首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Parental effects are influential sources of phenotypic variation in offspring. Incubation temperature in birds, which is largely driven by parental behavior and physiology, affects a suite of phenotypic traits in offspring including growth, immune function, stress endocrinology, and sex ratios. The importance of average incubation temperature on offspring phenotype has recently been described in birds, but parental incubation behaviors like the duration and frequency of recesses from the nest can be variable. There are few studies describing how or if thermal variation as a result of variable incubation affects offspring phenotype. We incubated wood duck Aix sponsa eggs under three different incubation regimes, based on patterns that occur in nature, which varied in off‐bout duration and/or temperature. We measured incubation period, morphometrics at hatching, and monitored growth and body condition for nine days post hatch. When average incubation temperature was allowed to drop from 35.9°C to 35.5°C as a result of doubled off‐bout duration, we found a significant 2 d extension in incubation period, but no effects on duckling hatch mass, or growth and body condition up to nine days post hatch. However, when average incubation temperatures were equivalent (35.9°C), doubling the duration of the simulated off‐bouts did not influence incubation period or any post hatch parameters. Our results suggest that if incubating parents can maintain favorable thermal environments in the nest via altered behavior (e.g. manipulating nest insulation) and/or physiology (e.g. heat production), parents may be able to avoid the costs of longer incubation periods resulting from increased off‐bout duration.  相似文献   

2.
Incubation temperature influences a suite of traits in avian offspring. However, the mechanisms underlying expression of these phenotypes are unknown. Given the importance of thyroid hormones in orchestrating developmental processes, we hypothesized that they may act as an upstream mechanism mediating the effects of temperature on hatchling phenotypic traits such as growth and thermoregulation. We found that plasma T3, but not T4 concentrations, differed among newly hatched wood ducks (Aix sponsa) from different embryonic incubation temperatures. T4 at hatching correlated with time spent hatching, and T3 correlated with hatchling body condition, tarsus length, time spent hatching and incubation period. In addition, the T3 : T4 ratio differed among incubation temperatures at hatch. Our findings are consistent with the hypothesis that incubation temperature modulates plasma thyroid hormones which in turn influences multiple aspects of duckling phenotype.  相似文献   

3.
Incubation temperature is an important maternal effect in birds that can influence numerous offspring traits. For example, ducklings from eggs incubated at lower temperatures have lower growth rates, protein content, and are in poorer body condition than ducklings from eggs incubated at higher temperatures. Based on these observations, we predicted that incubation temperature would indirectly influence performance through its direct effects on body size. Wood duck (Aix sponsa) eggs were incubated at three ecologically relevant temperatures (35, 35.9, 37°C). After hatching, all ducklings were housed under identical conditions and were subjected to aquatic and terrestrial racing trials at 15 and 20 days posthatch (dph). Contrary to our prediction, incubation temperature did not influence most duckling body size parameters at 15 or 20?dph. However, incubation temperature did have a strong influence on locomotor performance independent of body size and body condition. Ducklings hatched from eggs incubated at the lowest temperature had significantly reduced maximum aquatic swim velocity than ducklings from higher temperatures. Maximum terrestrial sprint velocity followed a similar pattern, but did not differ statistically among incubation treatments. To our knowledge, this is the first study to demonstrate that slight changes in incubation temperature can directly affect locomotor performance in avian offspring and thus provide a significant source of phenotypic variation in natural wood duck populations.  相似文献   

4.
Embryonic growth and development are impacted by environmental conditions. In avian systems, parents tightly control these environments through provisioning of nutrients to the egg and through incubation. Parents can influence embryonic development through egg size, eggshell conductance, hormones, or other substances deposited in eggs and through the onset and temperature of incubation. In addition to these parental influences, evidence suggests that avian embryos are able to perceive and actively respond to their environment during incubation and adjust their own development. Evolution of embryos' responses to developmental environments in birds can be understood in the context of parent-offspring conflicts. When parental investments favor future reproduction over current reproduction, current offspring pay fitness costs, which result in strong selection for offspring that can respond to developmental environments independent of their parents. Here, we review literature indicating that avian embryos actively respond to maternally derived components of the egg, vocalizations, and differences in day length, and we explore these responses in the context of three situations where the consequence of these environments to the fitnesses of offspring and parents differ: the degree of synchrony in hatching, the deposition of hormones in yolks, and seasonal timing of breeding. However, the adaptive significance of responses of embryos to developmental environments arising from parent-offspring conflict has not been adequately explored in birds.  相似文献   

