首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Listen to the news and you are bound to hear that researchers are increasingly interested in the biological manifestations of trauma that reverberate through the generations. Research in this area can be controversial in the public realm, provoking societal issues about personal responsibility (are we really born free or are we born with the burden of our ancestors’ experience?). It is also a touchy subject within evolutionary biology because it provokes concerns about Lamarckianism and general scepticism about the importance of extra‐genetic inheritance (Laland et al., 2014 ). Part of why the research in this area has been controversial is because it is difficult to study. For one, there is the problem of how long it takes to track changes across generations, making long‐term, multi‐generational studies especially tricky in long‐lived species. Moreover, there are presently very few (if any) known molecular mechanisms by which environmental effects can be incorporated into the genome and persist for multiple successive generations, casting doubt on their evolutionary repercussions. Fortunately, you only have to look in your local pond to find the creatures that are teaching us a great deal about how and why the experiences of parents are passed down to their offspring. In this issue of Molecular Ecology, Hales et al. (Hales et al., 2017 ) illustrate the power of Daphnia (“water fleas”) for making headway in this field.  相似文献   

2.
We identified a new role of phytochrome in mediating germination responses to seasonal cues and thereby identified for the first time a gene involved in maternal environmental effects on germination. We examined the germination responses of a mutant, hy2-1, which is deficient in the phytochrome chromophore. The background genotype, Landsberg erecta (Ler), lacked dormancy in most treatments, while hy2-1 required cold stratification for germination in a manner that resembled a more dormant ecotype, Columbia (Col). Unlike Col, hy2-1 was not induced into dormancy by warm stratification. Therefore, the down-regulation of phytochrome-mediated germination pathways results in sensitivity to cold, but we found no evidence that reduced phytochrome activity enables the warm-induction of dormancy. Cool temperatures during seed maturation induced dormancy. The hy2-1 mutants did not overcome this dormancy, indicating that phytochrome-mediated pathways are required to break cold-induced dormancy. Ler did not respond to post-stratification temperature, but hy2-1 did respond, suggesting phytochrome pathways are involved in germination responses to temperature. In summary, phytochromes mediate dormancy and germination responses to seasonal cues experienced both during seed maturation and after dispersal. Phytochromes therefore appear to be involved in mediating seasonal germination timing, a trait of great ecological importance and one that is under strong natural selection.  相似文献   

3.
    
The neurotransmitter dopamine has been shown to play an important role in modulating behavioral, morphological, and life history responses to food abundance. However, costs of expressing high dopamine levels remain poorly studied and are essential for understanding the evolution of the dopamine system. Negative maternal effects on offspring size from enhanced maternal dopamine levels have previously been documented in Daphnia. Here, we tested whether this translates into fitness costs in terms of lower starvation resistance in offspring. We exposed Daphnia magna mothers to aqueous dopamine (2.3 or 0 mg/L for the control) at two food levels (ad libitum vs. 30% ad libitum) and recorded a range of maternal life history traits. The longevity of their offspring was then quantified in the absence of food. In both control and dopamine treatments, mothers that experienced restricted food ration had lower somatic growth rates and higher age at maturation. Maternal food restriction also resulted in production of larger offspring that had a superior starvation resistance compared to ad libitum groups. However, although dopamine exposed mothers produced smaller offspring than controls at restricted food ration, these smaller offspring survived longer under starvation. Hence, maternal dopamine exposure provided an improved offspring starvation resistance. We discuss the relative importance of proximate and ultimate causes for why Dmagna may not evolve toward higher endogenous dopamine levels despite the fitness benefits this appears to have.  相似文献   

4.
    
