor, under projected rising atmospheric CO2.  相似文献   

19.
Scant information is available on how soil phosphorus (P) availability responds to atmospheric nitrogen (N) deposition, especially in the tropical zones. This study examined the effect of N addition on soil P availability, and compared this effect between forest sites of contrasting land‐use history. Effects of N addition on soil properties, litterfall production, P release from decomposing litter, and soil P availability were studied in a disturbed (reforested pine forest with previous understory vegetation and litter harvesting) and a rehabilitated (reforested mixed pine/broadleaf forest with no understory vegetation and litter harvesting) tropical forest in southern China. Experimental N‐treatments (above ambient) were the following: Control (no N addition), N50 (50 kg N ha?1 yr?1), and N100 (100 kg N ha?1 yr?1). Results indicated that N addition significantly decreased soil P availability in the disturbed forest. In the rehabilitated forest, however, soil P availability was significantly increased by N addition. Decreases in soil P availability may be correlated with decreases in rates of P release from decomposing litter in the N‐treated plots, whereas the increase in soil P availability was correlated with an increase in litterfall production. Our results suggest that response of soil P availability to N deposition in the reforested tropical forests in southern China may vary greatly with temporal changes in tree species composition and soil nutrient status, caused by different land‐use practices.  相似文献   

20.
Oilseed rape (OSR, Brassica napus L.) is an important feedstock for biodiesel; hence, carbon dioxide (CO2), methane (CH4) and particularly fertilizer‐derived nitrous oxide (N2O) emissions during cultivation must be quantified to assess putative greenhouse gas (GHG) savings, thus creating an urgent and increasing need for such data. Substrates of nitrification [ammonium (NH4)] and denitrification [nitrate (NO3)], the predominant N2O production pathways, were supplied separately and in combination to OSR in a UK field trial aiming to: (i) produce an accurate GHG budget of fertilizer application; (ii) characterize short‐ to medium‐term variation in GHG fluxes; (iii) establish the processes driving N2O emission. Three treatments were applied twice, 1 week apart: ammonium nitrate fertilizer (NH4NO3, 69 kg‐N ha?1) mimicking the farm management, ammonium chloride (NH4Cl, 34.4 kg‐N ha?1) and sodium nitrate (NaNO3, 34.6 kg‐N ha?1). We deployed SkyLine2D for the very first time, a novel automated chamber system to measure CO2, CH4 and N2O fluxes at unprecedented high temporal and spatial resolution from OSR. During 3 weeks following the fertilizer application, CH4 fluxes were negligible, but all treatments were a net sink for CO2 (ca. 100 g CO2 m?2). Cumulative N2O emissions (ca. 120 g CO2‐eq m?2) from NH4NO3 were significantly greater (P < 0.04) than from NaNO3 (ca. 80 g CO2‐eq m?2), but did not differ from NH4Cl (ca. 100 g CO2‐eq m?2) and reduced the carbon sink of photosynthesis so that OSR was a net GHG source in the fertilizer treatment. Diurnal variation in N2O emissions, peaking in the afternoon, was more strongly associated with photosynthetically active radiation (PAR) than temperature. This suggests that the supply of carbon (C) from photosynthate may have been the key driver of the observed diurnal pattern in N2O emission and thus should be considered in future process‐based models of GHG emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号