5.
Parental effects play a vital role in shaping offspring phenotype. In birds, incubation behaviour is a critical parental effect because it influences the early developmental environment and can therefore have lifelong consequences for offspring phenotype. Recent studies that manipulated incubation temperature found effects on hatchling body composition, condition and growth, suggesting that incubation temperature could also affect energetically costly physiological processes of young birds that are important to survival (e.g. immune responses). We artificially incubated wood duck (Aix sponsa) eggs at three biologically relevant temperatures. Following incubation, we used two immunoassays to measure acquired immune responses of ducklings. Ducklings incubated at the lowest temperature had reduced growth, body condition and responses to both of our immune challenges, compared with those from the higher temperatures. Our results show that incubation temperatures can be an important driver of phenotypic variation in avian populations.  相似文献   

6.
Environmental heterogeneity during embryonic development generates an important source of variation in offspring phenotypes and can influence the evolution of life histories. The effects of incubation temperature on offspring phenotypes in reptiles has been well documented but remains relatively unexplored in birds as their embryos typically develop over a narrow range of temperatures. Megapode birds (Order Galliformes; Family Megapodiidae) are unique in that their embryos tolerate and develop over a wide range of incubation temperatures, yet little is known of the effect that temperature has on hatchling morphology and composition. Australian Brush-turkey eggs collected on the day of laying were incubated in the laboratory under constant temperatures of 32, 34 and 36°C until hatching in order to determine the influence of temperature on hatchling mass, size and composition. The dry mass of the yolk-free body and residual yolk of hatchlings were temperature dependent, such that higher temperatures produced chicks of lesser yolk-free body mass and greater residual yolk mass than chicks incubated at lower temperatures. However the overall size (linear dimensions) and lipid, protein and ash content of chicks were independent of temperature.  相似文献   

7.
The degree of offspring development at hatching (or birth) varies among species within most major vertebrate lineages; altricial vs. precocial birds offer the clearest example of a trade-off between early hatching and the degree of locomotor development of the hatchling. No such diversity has been reported for reptiles, but we suggest that natural selection may fine-tune the time of hatching (in oviparous species) or birth (in viviparous species) to optimize offspring phenotypes and hence, maximize fitness. This hypothesis predicts enhanced neonatal performance after more prolonged incubation or gestation, within as well as among populations. Both published and original data on Australian scincid lizards support this prediction. In a field study, viviparous alpine skinks (Niveoscincus microlepidotus) that gave birth later in the season had faster-running offspring, that had a higher probability of surviving through the first year of life. The enhanced performance and survival were not secondary results of larger offspring size. After controlling for effects of mean incubation temperature, prolonged development also correlated with enhanced locomotor performance in hatchlings from eggs of an oviparous skink (Bassiana duperreyi) incubated at warm temperatures (> 20 degrees C) but not at cooler temperatures (< 20 degrees C). We suggest that embryonic reptiles control their date of hatching or birth and thus, their stage of development at this critical life-history transition.  相似文献   

8.
Recent studies have shown that incubation temperatures can profoundly affect the phenotypes of hatchling lizards, but the effects of hydric incubation environments remain controversial. We examined incubation-induced phenotypic variation in Bassiana duperreyi (Gray, 1938; Sauria: Scincidae), an oviparous montane lizard from south-eastern Australia. We incubated eggs from this species in four laboratory treatments, mimicking cool and moist, cool and dry, warm and moist, and warm and dry natural nest-sites, and assessed several morphological and behavioural traits of lizards after hatching. Incubation temperature influenced a lizard's hatching success, incubation period, tail length and antipredator behaviour, whereas variation in hydric conditions did not engender significant phenotypic variation for most traits. However, moisture affected incubation period slightly differently in males and females, and for a given snout-vent length moisture interacted weakly with temperature to affect lizard body mass. Although incubation conditions can substantially affect phenotypic variation among hatchling lizards, the absence of strong hydric effects suggests that hatchling lizards react less plastically to variation in moisture levels than they do to thermal conditions. Thus, our data do not support the generalization that water availability during embryogenesis is more important than temperature in determining the phenotypes of hatchling reptiles.  相似文献   