Adaptive evolutionary responses are determined by the strength of selection and amount of genetic variation within traits, however, both are known to vary across environmental conditions. As selection is generally expected to be strongest under stressful conditions, understanding how the expression of genetic variation changes across stressful and benign environmental conditions is crucial for predicting the rate of adaptive change. Although theory generally predicts increased genetic variation under stress, previous syntheses of the field have found limited support for this notion. These studies have focused on heritability, which is dependent on other environmentally sensitive, but nongenetic, sources of variation. Here, we aim to complement these studies with a meta‐analysis in which we examine changes in coefficient of variation (CV) in maternal, genetic, and residual variances across stressful and benign conditions. Confirming previous analyses, we did not find any clear direction in how heritability changes across stressful and benign conditions. However, when analyzing CV, we found higher genetic and residual variance under highly stressful conditions in life‐history traits but not in morphological traits. Our findings are of broad significance to contemporary evolution suggesting that rapid evolutionary adaptive response may be mediated by increased evolutionary potential in stressed populations.  相似文献   

5.
    
Seasonal germination timing strongly influences lifetime fitness and can affect the ability of plant populations to colonize and persist in new environments. To quantify the influence of seasonal environmental factors on germination and to test whether pleiotropy or close linkage are significant constraints on the evolution of germination in different seasonal conditions, we dispersed novel recombinant genotypes of Arabidopsis thaliana into two geographic locations. To decouple the photoperiod during seed maturation from the postdispersal season that maternal photoperiod predicts, replicates of recombinant inbred lines were grown under short days and long days under controlled conditions, and their seeds were dispersed during June in Kentucky (KY) and during June and November in Rhode Island (RI). We found that postdispersal seasonal conditions influenced germination more strongly than did the photoperiod during seed maturation. Genetic variation was detected for germination responses to all environmental factors. Transgressive segregation created novel germination phenotypes, revealing a potential contribution of hybridization of ecotypes to the evolution of germination. A genetic trade-off in germination percentage across sites indicated that determinants of fitness at or before the germination stage may constrain the geographic range that a given genotype can inhabit. However, germination timing exhibited only weak pleiotropy across treatments, suggesting that different sets of genes contribute to variation in germination behavior in different seasonal conditions and geographic locations. Thus, the genetic potential exists for rapid evolution of appropriate germination responses in novel environments, facilitating colonization across a broad geographic range.  相似文献   

6.
Variation in ontogeny can produce phenotypic variation both within and among species. I investigated whether changes in timing and rate of growth were a source of phenotypic variation in a putative incipient species group of pupfish (Cyprinodon spp.). On San Salvador Island, Bahamas, sympatric forms of pupfish differ in morphology but show only partial reproductive isolation in the laboratory. Offspring from two forms and two geographical areas and their hybrids were bred in the laboratory, and ontogenetic trajectories of their feeding morphology were followed until maturity. In the Bahamian pupfish the two forms grow along similar size but not shape trajectories. Two heterochronic parameters, onset and rate of growth, alter shape trajectories in the Bahamian pupfish. Similar forms from different geographical areas (Florida and the Bahamas) grow along parallel shape trajectories, differing only in one heterochronic parameter, the onset shape. Hybrids within and between the pupfish forms produced intermediate feeding morphologies that were influenced by their maternal phenotype, suggesting that maternal effects may be a source of phenotypic variation in shape that can persist to maturity. In Cyprinodon, small changes in multiple heterochronic parameters translate into large phenotypic differences in feeding morphology.  相似文献   

7.
Models of parental investment typically assume that populations are well mixed and homogeneous and have devoted little attention to the impact of spatial variation in the local environment. Here, in a patch‐structured model with limited dispersal, we assess to what extent resource‐rich and resource‐poor mothers should alter the size of their young in response to the local environment in their patch. We show that limited dispersal leads to a correlation between maternal and offspring environments, which favours plastic adjustment of offspring size in response to local survival risk. Strikingly, however, resource‐poor mothers are predicted to respond more strongly to local survival risk, whereas resource‐rich mothers are predicted to respond less strongly. This lack of sensitivity on the part of resource‐rich mothers is favoured because they accrue much of their fitness through dispersing young. By contrast, resource‐poor mothers accrue a larger fraction of their fitness through philopatric young and should therefore respond more strongly to local risk. Mothers with more resources gain a larger share of their fitness through dispersing young partly because their fitness in the local patch is constrained by the limited number of local breeding spots. In addition, when resource variation occurs at the patch level, the philopatric offspring of resource‐rich mothers face stronger competition from the offspring of other local mothers, who also enjoy abundant resources. The effect of limited local breeding opportunities becomes less pronounced as patch size increases, but the impact of patch‐level variation in resources holds up even with many breeders per patch.  相似文献   

