首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasmodium vivax is responsible for most of the malaria infections outside Africa and is currently the predominant malaria parasite in countries under elimination programs. P. vivax preferentially enters young red cells called reticulocytes. Advances in understanding the molecular and cellular mechanisms of entry are hampered by the inability to grow large numbers of P. vivax parasites in a long‐term in vitro culture. Recent progress in understanding the biology of the P. vivax Reticulocyte Binding Protein (PvRBPs) family of invasion ligands has led to the identification of a new invasion pathway into reticulocytes, an understanding of their structural architecture and PvRBPs as targets of the protective immune response to P. vivax infection. This review summarises current knowledge on the role of reticulocytes in P. vivax infection, the function of the PvRBP family of proteins in generating an immune response in human populations, and the characterization of anti‐PvRBP antibodies in blocking parasite invasion.  相似文献   

2.
It is generally accepted that Plasmodium vivax, the most widely distributed human malaria, does not cytoadhere in the deep capillaries of inner organs and thus this malaria parasite must have evolved splenic evasion mechanism in addition to sequestration. The spleen is a uniquely adapted lymphoid organ whose central function is the selective clearance of cell and other particles from the blood, and microbes including malaria. Splenomegaly is a hallmark of malaria and no other disease seems to exacerbate this organ as this disease does. Besides this major selective clearance function however, the spleen is also an erythropoietic organ which, under stress conditions, can be responsible for close to 40% of the RBC populations. Data obtained in experimental infections of human patients with P. vivax showed that anaemia is associated with acute and chronic infections and it has been postulated that the continued parasitemia might have been sufficient to infect and destroy most circulating reticulocytes. We review here the basis of our current knowledge of variant genes in P. vivax and the structure and function of the spleen during malaria. Based on this data, we propose that P. vivax specifically adhere to barrier cells in the human spleen allowing the parasite to escape spleen-clearance while favouring the release of merozoites in an environment where reticulocytes, the predominant, if not exclusive, host cell of P. vivax, are stored before their release into circulation to compensate for the anaemia associated with vivax malaria.  相似文献   

3.

Background

The 200 kDa merozoite surface protein 1 (MSP-1) of malaria parasites, a strong vaccine candidate, plays a key role during erythrocyte invasion and is a target of host protective immune response. Plasmodium vivax, the most widespread human malaria parasite, is closely related to parasites that infect Asian Old World monkeys, and has been considered to have become a parasite of man by host switch from a macaque malaria parasite. Several Asian monkey parasites have a range of natural hosts. The same parasite species shows different disease manifestations among host species. This suggests that host immune responses to P. vivax-related malaria parasites greatly differ among host species (albeit other factors). It is thus tempting to invoke that a major immune target parasite protein such as MSP-1 underwent unique evolution, depending on parasite species that exhibit difference in host range and host specificity.

Results

We performed comparative phylogenetic and population genetic analyses of the gene encoding MSP-1 (msp1) from P. vivax and nine P. vivax-related simian malaria parasites. The inferred phylogenetic tree of msp1 significantly differed from that of the mitochondrial genome, with a striking displacement of P. vivax from a position close to P. cynomolgi in the mitochondrial genome tree to an outlier of Asian monkey parasites. Importantly, positive selection was inferred for two ancestral branches, one leading to P. inui and P. hylobati and the other leading to P. vivax, P. fieldi and P. cynomolgi. This ancestral positive selection was estimated to have occurred three to six million years ago, coinciding with the period of radiation of Asian macaques. Comparisons of msp1 polymorphisms between P. vivax, P. inui and P. cynomolgi revealed that while some positively selected amino acid sites or regions are shared by these parasites, amino acid changes greatly differ, suggesting that diversifying selection is acting species-specifically on msp1.