9.
The quality of conditions provided by avian parents will have consequences for both parental and offspring fitness. While many components of avian reproduction appear to vary with parental age, the effect of age on incubation has largely been ignored so far. In this study, we tested whether young herring gulls provide a different incubation environment from mature ones and whether this has consequences for offspring performance. Laying and rearing conditions were standardised using a cross-fostering protocol. Egg predation rates tended to be higher in the nests of young parents. However, nest site, nest construction and egg temperature during incubation did not vary with parental age. Overall, the duration of incubation was shorter in young compared to mature birds and this reflected the later laying date of the former, since incubation duration generally decreased across the season. However, male eggs incubated by young parents had longer incubation periods than predicted for their laying dates. In contrast, incubation length of female eggs incubated by young pairs, and of male and female eggs incubated by mature birds did not deviate from the expected for any given laying date. Offspring that had been incubated by young parents had considerably poorer survival than those incubated by mature pairs, despite being reared under standardized, favourable conditions (singly, by mature parents). This was due to increased mortality among female chicks that had been incubated by young parents. The chicks incubated as eggs by young and mature birds, which survived until fledging, did not differ in body mass and size growth, or body condition. The results of this study demonstrate that parental age can influence offspring performance via variation in incubation environment, and that females are more susceptible than males to conditions experienced during embryonic development.  相似文献   

10.
To understand how nest temperatures influence phenotypic traits of reptilian hatchlings, the effects of fluctuating temperature on hatchling traits must be known. Most investigations, however, have only considered the effects of constant temperatures. We incubated eggs of Takydromus septentrionalis (Lacertidae) at constant (24 degrees C, 27 degrees C, 30 degrees C and 33 degrees C) and fluctuating temperatures to determine the effects of these thermal regimes on incubation duration, hatching success and hatchling traits (morphology and locomotor performance). Hatching success at 24 degrees C and 27 degrees C was higher, and hatchlings derived from these two temperatures were larger and performed better than their counterparts from 30 degrees C and 33 degrees C. Eggs incubated at fluctuating temperatures exhibited surprisingly high hatching success and also produced large and well-performed hatchlings in spite of the extremely wide range of temperatures (11.6-36.2 degrees C) they experienced. This means that exposure of eggs to adversely low or high temperatures for short periods does not increase embryonic mortality. The variance of fluctuating temperatures affected hatchling morphology and locomotor performance more evidently than did the mean of the temperatures in this case. The head size and sprint speed of the hatchlings increased with increasing variances of fluctuating temperatures. These results suggest that thermal variances significantly affect embryonic development and phenotypic traits of hatchling reptiles and are therefore ecologically meaningful.  相似文献   

11.
In the wet-dry tropics of northern Australia, temperatures are high and stable year-round but monsoonal rainfall is highly seasonal and variable both annually and spatially. Many features of reproduction in vertebrates of this region may be adaptations to dealing with this unpredictable variation in precipitation, notably by (i) using direct proximate (rainfall-affected) cues to synchronize the timing and extent of breeding with rainfall events, (ii) placing the eggs or offspring in conditions where they will be buffered from rainfall extremes, and (iii) evolving developmental plasticity, such that the timing and trajectory of embryonic differentiation flexibly respond to local conditions. For example, organisms as diverse as snakes (Liasis fuscus, Acrochordus arafurae), crocodiles (Crocodylus porosus), birds (Anseranas semipalmata) and wallabies (Macropus agilis) show extreme annual variation in reproductive rates, linked to stochastic variation in wet season rainfall. The seasonal timing of initiation and cessation of breeding in snakes (Tropidonophis mairii) and rats (Rattus colletti) also varies among years, depending upon precipitation. An alternative adaptive route is to buffer the effects of rainfall variability on offspring by parental care (including viviparity) or by judicious selection of nest sites in oviparous taxa without parental care. A third type of adaptive response involves flexible embryonic responses (including embryonic diapause, facultative hatching and temperature-dependent sex determination) to incubation conditions, as seen in squamates, crocodilians and turtles. Such flexibility fine-tunes developmental rates and trajectories to conditions--especially, rainfall patterns--that are not predictable at the time of oviposition.  相似文献   

