首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surveys of genetic diversity patterns of self‐incompatible clonal polyploid plant species are still scarcer than those of diploid plant species. Therefore, I studied the phylogeographical history of Linnaea borealis subsp. borealis to shed light on the colonization history of this clonal self‐incompatible polyploid plant in Eurasia using selected regions of plastid DNA and genetic diversity patterns of 22 populations of this species employing AFLP markers. I also addressed the question of whether the genetic diversity patterns in L. borealis subsp. borealis in Eurasia are similar to those of earlier published studies of clonal self‐incompatible diploid or polyploid plants. This survey revealed that the shallow phylogeographical history (six plastid haplotypes forming one haplogroup, 100% bootstrap support) and moderate genome‐wide diversity estimated using AFLP markers (Fragpoly = 10.8–38.9%, I = 0.060–0.180, FST = 0.289) were general characteristics of L. borealis subsp. borealis in its Eurasian range. The sampling strategy, in most cases at 1–2‐m or even 3–5‐m intervals, showed that a balance between vegetative and sexual reproduction and limited pollen dispersal among compatible mates can be important for genetic diversity patterns in populations of this taxon. Despite the fact that one‐half of the investigated populations were strongly isolated, they still preserved similar levels of genetic diversity across the geographical range. I found no support for the hypothesis that a bottleneck and/or inbreeding had accompanied habitat fragmentation as factors shaping genetic diversity. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 64–76.  相似文献   

2.
We investigated the range dynamics of Artemisia eriantha, a widespread, but rare, mountain plant with a highly disjunct distribution in the European Alpine System. We focused on testing the roles of vicariance and long‐distance dispersal in shaping the current distribution of the species. To this end, we collected AFLP and plastid DNA sequence data for 17 populations covering the entire distributional range of the species. Strong phylogeographical structure was found in both datasets. AFLP data suggested that almost all populations were genetically strongly differentiated, with 58% of the overall genetic variation partitioned among populations. Bayesian clustering identified five groups of populations: Balkans, Pyrenees, Central Apennines, one southwestern Alpine population and a Widespread cluster (eastern Pyrenees, Alps, Carpathians). Major groups were supported by neighbor‐joining and NeighbourNet analyses. Fourteen plastid haplotypes were found constituting five strongly distinct lineages: Alps plus Pyrenees, Apennines, Balkans, southern Carpathians, and a Widespread group (eastern Pyrenees, northern Carpathians, Mt. Olympus). Plastid DNA data suggested that A. eriantha colonized the European Alpine System in a westward direction. Although, in southern Europe, vicariant differentiation among the Iberian, Italian and Balkan Peninsulas predominated, thus highlighting their importance as glacial refugia for alpine species, in temperate mountain ranges, long‐distance dispersal prevailed. This study emphasizes that currently highly disjunct distributions can be shaped by both vicariance and long‐distance dispersal, although their relative importance may be geographically structured along, for instance, latitude, as in A. eriantha. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 174 , 214–226.  相似文献   

3.
Two species of palo santo trees are distributed in the Galápagos archipelago, the native Bursera graveolens and the endemic Bursera malacophylla (Burseraceae). However, a zone of individuals morphologically intermediate between the two exists on northern Santa Cruz Island and south‐eastern Santiago Island, suggesting that they may not be reproductively isolated. Here we review the species' distributional and morphological differences and test for evidence of hybridization between the two species using DNA sequence and AFLP data. We find that the species lack distinguishing synapomorphies across the five nuclear and plastid regions examined. Population assignment tests and population genetic analyses of AFLP data indicate that genetically similar palo santo individuals (N = 87), including putative hybrids, partition into two genealogical groups that do not uniformly correspond to island‐ or taxon‐based membership. Furthermore, genotypic admixture levels among morphologically intermediate individuals do not indicate widespread hybridization. Thus, we recommend recognizing the endemic palo santo taxon as B. graveolens subspecies malacophylla (B.L.Rob.) A. Weeks & Tye comb. & stat. nov. in light of its close genetic relationship to B. graveolens subsp. graveolens and its distinctive morphology and distribution. Future research should quantify phenotypic variation in palo santo populations as another means for understanding the basis of morphological differences between the subspecies. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 161 , 396–410.  相似文献   

