首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microsatellite variability is widely used to infer levels of genetic diversity in natural populations. However, the ascertainment bias caused by typically selecting only the most polymorphic markers in the genome may lead to reduced sensitivity for judging genome-wide levels of genetic diversity. To test this potential limitation of microsatellite-based approaches, we assessed the degree of nucleotide diversity in noncoding regions of eight different carnivore populations, including inbred as well as outbred populations, by sequencing 10 introns (5.4–5.7 kb) in 20 individuals of each population (wolves, coyotes, wolverines and lynxes). Estimates of nucleotide diversity varied 30-fold (7.1 × 10−5 –2.1 × 10−3), with densities of one single nucleotide polymorphism every 112–5446 bp. Microsatellite genotyping (10–27 markers) of the same animals revealed mean multilocus heterozygosities of 0.54–0.78, a 1.4-fold difference among populations. There was a positive yet not perfect ( r 2  = 0.70) correlation between microsatellite marker heterozygosity and nucleotide diversity at the population level. For example, point estimates of nucleotide diversity varied in some cases with an order of magnitude despite very similar levels of microsatellite marker heterozygosity. Moreover, at the individual level, no significant correlation was found. Our results imply that variability at microsatellite marker sets typically used in population studies may not accurately reflect the underlying genomic diversity. This suggests that researchers should consider using resequencing-based approaches for assessing genetic diversity when accurate inference is critical, as in many conservation and management contexts.  相似文献   

2.
3.
    
Knowledge about population structure and connectivity of waterfowl species, especially mallards (Anas platyrhynchos), is a priority because of recent outbreaks of avian influenza. Ringing studies that trace large‐scale movement patterns have to date been unable to detect clearly delineated mallard populations. We employed 363 single nucleotide polymorphism markers in combination with population genetics and phylogeographical approaches to conduct a population genomic test of panmixia in 801 mallards from 45 locations worldwide. Basic population genetic and phylogenetic methods suggest no or very little population structure on continental scales. Nor could individual‐based structuring algorithms discern geographical structuring. Model‐based coalescent analyses for testing models of population structure pointed to strong genetic connectivity among the world's mallard population. These diverse approaches all support the conclusion that there is a lack of clear population structure, suggesting that the world's mallards, perhaps with minor exceptions, form a single large, mainly interbreeding population.  相似文献   

4.
    
High‐throughput DNA sequencing facilitates the analysis of large portions of the genome in nonmodel organisms, ensuring high accuracy of population genetic parameters. However, empirical studies evaluating the appropriate sample size for these kinds of studies are still scarce. In this study, we use double‐digest restriction‐associated DNA sequencing (ddRADseq) to recover thousands of single nucleotide polymorphisms (SNPs) for two physically isolated populations of Amphirrhox longifolia (Violaceae), a nonmodel plant species for which no reference genome is available. We used resampling techniques to construct simulated populations with a random subset of individuals and SNPs to determine how many individuals and biallelic markers should be sampled for accurate estimates of intra‐ and interpopulation genetic diversity. We identified 3646 and 4900 polymorphic SNPs for the two populations of A. longifolia, respectively. Our simulations show that, overall, a sample size greater than eight individuals has little impact on estimates of genetic diversity within A. longifolia populations, when 1000 SNPs or higher are used. Our results also show that even at a very small sample size (i.e. two individuals), accurate estimates of FST can be obtained with a large number of SNPs (≥1500). These results highlight the potential of high‐throughput genomic sequencing approaches to address questions related to evolutionary biology in nonmodel organisms. Furthermore, our findings also provide insights into the optimization of sampling strategies in the era of population genomics.  相似文献   

5.
    