12.
1. Life-history decisions are strongly affected by environmental conditions. In birds, incubation is energetically expensive and affected significantly by ambient temperature. We reduced energetic constraints for female tree swallows (Tachycineta bicolor) by experimentally heating nests during incubation by an average of 6.9 degrees C to test for changes in incubation behaviour. 2. Females in heated boxes (hereafter 'heated females') increased time spent incubating and maintained higher on-bout and off-bout egg temperatures. This indicates that female energetic constraints, not maximizing developmental conditions of offspring, determine incubation investment. Furthermore, this result suggests that embryonic developmental conditions in unmanipulated nests are suboptimal. 3. We found individual variation in how females responded to experimental heating. Early-laying (i.e. higher phenotypic quality) females with heated nests increased egg temperatures and maintained incubation constancy, while later-laying (lower quality) heated females increased incubation constancy. Changes in egg temperature were due to changes in female behaviour and not due directly to increases in internal nest-box temperatures. 4. Behaviour during the incubation period affected hatching asynchrony. Decreased variation in egg temperature led to lower levels of hatching asynchrony, which was also generally lower in heated nests. 5. Our study finds strong support for the prediction that intermittent incubators set their incubation investment at levels dictated by energetic constraints. Furthermore, females incubating in heated boxes allocated conserved energy primarily to increased egg temperature and increased incubation attentiveness. These results indicate that studies investigating the role of energetics in driving reproductive investment in intermittent incubators should consider egg temperature and individual variation more explicitly.  相似文献   

13.
Abstract Why is the sex of many reptiles determined by the temperatures that these animals experience during embryogenesis, rather than by their genes? The Charnov‐Bull model suggests that temperature‐dependent sex determination (TSD) can enhance maternal fitness relative to genotypic sex determination (GSD) if offspring traits affect fitness differently for sons versus daughters and nest temperatures either determine or predict those offspring traits. Although potential pathways for such effects have attracted much speculation, empirical tests largely have been precluded by logistical constraints (i.e., long life spans and late maturation of most TSD reptiles). We experimentally tested four differential fitness models within the Charnov‐Bull framework, using a short‐lived, early‐maturing Australian lizard (Amphibolurus muricatus) with TSD. Eggs from wild‐caught females were incubated at a range of thermal regimes, and the resultant hatchlings raised in large outdoor enclosures. We applied an aromatase inhibitor to half the eggs to override thermal effects on sex determination, thus decoupling sex and incubation temperature. Based on relationships between incubation temperatures, hatching dates, morphology, growth, and survival of hatchlings in their first season, we were able to reject three of the four differential fitness models. First, matching offspring sex to egg size was not plausible because the relationship between egg (offspring) size and fitness was similar in the two sexes. Second, sex differences in optimal incubation temperatures were not evident, because (1) although incubation temperature influenced offspring phenotypes and growth, it did so in similar ways in sons versus daughters, and (2) the relationship between phenotypic traits and fitness was similar in the two sexes, at least during preadult life. We were unable to reject a fourth model, in which TSD enhances offspring fitness by generating seasonal shifts in offspring sex ratio: that is, TSD allows overproduction of daughters (the sex likely to benefit most from early hatching) early in the nesting season. In keeping with this model, hatching early in the season massively enhanced body size at the beginning of the first winter, albeit with a significant decline in probability of survival. Thus, the timing of hatching is likely to influence reproductive success in this short‐lived, early maturing species; and this effect may well differ between the sexes.  相似文献   