4.
In the last decade a number of studies has illustrated quite different phylogeographical patterns amongst plants with a northern present‐day geographical distribution, spanning the entire circumboreal region and/or circumarctic region and southern mountains. These works, employing several marker systems, have brought to light the complex evolutionary histories of this group. Here I focus on one circumboreal plant species, Chamaedaphne calyculata (leatherleaf), to unravel its phylogeographical history and patterns of genetic diversity across its geographical range. A survey of 29 populations with combined analyses of chloroplast DNA (cpDNA), internal transcribed spacer (ITS) and AFLP markers revealed structuring into two groups: Eurasian/north‐western North American, and north‐eastern North American. The present geographical distribution of C. calyculata has resulted from colonization from two putative refugial areas: east Beringia and south‐eastern North America. The variation of chloroplast DNA (cpDNA) and ITS sequences strongly indicated that the evolutionary histories of the Eurasian/north‐western North American and the north‐eastern North American populations were independent of each other because of a geographical disjunction in the distribution area and ice‐sheet history between north‐eastern and north‐western North America. Mismatch analysis using ITS confirmed that the present‐day population structure is the result of rapid expansion, probably since the last glacial maximum. The AFLP data revealed low genetic diversity of C. calyculata (P = 19.5%, H = 0.085) over the whole geographical range, and there was no evidence of loss of genetic diversity within populations in the continuous range, either at the margins or in formerly glaciated and nonglaciated regions. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 761–775.  相似文献   

5.
Convolvulus boissieri is an edaphic endemic plant which grows in the Baetic ranges always in association with high mountain xeric dolomitic outcrops. As these dolomitic areas appear in a ‘soil‐island’ pattern, the distribution of this species is disjunct. Populations of this species frequently include a low number of individuals, which could have an important impact on their genetic diversity and viability. Convolvulus boissieri provides an excellent opportunity to study the genetic and phylogeographical aspects of species linked to dolomites. We used amplified fragment length polymorphism markers and nuclear (internal transcribed spacer region of the nuclear ribosomal cistron) and plastid sequences (trnL‐trnF, rpl32‐trnL and trnQ‐5′rps16). Data were generated from 15 populations, representing the distribution area of the species. For sequence analysis and estimation of divergence times we also used sequences from other Convolvulus species. Results revealed low intrapopulational genetic diversity and a strong interpopulational structure. Furthermore, we found clear‐cut differentiation caused by the existence of two large population groups separated by the Guadiana Menor river basin. Estimation of divergence times indicated that divergence took place during the Pleistocene glaciations. Genetic diversity and differentiation are similar to those other species exhibiting naturally fragmented distribution with a sky islands pattern. In phylogeographical terms, the successive glaciation–interglaciation cycles caused the species to spread from the western sites to eastern sites, the latter being more exposed to the effects of glaciation. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 176 , 506–523.  相似文献   

6.
The Balkan Peninsula is considered the most important refugium for species during the Pleistocene glaciations and today harbours c. 2000 endemic species, but we know surprisingly little about the evolution of taxa in this region. Veronica saturejoides, V. thessalica and V. erinoides are a group of closely related alpine taxa endemic to the Balkan Peninsula. Here, we analyse four DNA regions [the nuclear chalcone synthase intron (CHSi) and ribosomal internal transcribed spacer (ITS) region and the plastid rpoBtrnC spacer and trnLtrnLtrnF region] and amplified fragment length polymorphism (AFLP) fingerprints to provide a phylogenetic hypothesis for the relationships among these taxa. Additionally, we analyse leaf morphological characters used to distinguish the three subspecies of V. saturejoides. The analyses support the distinction of the three subspecies based on previously intuitively suggested characters. Nuclear chalcone synthase intron data indicate that the southern taxa are genetically much more diverse than the more northern V. saturejoides subsp. saturejoides. Phylogenetic relationships inferred from this region and AFLP fingerprints support the monophyly of V. saturejoides. In contrast, plastid DNA regions suggest a closer relationship of V. saturejoides subsp. saturejoides to V. thessalica. The most likely scenario involves introgression into V. saturejoides subsp. saturejoides from V. thessalica. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 159 , 616–636.  相似文献   