Threespine stickleback populations are model systems for studying adaptive evolution and the underlying genetics. In lakes on the Haida Gwaii archipelago (off western Canada), stickleback have undergone a remarkable local radiation and show phenotypic diversity matching that seen throughout the species distribution. To provide a historical context for this radiation, we surveyed genetic variation at >1000 single nucleotide polymorphism (SNP) loci in stickleback from over 100 populations. SNPs included markers evenly distributed throughout genome and candidate SNPs tagging adaptive genomic regions. Based on evenly distributed SNPs, the phylogeographic pattern differs substantially from the disjunct pattern previously observed between two highly divergent mtDNA lineages. The SNP tree instead shows extensive within watershed population clustering and different watersheds separated by short branches deep in the tree. These data are consistent with separate colonizations of most watersheds, despite underlying genetic connections between some independent drainages. This supports previous suppositions that morphological diversity observed between watersheds has been shaped independently, with populations exhibiting complete loss of lateral plates and giant size each occurring in several distinct clades. Throughout the archipelago, we see repeated selection of SNPs tagging candidate freshwater adaptive variants at several genomic regions differentiated between marine–freshwater populations on a global scale (e.g. EDA, Na/K ATPase). In estuarine sites, both marine and freshwater allelic variants were commonly detected. We also found typically marine alleles present in a few freshwater lakes, especially those with completely plated morphology. These results provide a general model for postglacial colonization of freshwater habitat by sticklebacks and illustrate the tremendous potential of genome‐wide SNP data sets hold for resolving patterns and processes underlying recent adaptive divergences.  相似文献   

6.
    
Small, mobile insects are notoriously challenging to track across landscapes and manage in agricultural fields. However, genetic differentiation among insect populations and host plants acquired through host‐associated differentiation could be exploited to infer movement within crop systems and damage potential. Although many insects exhibit host‐associated differentiation, management strategies for insect vectors of plant pathogens assume a homogenous population. Nevertheless, phenotypic changes derived from host‐associated differentiation could manifest in altered behavior or physiology affecting the likelihood of vector–pathogen–plant interactions, or the subsequent efficiency of pathogen transmission. We used SNPs to assess genotypic structure and host‐associated differentiation in the cowpea aphid, Aphis craccivora Koch (Hemiptera: Aphididae). To do so, we sampled A. craccivora across the Midwestern United States. from two host plants, alfalfa (Medicago sativa) and black locust (Robinia pseudoacacia)—putative source populations for winged migrants. Simultaneously, we sampled winged A. craccivora landing in pumpkin fields where they transmit viruses. Structure analyses supported host‐associated differentiation by identifying two major genotypic groups: an alfalfa group containing a single multilocus genotype and a locust group containing all others. Winged locust‐group aphids landed at a much greater magnitude within focal fields during year 2 than year 1, while those in the alfalfa group remained fairly consistent. Spatial autocorrelation analyses indicated locust‐group aphid movement was characterized by small‐scale dispersal during year 2, likely originating from populations within 10 km. We also detected strong temporal differences in colonization from the two host plants. Early in the summer, most winged aphids (79.4%) derived from the locust group, whereas late in the summer more (58.3%) were from the alfalfa group. Because early crop growth stages are more susceptible to damage from aphid‐vectored viruses, these data implicate locust as the more important source and illustrate how host‐associated differentiation can be used to track dispersal and inform management of heterogeneous pest populations.  相似文献   

7.
    
Noninvasive genetics based on microsatellite markers has become an indispensable tool for wildlife monitoring and conservation research over the past decades. However, microsatellites have several drawbacks, such as the lack of standardisation between laboratories and high error rates. Here, we propose an alternative single‐nucleotide polymorphism (SNP)‐based marker system for noninvasively collected samples, which promises to solve these problems. Using nanofluidic SNP genotyping technology (Fluidigm), we genotyped 158 wolf samples (tissue, scats, hairs, urine) for 192 SNP loci selected from the Affymetrix v2 Canine SNP Array. We carefully selected an optimised final set of 96 SNPs (and discarded the worse half), based on assay performance and reliability. We found rates of missing data in this SNP set of <10% and genotyping error of ~1%, which improves genotyping accuracy by nearly an order of magnitude when compared to published data for other marker types. Our approach provides a tool for rapid and cost‐effective genotyping of noninvasively collected wildlife samples. The ability to standardise genotype scoring combined with low error rates promises to constitute a major technological advancement and could establish SNPs as a standard marker for future wildlife monitoring.  相似文献   

8.
    
