首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
1. The effects of flooding on top predators are poorly understood globally, but particularly in monsoonal streams. We therefore attempted to assess how inter-annual and intra-annual variations in flood magnitude affected an obligate riverine predator, the brown dipper ( Cinclus pallasii ), and its invertebrate prey, in the mountain Tachia River, Taiwan. Major flooding in one of the study years (2005) allowed an insight into the effects of abnormally large flows.
2. The abundance and biomass of insects, and the abundance of dippers, decreased steadily from 2003 to 2005 as flood magnitude grew, but then increased in 2006 when more typical discharge returned. Dipper abundance, insect abundance and insect biomass were all strongly positively inter-related, but negatively related to discharge. Insect biomass, rather than abundance, was more useful in predicting brown dipper abundance.
3. Aquatic insect composition fluctuated among sampling years, revealed by non-metric multidimensional scaling, and these fluctuations were also related to discharge. In turn, dipper abundance and the mean body size of aquatic insects declined with the shift in insect composition as flow increased.
4. These data illustrate how discharge fluctuations can have pronounced effects on top predators in streams, mediated in this case by fluctuating prey abundance. While contributions from bird movement, breeding performance and mortality were not clearly differentiated, our data reveal how dippers have strategies to accommodate varying discharge in river systems. We suggest that the effects of floods on dippers should be taken into account when using this group as indicators of river quality.  相似文献   

4.
1. We tested how strongly aquatic macroinvertebrate taxa richness and composition were associated with natural variation in both flow regime and stream temperatures across streams of the western United States. 2. We used long‐term flow records from 543 minimally impacted gauged streams to quantify 12 streamflow variables thought to be ecologically important. A principal component analysis reduced the dimensionality of the data from 12 variables to seven principal component (PC) factors that characterised statistically independent aspects of streamflow: (1) zero flow days, (2) flow magnitude, (3) predictability, (4) flood duration, (5) seasonality, (6) flashiness and (7) base flow. K‐means clustering was used to group streams into 4–8 hydrologically different classes based on these seven factors. 3. We also used empirical models to estimate mean annual, mean summer and mean winter stream temperatures at each stream site. We then used invertebrate data from 63 sites to develop Random Forest models to predict taxa richness and taxon‐specific probabilities of capture at a site from flow and temperature. We used the predicted taxon‐specific probabilities of capture to estimate how well predicted assemblages matched observed assemblages as measured by RIVPACS‐type observed/expected (O/E) indices and Bray–Curtis dissimilarities. 4. Macroinvertebrate taxon richness was only weakly associated with streamflow and temperature variables, implying that other factors more strongly influenced taxa richness. 5. In contrast to taxa richness, taxa composition was strongly associated with streamflow and temperature. Predictions of taxa composition (O/E and Bray–Curtis) were most precise when both temperature and streamflow PC factors were used, although predictions based on either streamflow PC factors or temperature alone were also better than null model predictions. Of the seven aspects of the streamflow regime we examined, variation in baseflow conditions appeared to be most directly associated with invertebrate biotic composition. We were also able to predict assemblage composition from the conditional probabilities of hydrological class membership nearly as well as Random Forests models that were based directly on continuous PC factors. 6. Our results have direct implication for understanding the relative importance of streamflow and temperature in regulating the structure and composition of stream assemblages and for improving the accuracy and precision of biological assessments.  相似文献   

5.
6.
7.
1. The hyporheic zone has long been regarded as a potential refugium for lotic invertebrates during disturbance. However, there have been few attempts to quantify the stability of this habitat during high flow events. In a New Zealand stream with an unstable bed, the present authors monitored spatial patterns of scour and fill in a riffle in a wide flood plain and at two sites in a constrained reach: a pool-riffle with bedrock outcrops and a plane-bed (a bedform characterized by long stretches of planar stream bed). 2. At each 20-m site, 100 scour chains were installed in a systematic grid with about 1 m between chains. Scour was measured by comparing the length of chain exposed before and after a high flow event, whereas filling depth was equivalent to the thickness of the sediment deposited on top of the chains during the event. For each chain, the present authors noted dominant particle size and degree of packing of the surrounding bed, water depth and presence or absence of large stones upstream. Chains were re-located after four smaller spates, one intermediate event and one large flood. 3. Most events caused a complex mosaic of bed patches which experienced scour, fill or remained undisturbed. These patterns, which were mostly site- and event-specific, were often significantly influenced by the longitudinal or lateral position of the chains in the spatial grids. 4. The cumulative effect of the six high flow events differed substantially between sites. The first site experienced predominantly scour, the second both scour and fill, and the third almost exclusively fill. These differences were partly explained by channel geomorphology. The bedrock outcrops at the constrained pool-riffle site forced the flow at high discharge, causing deep scour in these areas, whereas a backwater effect at the third site reduced near-bottom shear stress during larger events and led to sediment deposition. 5. Except for a single event at the second site, scour affected mainly the uppermost 10–15 cm of the stream bed. Therefore, almost the entire hyporheic zone below this depth would have been available as refugium for invertebrates, in addition to the often consider-able number of bed patches which remained undisturbed during the six high flow events. 6. Fill without earlier scour during the same high flow event was common at all sites. Most previous studies have assumed that lotic invertebrates are mainly affected by scour during high flow events, but the consequences of sediment deposition may be just as far reaching.  相似文献   