7.
Range shifts during the Pleistocene shaped the unique phylogeographical structures of numerous species. Accompanying species migration, sister taxa may have experienced multiple introgression events. Here, we report the signature of introgression events in multiple areas in Schizocodon, herbs endemic to Japan, using amplified fragment length polymorphism (AFLP) fingerprinting and plastid DNA haplotyping in 48 populations. Although the present distributions of S. soldanelloides and S. ilicifolius are mainly allopatric, the species share plastid DNA haplotypes in each region (north‐eastern, north‐central, south‐central and south‐western Japan); in contrast, the specific groups were highly supported by AFLP analyses. These results support the occurrence of multiple introgression events in Schizocodon. Notably, the disjunct plastid haplotypes found only in S. ilicifolius var. intercedens suggest complete plastid DNA replacement at local areas from S. soldanelloides into S. ilicifolius var. ilicifolius. Furthermore, we found that S. soldanelloides experienced range contraction and expansion during glacial and interglacial cycles based on mismatch distribution analysis and ecological niche modelling. Based on several pieces of evidence, our study supports the idea that historical range shifts associated with Pleistocene climatic oscillations favoured multiple and regional introgression events in Schizocodon. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 46–63.  相似文献   

8.
Saxifraga cuneifolia L. (sect. Gymnopera, Saxifragaceae) is a plant distributed in the main mountain ranges of southern Europe, from the eastern Pyrenees to the eastern Carpathian. Currently, two subspecies are recognized based on morphological characteristics: S. cuneifolia subsp. cuneifolia grows in the Maritime Alps and North Apennines and S. cuneifolia subsp. robusta is located in the remaining area of distribution. A more delicate form and a smaller number of flowers in S. cuneifolia subsp. cuneifolia are the morphological characteristics that differentiate this subspecies from the widespread S. cuneifolia subsp. robusta. To explore the genetic diversity and the subspecific geographic patterns of S. cuneifolia s. l. we conducted a molecular study of nuclear and plastid sequences. Samples of S. cuneifolia s. l. have been analysed throughout the distribution area of this species. Our results, based on nuclear (ITS) and plastid (rbcL, trnL–F, and psbA–trnH) markers, showed a genetic characterization of both subspecies presenting discriminant haplotypes and ribotypes that confirm the current subspecific systematics.  相似文献   

9.
Phylogenetic diversity enhances ecosystem functioning but restoration ecology has not taken advantage of this knowledge. We propose plant facilitation as a mechanism to promote phylogenetic diversity in restoration practices. We planted three functionally different species (Gypsophila struthium, Sedum album, and Limonium sucronicum) in a degraded gypsum ecosystem in Spain and found that after 7 years, the species with nurse traits (G. struthium) survived longer and facilitated the establishment of new species forming phylogenetically diverse neighborhoods. These facilitation‐driven phylodiverse communities may potentially produce a cascade of benefits on ecosystem functioning.  相似文献   

10.
A phylogeographical analysis of Ranunculus platanifolius, a typical European subalpine tall‐herb species, indicates the existence of two main genetic lineages based on amplified fragment length polymorphism (AFLP) markers. One group comprises populations from the Balkan Peninsula and the south‐eastern Carpathians and the other includes the remaining part of the range of the species, encompassing the western Carpathians, Sudetes, Alps, Pyrenees and Scandinavia. The main phylogeographical break observed in this species runs across the Carpathians and separates the main parts of this range (western and south‐eastern Carpathians), supporting a distinct glacial history of populations in these areas. The high genetic similarity of the Balkan Peninsula and south‐eastern Carpathian populations could indicate a common glacial refugium for these contemporarily isolated areas of species distribution. The western and northern part of the species range displays an additional weak differentiation into regional phylogeographical groups, which could have been shaped by isolation in glacial refugia or even by a postglacial isolation. The observed weak phylogeographical structure could also be linked with ecological requirements, allowing survival along streams in relatively low, forested mountain ranges. © 2013 The Linnean Society of London  相似文献   

11.
The phylogeographical history of mid‐altitude woodland herbs that depend on moist and shaded forest habitats is poorly understood. Here, we analysed the genetic structure of Cyclamen purpurascens, a mountainous calcicolous perennial, to test hypotheses regarding its glacial survival in single or multiple refugia and postglacial colonization routes, and to explore how they are congruent with the histories inferred for temperate trees and other mountainous herbs. We gathered AFLP data and chloroplast DNA sequences (trnD‐trnT region) from 68 populations spanning the entire distribution range (the Jura Mountains, Alps, western Carpathians, Dinarides). Both genetic markers revealed two main phylogeographical groups (phylogroups) in C. purpurascens. Additionally, AFLP data detected a more detailed structure of five phylogroups: two widespread, showing east?west geographical separation, and three local ones, restricted to somewhat disjunct, marginal regions of the species range. We suggest that C. purpurascens survived the last glaciation in two main regions, the foothills of the Southern Limestone Alps and the Karst area of the north‐western Dinarides, and possibly also in microrefugia in the Western Carpathians. The glacial persistence and colonization routes of this woodland herb are highly concordant with those inferred for several temperate trees, especially the European beech. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 741–760.  相似文献   