In this study, 38 Mycogone perniciosa isolates of Agaricus bisporus from the main production areas in China were analysed for investigating the genetic diversity using sequence‐related amplification polymorphism (SRAP). A total of 132 polymorphic bands were obtained, ranging in size from 100 to 1700 base pairs. According to the dendrogram produced by the unweighted pair‐group method with arithmetic average of similarity coefficients from SRAP data, all the tested strains were divided into four clusters at a 71.6% similarity level. Strains 1–3 and 13–17 from, respectively, Xichong County of Sichuan Province and Yongchang County of Gansu Province were clustered in the same clade; strains 4–8 and 9–12 from, respectively, Long Hai City of Fujian Province and Luoyang City of Henan Province clustered in sa second clade; strains 18–21 from Wuhan City of Hubei Province grouped together in a third cluster distinct from the other strains.  相似文献   

9.
    
An important aim in animal breeding is the improvement of growth and meat quality traits. Previous studies have demonstrated that genetic variants in the fat mass and obesity associated (FTO) gene have a relatively large effect on human obesity as well as on body composition in rodents and, more recently, in livestock. Here, we examined the effects of the FTO gene variants on growth and carcass traits in the Slovenian population of Simmental (SS) and Brown (SB) cattle. To validate and identify new polymorphisms, we used sequencing, PCR‐RFLP analysis and TaqMan assays in the SS breed and FTO gene variants data from the Illumina BovineSNP50 v1 array for the SB breed. Sequencing of the eight samples of progeny‐tested SS sires detected 108 single nucleotide polymorphisms (SNPs) in the bovine FTO gene. Statistical analyses between growth and carcass traits and 34 FTO polymorphisms revealed significant association of FTO variants with lean meat percentage in both breeds. Additionally, FTO SNPs analyzed in SS cattle were associated with fat percentage, bone weight and live weight at slaughter. The FTO gene can thus be regarded as a candidate gene for the marker‐assisted selection programs in our and possibly other populations of cattle. Future studies in cattle might reveal novel roles for the FTO gene in shaping carcass traits in livestock species as well as body composition control in other mammals.  相似文献   

10.
    
Biochemical and genetic analyses have previously identified caffeoyl shikimate esterase (CSE) as an enzyme in the monolignol biosynthesis pathway in Arabidopsis thaliana, although the generality of this finding has been questioned. Here we show the presence of CSE genes and associated enzyme activity in barrel medic (Medicago truncatula, dicot, Leguminosae), poplar (Populus deltoides, dicot, Salicaceae), and switchgrass (Panicum virgatum, monocot, Poaceae). Loss of function of CSE in transposon insertion lines of M. truncatula results in severe dwarfing, altered development, reduction in lignin content, and preferential accumulation of hydroxyphenyl units in lignin, indicating that the CSE enzyme is critical for normal lignification in this species. However, the model grass Brachypodium distachyon and corn (Zea mays) do not possess orthologs of the currently characterized CSE genes, and crude protein extracts from stems of these species exhibit only a weak esterase activity with caffeoyl shikimate. Our results suggest that the reaction catalyzed by CSE may not be essential for lignification in all plant species.  相似文献   

11.
12.
13.
    
The evolutionary importance of hybridization as a source of new adaptive genetic variation is rapidly gaining recognition. Hybridization between coyotes and wolves may have introduced adaptive alleles into the coyote gene pool that facilitated an expansion in their geographic range and dietary niche. Furthermore, hybridization between coyotes and domestic dogs may facilitate adaptation to human‐dominated environments. We genotyped 63 ancestry‐informative single‐nucleotide polymorphisms in 427 canids to examine the prevalence, spatial distribution and the ecology of admixture in eastern coyotes. Using multivariate methods and Bayesian clustering analyses, we estimated the relative contributions of western coyotes, western and eastern wolves, and domestic dogs to the admixed ancestry of Ohio and eastern coyotes. We found that eastern coyotes form an extensive hybrid swarm, with all our samples having varying levels of admixture. Ohio coyotes, previously thought to be free of admixture, are also highly admixed with wolves and dogs. Coyotes in areas of high deer density are genetically more wolf‐like, suggesting that natural selection for wolf‐like traits may result in local adaptation at a fine geographic scale. Our results, in light of other previously published studies of admixture in Canis, revealed a pattern of sex‐biased hybridization, presumably generated by male wolves and dogs mating with female coyotes. This study is the most comprehensive genetic survey of admixture in eastern coyotes and demonstrates that the frequency and scope of hybridization can be quantified with relatively few ancestry‐informative markers.  相似文献   