Conclusions

The present results indicate that the msp1 locus of P. vivax and related parasite species has lineage-specific unique evolutionary history with positive selection. P. vivax and related simian malaria parasites offer an interesting system toward understanding host species-dependent adaptive evolution of immune-target surface antigen genes such as msp1.  相似文献   

4.
Plasmodium vivax malaria is geographically the most widely distributed and prevalent form of human malaria. The development of drug resistance by the parasite to existing drugs necessitates higher focus to explore and identify new drug targets. Plasmodial proteases have key roles in parasite biology and are involved in nutritional uptake, egress from infected reticulocytes, and invasion of the new target erythrocytes. Serine repeat antigens (SERA) of Plasmodium are parasite proteases that remain attractive drug targets and are important vaccine candidates due to their high expression profiles in the blood stages. SERA proteins have a unique putative papain-like cysteine protease motif that has either serine or cysteine in its active site. In P. vivax, PvSERA4 is the highest transcribed member of this multigene family. In this study, we have investigated the genetic polymorphism of PvSERA4 central protease domain and deduced its 3D model by homology modeling and also performed MD simulations to acquire refined protein structure. Sequence analysis of protease domain of PvSERA4 from Indian field isolates reveals that the central domain is highly conserved. The high sequence conservation of the PvSERA4 enzyme domain coupled with its high expression raises the possibility of it having a critical role in parasite biology and hence, being a reliable target for new selective inhibitor-based antimalarial chemotherapeutics. The 3D model showed the presence of an unusual antiparallel Beta hairpin motif between catalytic residues similar to hemoglobin binding motif of Plasmodial hemoglobinases. Our PvSERA4 model will aid in designing structure-based inhibitors against this enzyme.  相似文献   

5.
There has been some controversy about the evolutionary origin of Plasmodium vivax, particularly whether it is of Asian or African origin. Recently, a new malaria species which closely related to ape P. vivax was found in chimpanzees, in addition, the host switches of P. vivax from ape to human was confirmed. These findings support the African origin of P. vivax. Previous phylogenetic analyses have shown the position of P. vivax within the Asian primate malaria parasite clade. This suggested an Asian origin of P. vivax. Recent analyses using massive gene data, however, positioned P. vivax after the branching of the African Old World monkey parasite P. gonderi, and before the branching of the common ancestor of Asian primate malaria parasites. This position is consistent with an African origin of P. vivax. We here review the history of phylogenetic analyses on P. vivax, validate previous analyses, and finally present a definitive analysis using currently available data that indicate a tree in which P. vivax is positioned at the base of the Asian primate malaria parasite clade, and thus that is consistent with an African origin of P. vivax.  相似文献   

6.

Background  

Plasmodium vivax is the most widespread human malaria parasite. However, genetic information about its pathogenesis is limited at present, due to the lack of a reproducible in vitro cultivation method. Sequencing of the Plasmodium vivax genome suggested the presence of a homolog of deoxyhypusine synthase (DHS) from P. falciparum, the key regulatory enzyme in the first committed step of hypusine biosynthesis. DHS is involved in cell proliferation, and thus a valuable drug target for the human malaria parasite P. falciparum. A comparison of the enzymatic properties of the DHS enzymes between the benign and severe Plasmodium species should contribute to our understanding of the differences in pathogenicity and phylogeny of both malaria parasites.  相似文献   

7.
Human reticulocytes are one of the fundamental components needed to study the in vitro invasion processes of the human malaria parasite Plasmodium vivax. Additionally examinations of reticulocytes and their binding proteins are difficult in areas of the world that do not have access to advanced equipment or stem cell lines. These issues are particularly relevant to malaria vaccine candidate studies that are directed against surface proteins that the parasites use to gain entry into erythrocytes. Described here is a simple and inexpensive method to increase the reticulocyte count of cord blood samples. Exposure of cord blood to hypotonic saline (0.2%) for 5 min selectively lyses the non-reticulocytes resulting in an average 3.6-fold increase in reticulocyte count. Our studies show that this enrichment process does not damage the hemoglobin of the remaining erythrocytes which are still capable of supporting Plasmodium falciparum invasion and growth. This economical and rapid method of enrichment could facilitate studies of in vitro laboratory culturing of other malaria parasite species which preferentially invade reticulocytes such as P. vivax.  相似文献   