8.
This study was designed to examine life history flexibility arising from phenotypic plasticity in response to temperature and from maternal effects in response to reproductive diapause in a temperate zone population of the milkweek bug (Oncopeltus fasciatus). We employed a split-family, first-cousin, full-sib design with siblings reared at different temperatures in order to quantify phenotypic plasticity, maternal effects, and variation for each. The following traits were analyzed: development time, age at first reproduction, longevity, early-life fecundity, and wing length. We found both life history plasticity and maternal effects on life history traits which tend to enhance the colonizing ability of offspring born to mothers that have undergone reproductive diapause. We were unable to demonstrate additive genetic variation for plasticity for any of the traits, while for development time and wing length we found variation due to non-additive genetic or common-environmental sources. We were also unable to demonstrate additive genetic variation for maternal effects, although variation may exist at low levels that are difficult to detect using cousin-families. The apparent lack of variation in this population would constrain evolution of life history flexibility even though considerable flexibility exists in the phenotype.  相似文献   

9.
    
Experimental evolution (EE) is a powerful tool for addressing how environmental factors influence life‐history evolution. While in nature different selection pressures experienced across the lifespan shape life histories, EE studies typically apply selection pressures one at a time. Here, we assess the consequences of adaptation to three different developmental diets in combination with classical selection for early or late reproduction in the fruit fly Drosophila melanogaster. We find that the response to each selection pressure is similar to that observed when they are applied independently, but the overall magnitude of the response depends on the selection regime experienced in the other life stage. For example, adaptation to increased age at reproduction increased lifespan across all diets; however, the extent of the increase was dependent on the dietary selection regime. Similarly, adaptation to a lower calorie developmental diet led to faster development and decreased adult weight, but the magnitude of the response was dependent on the age‐at‐reproduction selection regime. Given that multiple selection pressures are prevalent in nature, our findings suggest that trade‐offs should be considered not only among traits within an organism, but also among adaptive responses to different—sometimes conflicting—selection pressures, including across life stages.  相似文献   

10.
    
Females of many organisms mate more than once and with more than one male, suggesting that polyandry confers some advantage to the female or her offspring. However, variation in maternal investment in response to mate choice and mate number can confound efforts to determine if there are benefits of polyandry. Access to multiple mates could increase maternal investment in offspring via a number of different mechanisms. Few studies have determined if investment is influenced by mate choice and number, and data are particularly lacking for marine invertebrates. This study was designed to determine if maternal investment and offspring size increase with access to increasing numbers of mates in the protandrous intertidal slipper snail Crepidula cf. marginalis. Virgin female slipper limpets were exposed to one, three, or five potential mates and their fecundity, egg size, and hatchling size were measured for multiple clutches. Treatment had a significant effect on fecundity, with fecundity increasing with the number of potential mates. Treatment did not have an effect on the size of eggs or hatchlings, on the variation in egg size or hatchling size within broods, or on the frequency of oviposition. Treatment did alter the variation in average offspring size among females, but not in the way predicted by theory. The main result, that access to multiple mates does not have an effect on per offspring maternal investment, makes C. cf. marginalis an ideal candidate to study the effects of polyandry on offspring fitness without having to take into account confounding effects of variation in maternal investment.  相似文献   

11.
    