14.
  总被引:1,自引:0,他引:1  
Most land plants live symbiotically with arbuscular mycorrhizal fungi. Establishment of this symbiosis requires signals produced by both partners: strigolactones in root exudates stimulate pre‐symbiotic growth of the fungus, which releases lipochito‐oligosaccharides (Myc‐LCOs) that prepare the plant for symbiosis. Here, we have investigated the events downstream of this early signaling in the roots. We report that expression of miR171h, a microRNA that targets NSP2, is up‐regulated in the elongation zone of the root during colonization by Rhizophagus irregularis (formerly Glomus intraradices) and in response to Myc‐LCOs. Fungal colonization was much reduced by over‐expressing miR171h in roots, mimicking the phenotype of nsp2 mutants. Conversely, in plants expressing an NSP2 mRNA resistant to miR171h cleavage, fungal colonization was much increased and extended into the elongation zone of the roots. Finally, phylogenetic analyses revealed that miR171h regulation of NSP2 is probably conserved among mycotrophic plants. Our findings suggest a regulatory mechanism, triggered by Myc‐LCOs, that prevents over‐colonization of roots by arbuscular mycorrhizal fungi by a mechanism involving miRNA‐mediated negative regulation of NSP2.  相似文献   

15.
R J Haasl  B A Payseur 《Heredity》2011,106(1):158-171
Although growing numbers of single nucleotide polymorphisms (SNPs) and microsatellites (short tandem repeat polymorphisms or STRPs) are used to infer population structure, their relative properties in this context remain poorly understood. SNPs and STRPs mutate differently, suggesting multi-locus genotypes at these loci might differ in ability to detect population structure. Here, we use coalescent simulations to measure the power of sets of SNPs and STRPs to identify population structure. To maximize the applicability of our results to empirical studies, we focus on the popular STRUCTURE analysis and evaluate the role of several biological and practical factors in the detection of population structure. We find that: (1) fewer unlinked STRPs than SNPs are needed to detect structure at recent divergence times <0.3 Ne generations; (2) accurate estimation of the number of populations requires many fewer STRPs than SNPs; (3) for both marker types, declines in power due to modest gene flow (Nem=1.0) are largely negated by increasing marker number; (4) variation in the STRP mutational model affects power modestly; (5) SNP haplotypes (θ=1, no recombination) provide power comparable with STRP loci (θ=10); (6) ascertainment schemes that select highly variable STRP or SNP loci increase power to detect structure, though ascertained data may not be suitable to other inference; and (7) when samples are drawn from an admixed population and one of its parent populations, the reduction in power to detect two populations is greater for STRPs than SNPs. These results should assist the design of multi-locus studies to detect population structure in nature.  相似文献   

16.
    
Symbiotic associations between leguminous plants and nitrogen‐fixing rhizobia culminate in the formation of specialized organs called root nodules, in which the rhizobia fix atmospheric nitrogen and transfer it to the plant. Efficient biological nitrogen fixation depends on metabolites produced by and exchanged between both partners. The Medicago truncatulaSinorhizobium meliloti association is an excellent model for dissecting this nitrogen‐fixing symbiosis because of the availability of genetic information for both symbiotic partners. Here, we employed a powerful imaging technique – matrix‐assisted laser desorption/ionization (MALDI)/mass spectrometric imaging (MSI) – to study metabolite distribution in roots and root nodules of M. truncatula during nitrogen fixation. The combination of an efficient, novel MALDI matrix [1,8–bis(dimethyl‐amino) naphthalene, DMAN] with a conventional matrix 2,5–dihydroxybenzoic acid (DHB) allowed detection of a large array of organic acids, amino acids, sugars, lipids, flavonoids and their conjugates with improved coverage. Ion density maps of representative metabolites are presented and correlated with the nitrogen fixation process. We demonstrate differences in metabolite distribution between roots and nodules, and also between fixing and non‐fixing nodules produced by plant and bacterial mutants. Our study highlights the benefits of using MSI for detecting differences in metabolite distributions in plant biology.  相似文献   

17.
    