8.
9.
Plasmodium vivax is the most geographically widespread human malaria parasite. Global malaria efforts have been less successful at reducing the burden of P. vivax compared to P. falciparum, owing to the unique biology and related treatment complexity of P. vivax. As a result, P. vivax is now the dominant malaria parasite throughout the Asia-Pacific and South America causing up to 14 million clinical cases every year and is considered a major obstacle to malaria elimination. Key features circumventing existing malaria control tools are the transmissibility of asymptomatic, low-density circulating infections and reservoirs of persistent dormant liver stages (hypnozoites) that are undetectable but reactivate to cause relapsing infections and sustain transmission. In this review we summarise the new knowledge shaping our understanding of the global epidemiology of P. vivax infections, highlighting the challenges for elimination and the tools that will be required achieve this.  相似文献   

10.
Plasmodium vivax is the most widely distributed human malaria parasite. Despite its importance, both clinical research and basic research have been hampered by lack of a convenient in vitro culture system, in part due to the parasite's infection preference of reticulocytes rather than mature erythrocytes. The use of reticulocyte-producing hematopoietic stem cell culture has been proposed for the maintenance of the parasite, but good numbers of reticulocytes and P. vivax parasites sufficient for practical use in research have been difficult to produce from this system. Here, we report an improved method of hematopoietic stem cell culture for P. vivax infection, which requires less time and produces higher or equivalent percentage of reticulocytes than previously reported systems. Reticulocytes were cultured from cryopreserved erythroblasts that were frozen after 8 day-cultivation of purified CD34 + cells from human umbilical cord blood. This method of production allowed the recovery of reticulocytes in a shorter time than with continuous stem cell culture. We obtained a relatively high percentage of peak reticulocyte production by using co-cultivation with a mouse stromal cell line. Using P. vivax mature stage parasites obtained from infected Aotus monkeys, we observed substantial numbers (up to 0.8% of the total number of the cells) of newly invaded reticulocytes 24 h after initial cultivation. The addition of fresh reticulocytes after 48 h culture, however, did not result in significant increase of second cycle reticulocyte invasion. Assays of invasion inhibition with specific antibodies were successful with this system, demonstrating potential for study of biological processes as well as the conditions necessary for long-term maintenance of P. vivax in vitro.  相似文献   

11.
The Duffy-binding protein (PvDBP) mediates invasion of reticulocytes by the malaria parasite Plasmodium vivax. PvDBP has been recognized as a good vaccine candidate due to its ability to induce antibody responses capable of inhibiting target cell invasion after natural infections. For the development of subunit-based vaccines, it is important to identify universal epitopes that could be presented by different HLA-DR alleles to induce effective cellular and humoral immune responses. In this study, the antigenicity of universal epitopes from PvDBPII was evaluated by stimulating peripheral blood mononuclear cells (PBMCs) isolated from individuals with different degrees of P. vivax malaria exposure and distinct HLA-DR alleles. Peptides 1635 and 1638 induced lymphoproliferation and stimulated the production of IL-6 and IFN-γ. The results suggest that conserved peptides binding with high activity to red blood cells and with known affinity to HLA-DR proteins could be good components for a P. vivax vaccine.  相似文献   

12.
An estimated 229 million cases of malaria occurred worldwide in 2019. Both, Plasmodium falciparum and P. vivax are responsible for most of the malaria disease burden in the world. Despite difficulties in obtaining an accurate number, the global estimates of cases in 2019 are approximately 229 million of which 2.8% are due to P. vivax, and the total number of malaria deaths are approximately 409 million. Regional elimination or global eradication of malaria will be a difficult task, particularly for P. vivax due to the particular biological features related to the hypnozoite, leading to relapse. Countries that have shown successful episodes of a decrease in P. falciparum malaria, are left with remaining P. vivax malaria cases. This is caused by the mechanism that the parasite has evolved to remain dormant in the liver forming hypnozoites. Furthermore, while clinical trials of vaccines against P. falciparum are making fast progress, a very different picture is seen with P. vivax, where only few candidates are currently active in clinical trials. We discuss the challenge that represent the hypnozoite for P. vivax vaccine development, the potential of Controlled Human Malaria Challenges (CHMI) and the leading vaccine candidates assessed in clinical trials.  相似文献   