8.
9.
Climate change is altering hydrological cycles globally, and in Mediterranean (med-) climate regions it is causing the drying of river flow regimes, including the loss of perennial flows. Water regime exerts a strong influence over stream assemblages, which have developed over geological timeframes with the extant flow regime. Consequently, sudden drying in formerly perennial streams is expected to have large, negative impacts on stream fauna. We compared contemporary (2016/17) macroinvertebrate assemblages of formerly perennial streams that became intermittently flowing (since the early 2000s) to assemblages recorded in the same streams by a study conducted pre-drying (1981/82) in the med-climate region of southwestern Australia (the Wungong Brook catchment, SWA), using a multiple before-after, control-impact design. Assemblage composition in the stream reaches that remained perennial changed very little between the studies. In contrast, recent intermittency had a profound effect on species composition in streams impacted by drying, including the extirpation of nearly all Gondwanan relictual insect species. New species arriving at intermittent streams tended to be widespread, resilient species including desert-adapted taxa. Intermittent streams also had distinct species assemblages, due in part to differences in their hydroperiods, allowing the establishment of distinct winter and summer assemblages in streams with longer-lived pools. The remaining perennial stream is the only refuge for ancient Gondwanan relict species and the only place in the Wungong Brook catchment where many of these species still persist. The fauna of SWA upland streams is becoming homogenised with that of the wider Western Australian landscape, as drought-tolerant, widespread species replace local endemics. Flow regime drying caused large, in situ alterations to stream assemblage composition and demonstrates the threat posed to relictual stream faunas in regions where climates are drying.  相似文献   

10.
Air temperature at the northernmost latitudes is predicted to increase steeply and precipitation to become more variable by the end of the 21st century, resulting in altered thermal and hydrological regimes. We applied five climate scenarios to predict the future (2070–2100) benthic macroinvertebrate assemblages at 239 near‐pristine sites across Finland (ca. 1200 km latitudinal span). We used a multitaxon distribution model with air temperature and modeled daily flow as predictors. As expected, projected air temperature increased the most in northernmost Finland. Predicted taxonomic richness also increased the most in northern Finland, congruent with the predicted northwards shift of many species’ distributions. Compositional changes were predicted to be high even without changes in richness, suggesting that species replacement may be the main mechanism causing climate‐induced changes in macroinvertebrate assemblages. Northern streams were predicted to lose much of the seasonality of their flow regimes, causing potentially marked changes in stream benthic assemblages. Sites with the highest loss of seasonality were predicted to support future assemblages that deviate most in compositional similarity from the present‐day assemblages. Macroinvertebrate assemblages were also predicted to change more in headwaters than in larger streams, as headwaters were particularly sensitive to changes in flow patterns. Our results emphasize the importance of focusing protection and mitigation on headwater streams with high‐flow seasonality because of their vulnerability to climate change.  相似文献   

11.
1. Invertebrate drift in streams draining a tropical landscape in Costa Rica was studied to assess differences in assemblage composition above and below a major gradient break in geomorphic landform and to assess temporal patterns of drift in lowland reaches below the gradient break. The gradient break (~50 m a.s.l.) is the point at which the foothills of the Costa Rican Cordillera Central (piedmont) merge with the Caribbean coastal plain (lowlands).
2. Spatial patterns were assessed along two streams by sampling drift over 24 h once a month for 3 months in both the piedmont (90 m a.s.l.) and lowlands (30 m a.s.l.). Temporal patterns of drift were assessed through monthly diel sampling of three lowland sites over 8–10 months, encompassing both ‘dry’ (<400 mm precipitation per month, November to May) and wet (July to October) seasons.
3. Drift composition was insect dominated in piedmont sites and larval shrimp dominated in the lowlands. Percent similarity of assemblages between piedmont and lowland sites was low (range 26–43%) because of high larval shrimp densities in lowland versus piedmont sites.
4. Drift densities were higher during night than day, with peaks at sunset on all dates and at all sites. Diel patterns in drift agree with previous observations for the study area and support the ‘risk of predation’ hypothesis.
5. Analysis of monthly patterns in lowland sites showed high variability in drift densities; however, all major taxa were found every month. Overall, there was a trend for high invertebrate densities during the ‘dry’ season, but these trends were not significant.
6. Observed changes in drift composition support the concept of river zonation, which predicts a change in community composition along the stream continuum due to geomorphic features. Drift at lowland sites below the gradient break was dominated by shrimps, which are linked to marine environments via their migratory behaviour.  相似文献   