The influence of individual parentage on progeny responses to early developmental temperature stress was examined in a cross-fertilization experiment using sockeye salmon Oncorhynchus nerka. Differences in survival, hatch timing and size were examined among five paternally linked and five maternally linked offspring families (Weaver Creek population, British Columbia, Canada) incubated at 12, 14 and 16° C from just after fertilization to hatch. Mean embryonic survival was significantly lower at 14 and 16° C; however, offspring families had substantially different survival responses across the thermal gradient (crossing reaction norms). Within temperature treatments, substantial variation in embryonic survival, alevin mass, time-to-hatch and hatch duration were attributable to family identity; however, most traits were governed by significant temperature-family interactions. For embryonic survival, large differences between families at 16° C were due to both female and male spawner influence, whereas inter-family differences were obscured at 14° C (high intra-family variation), and minimal at 12° C (only maternal influence detected). Despite post-hatch rearing under a common cool thermal regime, persistent effects of both temperature and parentage were detected in alevin and 3 week-old fry. Collectively, these findings highlight the crucial role that parental influences on offspring may have in shaping future selection within salmonid populations exposed to elevated thermal regimes. An increased understanding of parental and temperature influences and their persistence in early development will be essential to developing a more comprehensive view of population spawning success and determining the adaptive capacity of O. nerka populations in the face of environmental change.  相似文献   

12.
    
In temperate climates, the recurring seasonal exigencies of winter represent a fundamental physiological challenge for a wide range of organisms. In response, many temperate insects enter diapause, an alternative developmental program, including developmental arrest, that allows organisms to synchronize their life cycle with seasonal environmental variation. Geographic variation in diapause phenology contributing to local climatic adaptation is well documented. However, few studies have examined how the rapid evolution of a suite of traits expressed across the diapause program may contribute to climatic adaptation on a contemporary timescale. Here, we investigate the evolution of the diapause program over the past 35 years by leveraging a “natural experiment” presented by the recent invasion of the Asian tiger mosquito, Aedes albopictus, across the eastern United States. We sampled populations from two distinct climatic regions separated by 6° of latitude (∼700 km). Using common-garden experiments, we identified regional genetic divergence in diapause-associated cold tolerance, diapause duration, and postdiapause starvation tolerance. We also found regional divergence in nondiapause thermal performance. In contrast, we observed minimal regional divergence in nondiapause larval growth traits and at neutral molecular marker loci. Our results demonstrate rapid evolution of the diapause program and imply strong selection caused by differences in winter conditions.  相似文献   

13.
14.
Environmental conditions during seed maturation influence germination, but the genetic basis of maternal environmental effects on germination is virtually unknown. Using single and multiple mutants of phytochromes, it is shown here that different phytochromes contributed to germination differently, depending on seed-maturation conditions. Arabidopsis thaliana wild-type seeds that were matured under cool temperatures were intensely dormant compared with seeds matured at warmer temperature, and this dormancy was broken only after warm seed-stratification followed by cold seed-stratification. The warm-cold stratification broke dormancy in fresh seeds but not in dry after-ripened seeds. Functional PHYB and PHYD were necessary to break cool-induced dormancy, which indicates a previously unknown and ecologically important function for PHYD. Disruption of PHYA in combination with PHYD (but not PHYB) restored germination to near wild-type levels, indicating that PHYA contributes to the maintenance of cool-induced dormancy on a phyD background. Effects of seed-maturation temperature were much stronger than effects of seed-maturation photoperiod. PHYB contributed to germination somewhat more strongly in seeds matured under short days, whereas PHYD contributed to germination somewhat more strongly in seeds matured under long days. The variable contributions of different phytochromes to germination as a function of seed-maturation conditions reveal further functional diversification of the phytochromes during the process of germination. This study identifies among the first genes to be associated with maternal environmental effects on germination.  相似文献   

15.
    
Offspring size is one of the most important life‐history traits with consequences for both the ecology and evolution of most organisms. Surprisingly, formal estimates of selection on offspring size are rare, and the degree to which selection (particularly nonlinear selection) varies among environments remains poorly explored. We estimate linear and nonlinear selection on offspring size, module size, and senescence rate for a sessile marine invertebrate in the field under three different intensities of interspecific competition. The intensity of competition strongly modified the strength and form of selection acting on offspring size. We found evidence for differences in nonlinear selection across the three environments. Our results suggest that the fitness returns of a given offspring size depend simultaneously on their environmental context, and on the context of other offspring traits. Offspring size effects can be more pervasive with regards to their influence on the fitness returns of other traits than previously recognized, and we suggest that the evolution of offspring size cannot be understood in isolation from other traits. Overall, variability in the form and strength of selection on offspring size in nature may reduce the efficacy of selection on offspring size and maintain variation in this trait.  相似文献   