13.
The human malaria parasite Plasmodium vivax is globally widespread, causing high malaria morbidity. As P. vivax is highly endemic to India, and previous reports indicate genetic homogeneity in population samples, we tested the hypothesis of no genetic structuring in Indian P. vivax. Further, based on the reports of increasing incidence of Plasmodium falciparum infection in comparison with P. vivax in recent years in India, it was important to understand whether reduction in population size has resulted in decrease in P. vivax infection rate in India. For this, we utilized recently developed putatively neutral markers from chromosome 13 of P. vivax to score single nucleotide polymorphisms in 126 P. vivax isolates collected from 10 different places in India. The overall results indicated that Indian P. vivax bears high nucleotide diversity within population samples but moderate amount of genetic differentiation between population samples. STRUCTURE analysis grouped 10 population samples into three clusters based on the proportion of the genetic ancestries in each population. However, the pattern of clustering does not correlate with sampling locations in India. Furthermore, analyses of past demographic events indicated reduction in population size in majority of population samples, but when isolates from all the 10 samples were considered as a single population, the data fit to the demographic equilibrium model. All these observations clearly indicate that Indian P. vivax presents complex evolutionary history but possesses several features of being a part of ancestral distribution range of this species.  相似文献   

14.

Background  

The main vector for transmission of malaria in India is the Anopheles culicifacies mosquito species, a naturally selected subgroup of which is completely refractory (R) to transmission of the malaria parasite, Plasmodium vivax;  相似文献   

15.
We have optimized a set of 14 polymorphic microsatellite markers for the human malaria parasite Plasmodium vivax, all of them consisting of either tri‐ or tetranucleotide repeats. These markers, whose polymerase chain reaction amplification conditions are identical, were used to screen 25 parasite isolates from malaria‐endemic areas in Sri Lanka. The total number of alleles per locus ranged between 6 and 13 (average, 7.8), and expected heterozygosity ranged from 0.627 to 0.913 (average, 0.790). These markers are now being used to characterize the population structure of P. vivax in other endemic areas.  相似文献   

16.
BackgroundA very large biomass of intact asexual-stage malaria parasites accumulates in the spleen of asymptomatic human individuals infected with Plasmodium vivax. The mechanisms underlying this intense tropism are not clear. We hypothesised that immature reticulocytes, in which P. vivax develops, may display high densities in the spleen, thereby providing a niche for parasite survival.Methods and findingsWe examined spleen tissue in 22 mostly untreated individuals naturally exposed to P. vivax and Plasmodium falciparum undergoing splenectomy for any clinical indication in malaria-endemic Papua, Indonesia (2015 to 2017). Infection, parasite and immature reticulocyte density, and splenic distribution were analysed by optical microscopy, flow cytometry, and molecular assays. Nine non-endemic control spleens from individuals undergoing spleno-pancreatectomy in France (2017 to 2020) were also examined for reticulocyte densities. There were no exclusion criteria or sample size considerations in both patient cohorts for this demanding approach.In Indonesia, 95.5% (21/22) of splenectomy patients had asymptomatic splenic Plasmodium infection (7 P. vivax, 13 P. falciparum, and 1 mixed infection). Significant splenic accumulation of immature CD71 intermediate- and high-expressing reticulocytes was seen, with concentrations 11 times greater than in peripheral blood. Accordingly, in France, reticulocyte concentrations in the splenic effluent were higher than in peripheral blood. Greater rigidity of reticulocytes in splenic than in peripheral blood, and their higher densities in splenic cords both suggest a mechanical retention process. Asexual-stage P. vivax-infected erythrocytes of all developmental stages accumulated in the spleen, with non-phagocytosed parasite densities 3,590 times (IQR: 2,600 to 4,130) higher than in circulating blood, and median total splenic parasite loads 81 (IQR: 14 to 205) times greater, accounting for 98.7% (IQR: 95.1% to 98.9%) of the estimated total-body P. vivax biomass. More reticulocytes were in contact with sinus lumen endothelial cells in P. vivax- than in P. falciparum-infected spleens. Histological analyses revealed 96% of P. vivax rings/trophozoites and 46% of schizonts colocalised with 92% of immature reticulocytes in the cords and sinus lumens of the red pulp. Larger splenic cohort studies and similar investigations in untreated symptomatic malaria are warranted.ConclusionsImmature CD71+ reticulocytes and splenic P. vivax-infected erythrocytes of all asexual stages accumulate in the same splenic compartments, suggesting the existence of a cryptic endosplenic lifecycle in chronic P. vivax infection. Findings provide insight into P. vivax-specific adaptions that have evolved to maximise survival and replication in the spleen.