12.
1. Naturally variable river flows are considered to be important for structuring riparian vegetation. However, while the importance of floods for the ecology of riparian vegetation is well recognised, much less is known about the importance of small fluctuations in river flows. 2. We investigated the effect of water supply diversion weirs on the riparian vegetation of upland streams. These weirs remove within‐channel fluctuations in flow but do not prevent large floods downstream. We surveyed the in‐channel and banktop vegetation of five streams, three of which were regulated by weirs and two of which acted as controls. 3. Unexpectedly, we observed greater species richness within the channel downstream of the weirs. This was because of increased numbers of exotic and terrestrial (‘dry’) plant species. Grass cover was also greater downstream of the weirs. There were no significant differences in the banktop vegetation between the upstream and downstream sites of the regulated streams. 4. Our results highlight the role of within‐channel flow variability in maintaining the composition of vegetation within the stream channel. We suggest that greater species richness does not necessarily indicate a less‐disturbed environment. Rather, a greater number of ‘dry’ species is indicative of the impacts of flow regulation. 5. Small fluctuations in river flows are probably necessary to protect the ecosystem structure and function of regulated streams. It is recommended that variable within‐channel flows be provided in regulated streams.  相似文献   

13.
Rice fields, the major cropland in South Korea, provide an important wetland habitat for a diverse wildlife and contribute to biodiversity conservation. On the other hand, land consolidation conducted to increase agricultural production since the 1960s on a nationwide scale in South Korea has frequently been suggested to be one of the factors in the decline of biodiversity in agricultural ecosystems. Negative effects of habitat manipulation such as land consolidation would have influenced paddy field biodiversity, but the degree has not been clearly measured in South Korea. This study evaluated the impacts of land consolidation on the aquatic invertebrate biodiversity and investigated their patterns across the nation. Field sampling for biodiversity and environmental variables were made from 290 sites of paddy field over the country. Aquatic invertebrate communities were clustered into four major clusters showing land consolidation as the main factor and geographic location as the second factor. Species richness and abundance were significantly lower in the land consolidation fields (mean ± s.e., 12.80 ± 0.28 vs 88.89 ± 0.89 and 2027.15 ± 150.84 vs 2573.54 ± 572.16). Shannon diversity index was also significantly lower in land consolidation fields. Our results suggest that land consolidation and spatial location are important for biodiversity and conservation of the aquatic invertebrate assemblages in Korean rice fields.  相似文献   

14.
Summary 1. We studied the relative contributions of the magnitude and direction of vertical hydrological exchange, subsurface sediment composition and interstitial physicochemistry in determining the distribution of hyporheic invertebrates in the Kye Burn, a fourth order gravel‐bed stream in New Zealand. 2. In winter 2000 and summer 2001, we measured vertical hydrological gradient (VHG), dissolved oxygen, water temperature and water chemistry using mini‐piezometers, each installed in a different upwelling or downwelling zone. Next to every piezometer, a freeze core sample was taken to quantify the sediment, particulate organic matter and invertebrates. 3. Dissolved oxygen concentration at 25 cm was high on both occasions (>9 mg L?1) but was higher in winter than summer. Interstitial water temperature was higher in down than upwellings and was substantially higher in summer than winter. Other features of the subsurface sediments and interstitial nitrate–nitrite concentrations were similar on both occasions and in up and downwellings. Interstitial ammonium and soluble reactive phosphorous concentrations were higher in winter than summer and ammonium was higher in up than downwelling areas. 4. The proportion of fine sediment (63 μm–1 mm), sediment heterogeneity and VHG accounted for the greatest proportion of variance in invertebrate distributions in both summer and winter. 5. The hyporheos was numerically dominated by early instar leptophlebiid mayfly nymphs and asellotan isopods. Water mites were a taxonomically diverse group with 13 genera. Taxonomic diversity (Shannon–Weaver), but not taxon richness, was higher in upwelling areas, reflecting lower numerical dominance by a few taxa in these locations. 6. Sediment composition (particularly the amount of fine sediments) and vertical hydrological exchange determined the composition and distribution of the hyporheos. Patchiness in these factors is important in planning sampling regimes or field manipulations in the hyporheic zone.  相似文献   