14.
Ashmore GM  Janzen FJ 《Oecologia》2003,134(2):182-188
Temperatures experienced during embryonic development elicit well-documented phenotypic variation in embryonic and neonatal animals. Most research, however, has only considered the effects of constant temperatures, even though developmental temperatures in natural settings fluctuate considerably on a daily and seasonal basis. A laboratory study of 15 clutches of smooth softshell turtles (Apalone mutica) was conducted to explicitly examine the influence of thermal variance on phenotypic variation. Holding mean temperature constant and eliminating substrate moisture effects permitted a clear assessment of the impact of thermal variance on hatching success, incubation length, hatchling body size, swimming speed, and righting time. Incubation length and swimming speed varied significantly among temperature treatments. Both traits tended to increase with increasing thermal variance during embryonic development. Clutch significantly affected all traits examined, except righting time, even after accounting for the effects of initial egg mass. These results highlight the importance of accounting for the impact of both thermal mean and variance on phenotypic variation. The findings also strengthen the increasing recognition of maternal clutch effects as critical factors influencing phenotypic variation in neonatal animals.  相似文献   

15.
We examined the effects of thermal and hydric environments on hatching success, the embryonic use of energy and hatchling traits in a colubrid snake, Elaphe carinata. The eggs were incubated at four temperatures ranging from 24 to 32 degrees C on substrates with water potentials of 0 and -220 kPa using a 4x2 factorial design. Both thermal and hydric environments affected the water exchange between eggs and their surroundings. Eggs incubated in wetter substrates gained mass throughout the course of incubation, whereas eggs in drier substrates gained mass during the first half of incubation and lost mass thereafter. Hatching success was noticeably higher at 26 and 30 degrees C than at 24 and 32 degrees C, but among treatments, differences in hatching success were not significant. Temperature significantly affected the duration of incubation and most hatchling traits examined. Deformed hatchlings were found in all temperature treatments, with more deformities observed at 32 degrees C. Hatchlings from eggs incubated at different temperatures differed in wet body mass, but the differences stemmed mainly from variation in water contents. Embryos at different temperatures completed development at nearly the same expenditure of energy and catabolized nearly the same amount of lipids, but hatchlings from different temperatures differed in the development condition of carcass at hatching. Hatchlings from eggs incubated at 26 degrees C were larger in SVL than those from other higher or lower incubation temperatures, characteristically having larger carcasses; hatchlings from 32 degrees C eggs were smaller in SVL and had smaller carcasses but larger residual yolks than those from lower incubation temperatures. Hatchlings from eggs incubated at 24 degrees C were shorter in tail length but greater in size (SVL)-specific body wet mass than those from higher incubation temperatures. Within the range from -220 to 0 kPa, the substrate water potential did not affect hatching success, the embryonic use of energy and all hatchling traits examined, and the effects of temperature were independent of the effects of substrate water potential. Therefore, our data add evidence showing that embryonic development in reptiles with pliable-shelled eggs is relatively insensitive to variation in hydric environments during incubation.  相似文献   

16.
In birds, different types of predators may target adults or offspring differentially and at different times of the reproductive cycle. Hence they may also differentially influence incubation behaviour and thus embryonic development and offspring phenotype. This is poorly understood, and we therefore performed a study to assess the effects of the presence of either a nest predator or a predator targeting adults and offspring after fledging on female incubation behaviour in great tits (Parus major), and the subsequent effects on offspring morphological traits. We manipulated perceived predation risk during incubation using taxidermic models of two predators: the short-tailed weasel posing a risk to incubating females and nestlings, and the sparrowhawk posing a risk to adults and offspring after fledging. To disentangle treatment effects induced during incubation from potential carry-over effects of parental behaviour after hatching, we cross-fostered whole broods from manipulated nests with broods from unmanipulated nests. Both predator treatments lead to a reduced on- and off-bout frequency, to a slower decline in on-bout temperature as incubation advanced and showed a negative effect on nestling body mass gain. At the current state of knowledge on predator-induced variation in incubation patterns alternative hypotheses are feasible, and the findings of this study will be useful for guiding future research.  相似文献   

17.
Light is essential for embryonic development in many oviparous animals including fish, amphibians,and birds. However, light may be harmful for reptile embryos developing underground where they are in complete darkness and beneath thin eggshells.Nonetheless, how embryonic light conditions affect reptile development and offspring remains largely unknown. Here we incubated eggs in dark and light conditions to determine the effects of light exposure on embryonic development and offspring visual ability,spatial cognitive ability and growth in a lacertid lizard,Eremias argus. Our experiments demonstrated that light stimulation shortened incubation duration of eggs,but did not affect hatching success, offspring size, visual ability or survival. More interestingly, light exposure during incubation decreased spatial cognitive ability and post-hatching growth of offspring. On the basis of negative effects on offspring growth rates, our study indicates that in squamate reptiles with thin eggshells,light exposure in early development has negative effects on offspring cognitive ability.  相似文献   