Despite being a major international crop, our understanding of the wheat genome is relatively poor due to its large size and complexity. To gain a greater understanding of wheat genome diversity, we have identified single nucleotide polymorphisms between 16 Australian bread wheat varieties. Whole‐genome shotgun Illumina paired read sequence data were mapped to the draft assemblies of chromosomes 7A, 7B and 7D to identify more than 4 million intervarietal SNPs. SNP density varied between the three genomes, with much greater density observed on the A and B genomes than the D genome. This variation may be a result of substantial gene flow from the tetraploid Triticum turgidum, which possesses A and B genomes, during early co‐cultivation of tetraploid and hexaploid wheat. In addition, we examined SNP density variation along the chromosome syntenic builds and identified genes in low‐density regions which may have been selected during domestication and breeding. This study highlights the impact of evolution and breeding on the bread wheat genome and provides a substantial resource for trait association and crop improvement. All SNP data are publically available on a generic genome browser GBrowse at www.wheatgenome.info .  相似文献   

18.
  总被引:1,自引:0,他引:1  
The optimal management of the commercially important, but mostly over‐exploited, pelagic tunas, albacore (Thunnus alalunga Bonn., 1788) and Atlantic bluefin tuna (BFT; Thunnus thynnus L., 1758), requires a better understanding of population structure than has been provided by previous molecular methods. Despite numerous studies of both species, their population structures remain controversial. This study reports the development of single nucleotide polymorphisms (SNPs) in albacore and BFT and the application of these SNPs to survey genetic variability across the geographic ranges of these tunas. A total of 616 SNPs were discovered in 35 albacore tuna by comparing sequences of 54 nuclear DNA fragments. A panel of 53 SNPs yielded FST values ranging from 0.0 to 0.050 between samples after genotyping 460 albacore collected throughout the distribution of this species. No significant heterogeneity was detected within oceans, but between‐ocean comparisons (Atlantic, Pacific and Indian oceans along with Mediterranean Sea) were significant. Additionally, a 17‐SNP panel was developed in Atlantic BFT by cross‐species amplification in 107 fish. This limited number of SNPs discriminated between samples from the two major spawning areas of Atlantic BFT (FST = 0.116). The SNP markers developed in this study can be used to genotype large numbers of fish without the need for standardizing alleles among laboratories.  相似文献   

19.
    
Inbreeding and relationship metrics among and within populations are useful measures for genetic management of wild populations, but accuracy and precision of estimates can be influenced by the number of individual genotypes analysed. Biologists are confronted with varied advice regarding the sample size necessary for reliable estimates when using genomic tools. We developed a simulation framework to identify the optimal sample size for three widely used metrics to enable quantification of expected variance and relative bias of estimates and a comparison of results among populations. We applied this approach to analyse empirical genomic data for 30 individuals from each of four different free‐ranging Rocky Mountain bighorn sheep (Ovis canadensis canadensis) populations in Montana and Wyoming, USA, through cross‐species application of an Ovine array and analysis of approximately 14,000 single nucleotide polymorphisms (SNPs) after filtering. We examined intra‐ and interpopulation relationships using kinship and identity by state metrics, as well as FST between populations. By evaluating our simulation results, we concluded that a sample size of 25 was adequate for assessing these metrics using the Ovine array to genotype Rocky Mountain bighorn sheep herds. However, we conclude that a universal sample size rule may not be able to sufficiently address the complexities that impact genomic kinship and inbreeding estimates. Thus, we recommend that a pilot study and sample size simulation using R code we developed that includes empirical genotypes from a subset of populations of interest would be an effective approach to ensure rigour in estimating genomic kinship and population differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号