Dr. Anstey and co-authors found that P. vivax-infected immature reticulocytes and erythrocytes accumulate in the same splenic compartments, suggesting existence of a cryptic endosplenic lifecycle in chronic P. vivax infection that maximizes survival and replication in the spleen.  相似文献   

17.
18.
间日疟原虫是导致人类感染疟疾的4种疟原虫之一。由于间日疟具有较强的遗传多样性和更易复发等特点,间日疟原虫的防治得到人们的日益关注,其中疫苗的研发是重要的防控手段,传播阻断疫苗作为可以阻断传播的疫苗,相关方面的研究却刚刚起步。综述了间日疟传播阻断疫苗研究方面的新进展,旨在为间日疟疫苗的研制提供参考。  相似文献   

19.
Elucidating receptor–ligand and protein–protein interactions represents an attractive alternative for designing effective Plasmodium vivax control methods. This article describes the ability of P. vivax rhoptry neck proteins 2 and 4 (RON2 and RON4) to bind to human reticulocytes. Biochemical and cellular studies have shown that two PvRON2‐ and PvRON4‐derived conserved regions specifically interact with protein receptors on reticulocytes marked by the CD71 surface transferrin receptor. Mapping each protein fragment's binding region led to defining the specific participation of two 20 amino acid‐long regions selectively competing for PvRON2 and PvRON4 binding to reticulocytes. Binary interactions between PvRON2 (ligand) and other parasite proteins, such as PvRON4, PvRON5, and apical membrane antigen 1 (AMA1), were evaluated and characterised by surface plasmon resonance. The results revealed that both PvRON2 cysteine‐rich regions strongly interact with PvAMA1 Domains II and III (equilibrium constants in the nanomolar range) and at a lower extent with the complete PvAMA1 ectodomain and Domains I and II. These results strongly support that these proteins participate in P. vivax's complex invasion process, thus providing new pertinent targets for blocking P. vivax merozoites' specific entry to their target cells.  相似文献   

20.
Plasmodium vivax malaria causes significant morbidity and mortality worldwide, and only one drug is in clinical use that can kill the hypnozoites that cause P. vivax relapses. HIV and P. vivax malaria geographically overlap in many areas of the world, including South America and Asia. Despite the increasing body of knowledge regarding HIV protease inhibitors (HIV PIs) on P. falciparum malaria, there are no data regarding the effects of these treatments on P. vivax''s hypnozoite form and clinical relapses of malaria. We have previously shown that the HIV protease inhibitor lopinavir-ritonavir (LPV-RTV) and the antibiotic trimethoprim sulfamethoxazole (TMP-SMX) inhibit Plasmodium actively dividing liver stages in rodent malarias and in vitro in P. falciparum, but effect against Plasmodium dormant hypnozoite forms remains untested. Separately, although other antifolates have been tested against hypnozoites, the antibiotic trimethoprim sulfamethoxazole, commonly used in HIV infection and exposure management, has not been evaluated for hypnozoite-killing activity. Since Plasmodium cynomolgi is an established animal model for the study of liver stages of malaria as a surrogate for P. vivax infection, we investigated the antimalarial activity of these drugs on Plasmodium cynomolgi relapsing malaria in rhesus macaques. Herein, we demonstrate that neither TMP-SMX nor LPV-RTV kills hypnozoite parasite liver stage forms at the doses tested. Because HIV and malaria geographically overlap, and more patients are being managed for HIV infection and exposure, understanding HIV drug impact on malaria infection is important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号