12.
A phylogeographic analysis of the control region of mitochondrial DNA was done in 346 individuals of the red‐legged partridge Alectoris rufa (Linnaeus 1758), sampled throughout the species distribution range. The analysis indicated that there is no distinct intraspecific phylogeographical structure, in contrast to earlier studies with lower number of samples. The results are not in accord with the expected distribution of three A. rufa subspecies based on morphological characters (A. r. rufa, A. r. intercedens and A. r. hispanica). The results do not provide statistical support for the five groups (or management units) proposed in some earlier papers because the variation within populations is greater than that found among populations. The absence of a population structure might be a consequence of management activity, consisting of release into the field of individuals bred in farms with no control of their genetic identity and geographic origin. Only the north‐west Iberian populations show a weak population structure, suggesting that A. r. hispanica may have suffered less human influence.  相似文献   

13.
Hypochaeris salzmanniana DC. (Asteraceae, Lactuceae) is an endangered species on the Iberian Peninsula, known from only eight coastal populations. Most authors have treated it as a variety, subspecies or simply as a synonym of H. glabra L. On the basis of morphological and cytological characters, Talavera recently separated H. salzmanniana (2n = 8) from H. glabra (2n = 10). Material of H. salzmanniana, H. glabra and H. radicata was collected from Spain, Italy, Sicily and Tunisia in order to assess taxonomic status and population relationships. Amplified Fragment Length Polymorphism (AFLP) analysis revealed three well-differentiated species. A close relationship between H. salzmanniana and H. radicata is also confirmed by AFLP analysis and chromosome number (2n = 8), morphology, and rDNA localization (FISH, fluorescence in situ hybridization). Hypochaeris salzmanniana and H. radicata share three fixed diagnostic AFLP fragments out of 348 fragments scored. The population structure of H. salzmanniana reveals distinct groups in southern Spain that are separated geographically. High differentiation among a western (Conil to Zahara), an intermediate (Punta Paloma and Los Algarbes) and an eastern (Algeciras and La Línea) group may reflect ancient separation. Population sizes and genetic compatibility differ greatly among populations and can be used to explain levels of within-population genetic diversity, together with recent documented loss of habitats resulting from tourist developments. Population structures of H. radicata and H. glabra show a similar geographical patterning: strongly differentiated populations from the Betic Cordillera and from the Iberian Massif, which are separated at present by the Guadalquivir river. Geological events at the end of the Tertiary (Tortonian–Messinian Miocene) might help explain patterns of differentiation in these three species of sect. Hypochaeris. © 2004 The Linnean Society of London, Botanical Journal of the Linnean Society, 2004, 146 , 79–95.  相似文献   

14.
In the present study, we used two maternally inherited plastid DNA intergenic spacers, rpl20rps12 and trnStrnG, and the biparentally inherited nuclear ribosomal internal transcribed spacer (ITS) region to explore genetic variation and phylogeographical history of Rhodiola alsia, a herb endemic to the Qinghai‐Tibetan Plateau (QTP). Based on range‐wide sampling (18 populations and 227 individuals), we detected 45 plastid DNA haplotypes and 19 ITS sequence types. Only three plastid DNA haplotypes were widespread; most haplotypes were restricted to single sites or to neighbouring populations. Analysis of molecular variance revealed that most of the genetic variance was found within populations (51.24%) but that populations were also distinct (FST = 0.48759). We found three areas with relatively high plastid DNA diversity and these could further be recognized as potentially isolated divergence centres based on the ITS sequence type distribution. These represent three potentially isolated glacial refugia for R. alsia: one of them has long been recognized as an important refugium on the south‐eastern edge of the QTP, whereas the others are new and located in the north and south of the Tanggula Mountains on the plateau platform. Divergence time estimates based on ITS suggest that the main lineages of R. alsia diverged from each other 0.35–0.87 Mya, indicating that climatic oscillations during the Pleistocene may have been an important driver of intraspecific divergence in R. alsia. Rhodiola alsia probably experienced a phylogeographical history of retreat to isolated glacial refugia during Quaternary glaciations that led to different degrees of allopatric intraspecific divergence. © 2011 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 168 , 204–215.  相似文献   