16.
I manipulated egg size and followed individual mass trajectories from the egg stage in Atlantic salmon to test for effects of size, and for interactions between size and paternal body mass, on offspring performance in strongly food-limited environments. Egg size had a strong effect on body mass at yolk absorption, causing juveniles originating from large eggs to outgrow their siblings from small eggs. This corroborates previous findings of egg size effects under more benign environments, and demonstrates that positive effects of egg size on offspring success are manifested even under strong food-limitation. Previously reported negative effects of being large during the critical period for survival in dense populations are thus likely related to social interactions, rather than to effects of density on total food abundance in the environment. The effect of egg size on offspring performance, and hence the optimal egg size, was independent of paternal body mass.  相似文献   

17.
    
We tested the hypothesis that density‐dependent competition influences the evolution of offspring size. We studied two populations of the least killifish (Heterandria formosa) that differ dramatically in population density; these populations are genetically differentiated for offspring size, and females from both populations produce larger offspring when they experience higher social densities. To look at the influences of population of origin and relative body size on competitive ability, we held females from the high‐density population at two different densities to create large and small offspring with the same genetic background. We measured the competitive ability of those offspring in mesocosms that contained either pure or mixed population treatments at either high or low density. High density increased competition, which was most evident in greatly reduced individual growth rates. Larger offspring from the high‐density population significantly delayed the onset of maturity of fish from the low‐density population. From our results, we infer that competitive conditions in nature have contributed to the evolution of genetically based interpopulation differences in offspring size as well as plasticity in offspring size in response to conspecific density.  相似文献   

18.
    
Phenotypic plasticity is an important mechanism for populations to respond to fluctuating environments, yet may be insufficient to adapt to a directionally changing environment. To study whether plasticity can evolve under current climate change, we quantified selection and genetic variation in both the elevation (RNE) and slope (RNS) of the breeding time reaction norm in a long‐term (1973–2016) study population of great tits (Parus major). The optimal RNE (the caterpillar biomass peak date regressed against the temperature used as cue by great tits) changed over time, whereas the optimal RNS did not. Concordantly, we found strong directional selection on RNE, but not RNS, of egg‐laying date in the second third of the study period; this selection subsequently waned, potentially due to increased between‐year variability in optimal laying dates. We found individual and additive genetic variation in RNE but, contrary to previous studies on our population, not in RNS. The predicted and observed evolutionary change in RNE was, however, marginal, due to low heritability and the sex limitation of laying date. We conclude that adaptation to climate change can only occur via micro‐evolution of RNE, but this will necessarily be slow and potentially hampered by increased variability in phenotypic optima.  相似文献   

19.
20.
    
With global climate change, rainfall is becoming more variable. Predicting the responses of species to changing rainfall levels is difficult because, for example in herbivorous species, these effects may be mediated indirectly through changes in host plant quality. Furthermore, species responses may result from a simultaneous interaction between rainfall levels and other environmental variables such as anthropogenic land use or habitat quality. In this eco‐evolutionary study, we examined how male and female Pararge aegeria (L.) from woodland and agricultural landscape populations were affected by the development on drought‐stressed host plants. Compared with individuals from woodland landscapes, when reared on drought‐stressed plants agricultural individuals had longer development times, reduced survival rates and lower adult body masses. Across both landscape types, growth on drought‐stressed plants resulted in males and females with low forewing aspect ratios and in females with lower wing loading and reduced fecundity. Development on drought‐stressed plants also had a landscape‐specific effect on reproductive output; agricultural females laid eggs that had a significantly lower hatching success. Overall, our results highlight several potential mechanisms by which low water availability, via changes in host plant quality, may differentially influence P. aegeria populations relative to landscape structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号