18.
Recent research in birds has demonstrated that incubation temperature influences a suite of traits important for hatchling development and survival. We explored a possible mechanism for the effects on hatchling quality by determining whether incubation temperature influences embryonic energy expenditure of wood ducks (Aix sponsa). Because avian embryos are ectothermic, we hypothesized that eggs incubated at higher temperatures would have greater energy expenditure at any given day of incubation. However, because eggs incubated at lower temperatures take longer to hatch than embryos incubated at higher temperatures, we hypothesized that the former would expend more energy during incubation. We incubated eggs at three temperatures (35.0°, 35.9°, and 37.0°C) that fall within the range of temperatures of naturally incubated wood duck nests. We then measured the respiration of embryos every 3 d during incubation, immediately after ducks externally pipped, and immediately after hatching. As predicted, embryos incubated at the highest temperature had the highest metabolic rates on most days of incubation, and they exhibited faster rates of development. Yet, because of greater energy expended during the hatching process, embryos incubated at the lowest temperature expended 20%-37% more energy during incubation than did embryos incubated at the higher temperatures. Slower developmental rates and greater embryonic energy expenditure of embryos incubated at the lowest temperature could contribute to their poor physiological performance as ducklings compared with ducklings that hatch from eggs incubated at higher temperatures.  相似文献   

19.
Abstract.— Incubation behavior is one component of reproductive effort and thus influences the evolution of life-history strategies. We examined the relative importance of body mass, frequency of mate feeding, food, nest predation, and ambient temperature to explain interspecific variation in incubation behavior (nest attentiveness, on- and off-bout durations, and nest trips per hour) using comparative analyses for North American passerines in which only females incubate. Body mass and frequency of mate feeding explained little variation in incubation behavior. We were also unable to detect any influence of food; diet and foraging strategy explained little interspecific variation in incubation behavior. However, the typical temperature encountered during reproduction explained significant variation in incubation behavior: Species breeding in colder environments take shorter bouts off the nest, which prevents eggs from cooling to temperatures below the physiological zero temperature. These species must compensate for shorter off-bouts by taking more of them (thus shorter on-bouts) to obtain needed energy for incubation. Nest predation also explains significant variation in incubation behavior among passerines: Species that endure high nest predation have evolved an incubation strategy (long on- and off-bouts) that minimizes activity that could attract predators. Nest substrate explained additional variation in incubation behavior (cavity-nesting birds have shorter on-bouts and make more frequent nest trips), presumably because nest predation and/or temperature varies among nest substrates. Thus, nest predation can influence reproductive effort in a way previously not demonstrated–by placing a constraint on parental activity at the nest. Incubating birds face an ecological cost associated with reproductive effort (predation of entire brood) that should be considered in future attempts to explain avian life-history evolution.  相似文献   

20.
Incubation temperature influences hatchling phenotypes such as sex, size, shape, color, behavior, and locomotor performance in many reptiles, and there is growing concern that global warming might adversely affect reptile populations by altering frequencies of hatchling phenotypes. Here I overview a recent theoretical model used to predict hatchling sex of reptiles with temperature-dependent sex determination. This model predicts that sex ratios will be fairly robust to moderate global warming as long as eggs experience substantial daily cyclic fluctuations in incubation temperatures so that embryos are exposed to temperatures that inhibit embryonic development for part of the day. I also review studies that examine the influence of incubation temperature on posthatch locomotion performance and growth because these are the traits that are likely to have the greatest effect on hatchling fitness. The majority of these studies used artificial constant-temperature incubation, but some have addressed fluctuating incubation temperature regimes. Although the number of studies is small, it appears that fluctuating temperatures may enhance hatchling locomotor performance. This finding should not be surprising, given that the majority of natural reptile nests are relatively shallow and therefore experience daily fluctuations in incubation temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号