15.
Genetic structure and evolutionary patterns of the wild olive tree (Olea europaea L.) were investigated with AFLP fingerprinting data at three geographic levels: (a) phylogenetic relationships of the six currently recognized subspecies in Eurasia and Africa; (b) lineage identification in subsp. europaea of the Mediterranean basin; and (c) phylogeography in the western Mediterranean. Two statistical approaches (Bayesian inference and analysis of molecular variance) were used to analyse the AFLP fingerprints. To determine the congruency and transferability of results across studies previous RAPD and ISSR data were analysed in a similar manner. Comparisons proved that qualitative results were mostly congruent but quantitative values differed, depending on the method of analysis. Neighbour-Joining analysis of AFLP phenotypes supported current classification of subspecies. At a Mediterranean scale no clear cut phylogeographic pattern was recovered, likely due to extensive gene flow between populations of subsp. europaea. Gene flow estimates calculated with conventional F-statistics showed that reproductive barriers separated neither populations nor lineages of O. europaea. Genetic divergence between eastern and western parts of the Mediterranean basin was observed only when geographical and population information were incorporated into the analyses through hierarchical analysis of molecular variance (AMOVA). Within the western Mediterranean, the highest genetic diversity was found in two regions: on both sides of the Strait of Gibraltar and in the Balearic archipelago. Additionally, long-lasting isolation of the northern-most populations of the Iberian Peninsula appeared to be responsible for a significant divergence.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

16.
Population genetic studies of widespread Mediterranean shrubs are scarce compared with those of trees and narrow endemics or studies from phylogeographical perspectives, despite the key role these species may play in Mediterranean ecosystems. Knowledge on the effect of ecological factors in shaping their genetic patterns is also limited. In this study we investigate genetic diversity and population structure across 18 populations of Rosmarinus officinalis, a Mediterranean shrubland plant. Populations were sampled along two elevational gradients, one each on calcareous and siliceous soils in a mountain system in the eastern Iberian Peninsula, to decipher the effect of ecological factors on the genetic diversity and structure based on 11 microsatellite loci. We found overall high levels of genetic diversity and weak population structure. Genetic diversity increased with elevation, whereas population differentiation was stronger among populations growing on siliceous soils. The nested analysis of elevational gradients within soil types revealed that these general patterns were mostly driven by siliceous populations, whereas calcareous populations were more homogeneous along elevational belts. Bayesian analysis of population structure revealed genetic membership of lowland and high‐elevation populations to different genetic clusters and a higher admixture of intermediate‐elevation populations to both clusters. High‐elevation populations were less differentiated from a hypothetical ancestral cluster, suggesting the persistence of their gene pool during the Pleistocene glaciations. In contrast, lowland populations resulted from more recent divergence. We propose that life‐history and reproductive traits mostly contribute to explain the high levels of genetic diversity and weak population structure, whereas ecological and historical factors mostly contribute to the stronger differentiation of siliceous populations and a rapid expansion of R. officinalis on calcareous soils possibly mediated by human landscape transformations, © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2016, 180 , 50–63.  相似文献   

17.
We analyse the phylogeographical structure in the cave snail Georissa filiasaulae Haase & Schilthuizen, 2007 (Gastropoda: Hydrocenidae) and its above‐ground sister species G. saulae (van Benthem‐Jutting, 1966) at limestone outcrops in Sabah, Malaysian Borneo. Morphometric and 16S mitochondrial DNA data for some 220 individuals reveal strong morphological differentiation, despite ongoing unidirectional gene flow from the epigean into the hypogean environment, strong, small‐scale genetic structuring within the cave and underground dispersal between caves that were previously thought to be isolated. We discuss these results – which constitute the first phylogeographical analysis of a terrestrial cave snail – in the light of speciation in cave organisms and across ecotones in general. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 727–740.  相似文献   

18.
Aim To examine the phylogeography and population structure of three dung beetle species of the genus Trypocopris (Coleoptera, Geotrupidae). We wanted to test whether genetic differences and genealogies among populations were in accordance with morphologically described subspecies and we aimed to establish times of divergence among subspecies to depict the appropriate temporal framework of their phylogeographical differentiation. We also wished to investigate the historical demographic events and the relative influences of gene flow and drift on the distribution of genetic variability of the different populations. Location Europe (mostly Italy). Methods We collected adult males from dung pats from 15 Italian localities over the period 2000–2002. For sequence analysis, some dried specimens from Albania, Croatia, Slovakia and Spain were also used. We applied cytochrome oxidase I mitochondrial DNA sequencing and the amplified fragment length polymorphism (AFLP) technique to determine whether phylogeographical patterns within the three species support the proposed hypotheses of subspecies designations, and to detect further structure among populations that might mediate diversification. Results and main conclusions The results show a high concordance between the distribution of mtDNA variation and the main morphological groups recognized as subspecies, which thus may represent independent evolutionary units. The degree of mitochondrial divergence suggests that speciation events occurred during the Pliocene, while diversification of the main subspecific lineages took place in the Pleistocene, from c. 0.3 to 1.5 Ma. Mitochondrial and nuclear data also reveal that there is phylogeographical structuring among populations within each of the main groups and that both contemporary and historical processes determined this pattern of genetic structure. Geographical populations form monophyletic clades in both phylogenetic and network reconstructions. Despite the high levels of intrapopulational diversity, FST values indicate moderate but significant genetic differentiation among populations, and a Bayesian clustering analysis of the AFLP data clearly separates the geographical populations. Nucleotide and gene diversity estimates reveal interspecific differences in the degree of diversification among populations that may be related to the different ecological requirements of the three species.  相似文献   

19.
The aim of the present study was to investigate the genetic structure of the Valais shrew (Sorex antinorii) by a combined phylogeographical and landscape genetic approach, and thereby to infer the locations of glacial refugia and establish the influence of geographical barriers. We sequenced part of the mitochondrial cytochrome b (cyt b) gene of 179 individuals of S. antinorii sampled across the entire species' range. Six specimens attributed to S. arunchi were included in the analysis. The phylogeographical pattern was assessed by Bayesian molecular phylogenetic reconstruction, population genetic analyses, and a species distribution modelling (SDM)‐based hindcasting approach. We also used landscape genetics (including isolation‐by‐resistance) to infer the determinants of current intra‐specific genetic structure. The phylogeographical analysis revealed shallow divergence among haplotypes and no clear substructure within S. antinorii. The starlike structure of the median‐joining network is consistent with population expansion from a single refugium, probably located in the Apennines. Long branches observed on the same network also suggest that another refugium may have existed in the north‐eastern part of Italy. This result is consistent with SDM, which also suggests several habitable areas for S. antinorii in the Italian peninsula during the LGM. Therefore S. antinorii appears to have occupied disconnected glacial refugia in the Italian peninsula, supporting previous data for other species showing multiple refugia within southern refugial areas. By coupling genetic analyses and SDM, we were able to infer how past climatic suitability contributed to genetic divergence of populations. The genetic differentiation shown in the present study does not support the specific status of S. arunchi. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 864–880.  相似文献   

20.
In the framework of our studies on Lamiaceae from the eastern Iberian Peninsula, for the forthcoming fourth volume of Flora valentina, a new infraspecific arrangement is proposed here for the Iberian endemic Teucrium thymifolium. Besides the type subspecies, T. thymifolium subsp. thymifolium, which is widely distributed through the eastern Iberian Peninsula, two new nomenclatural combinations are established: (i) T. thymifolium subsp. fraternum (Pau) M.B. Crespo, M.A. Alonso & Mart.-Azorín (= T. terciae), for the thermophilous populations growing in SE Murcia province, and (ii) T. thymifolium subsp. hervieri (Briq. & Debeaux) M.B. Crespo, M.A. Alonso & Mart.-Azorín, for Subbaetic inland populations from where the provinces of Albacete, Jaén and Granada come into contact. Nomenclatural types and data on distribution and ecology are reported for all accepted subspecies, including the designation of a lectotype for T. thymifolium subsp. hervieri. Furthermore, relationships of the latter to the recently described T. moleromesae Sánchez Gómez et al. are briefly discussed, both taxa being treated here in synonymy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号