15.
Both environmental heterogeneity and mode of dispersal may affect species co‐occurrence in metacommunities. Aquatic invertebrates were sampled in 20–30 streams in each of three drainage basins, differing considerably in environmental heterogeneity. Each drainage basin was further divided into two equally sized sets of sites, again differing profoundly in environmental heterogeneity. Benthic invertebrate data were divided into three groups of taxa based on overland dispersal modes: passive dispersers with aquatic adults, passive dispersers with terrestrial winged adults, and active dispersers with terrestrial winged adults. The co‐occurrence of taxa in each dispersal mode group, drainage basin, and heterogeneity site subset was measured using the C‐score and its standardized effect size. The probability of finding high levels of species segregation tended to increase with environmental heterogeneity across the drainage basins. These patterns were, however, contingent on both dispersal mode and drainage basin. It thus appears that environmental heterogeneity and dispersal mode interact in affecting co‐occurrence in metacommunities, with passive dispersers with aquatic adults showing random patterns irrespective of environmental heterogeneity, and active dispersers with terrestrial winged adults showing increasing segregation with increasing environmental heterogeneity.  相似文献   

16.
Terrestrial environments allow the adults of some aquatic insects to disperse between headwater streams, which may be important for maintaining population connectivity and persistence. Winged adult stages of aquatic insects are particularly sensitive to degradation of terrestrial habitat, relying on it for food, reproduction and dispersal. In this study we examined the genetic pattern of the Australian mayfly Ulmerophlebia sp. AV2, in north‐eastern New South Wales, and compared the genetic diversity in forested and partially deforested sub‐catchments. Our hypotheses were (i) patterns of mitochondrial DNA (mtDNA) variation in the Leptophlebiidae mayfly Ulmerophlebia sp. AV2 show a pattern of structuring that reflects low or widespread dispersal along the stream network and across catchments; and (ii) genetic diversity will be lower in partially deforested sub‐catchments compared to forested sub‐catchments. We found gene flow was not restricted among headwater streams within sub‐catchments but was restricted at distances >15 km. Genetic diversity was high (mean haplotype diversity >0.85) in both control and harvested sub‐catchments. Instead, a historical signature of population expansion was detected which is consistent with findings for other aquatic insect taxa of eastern Australia. Our results suggest that the selective harvesting management strategy, including the use of riparian buffer zones, within these sub‐catchments does not appear to restrict dispersal between streams or erode diversity within streams for Ulmerophlebia sp. AV2. Selective harvesting therefore appears to have minimal impacts on terrestrial/aquatic links in the life cycle of this insect.  相似文献   

17.
1. Little is known about hydrological influences on tropical waterbird communities. We used a 16‐year data set (1991–2007) of waterbird censuses, together with a classification of observed species into foraging guilds, to explore the relationships between natural variations in flow regime, foraging guild and the community composition of waterbirds at the Okavango River in the Caprivi Strip of north‐eastern Namibia, southern Africa. 2. We addressed three hypotheses to explain variation in waterbird community composition: (i) exploitation (birds move towards resource‐rich patches to exploit periods of high food abundance); (ii) escapism (declines in regional habitat quality force birds to aggregate in perennial waterbodies); and (iii) interaction (bird assemblages are dominated by intra‐ and interspecific interactions, such as flock formation for breeding or moulting, that can be explained better by life history demands or competition than by resource availability). 3. Waterbirds in different foraging guilds responded strongly but at different periods to changes in the hydrological environment, creating a complex but predictable successional pattern in community composition through time. Deep‐water feeders responded fastest (abundance peaking 2 months post‐flood), followed by shallow‐water feeders (4 months) and emergent vegetation feeders (7 months). Species that forage on short vegetation or in mud showed a bimodal response with peaks in abundance at 3 and 8 months post‐flood. 4. Our results indicated a strong effect of the local flow regime and hence supported the exploitation hypothesis. The foraging guild approach allowed us to identify clear patterns in a highly complex ecosystem and shows considerable promise as an analytical tool for similar data sets. Our results further suggest that while the entire bird community will be affected by hydrological alterations such as impoundments, water extraction and climate change, deep‐water feeders may be one of the most vulnerable groups.  相似文献   

18.
1. Single‐station diel oxygen curves were used to monitor the oxygen metabolism of an intermittent, forested third‐order stream (Fuirosos) in the Mediterranean area, over a period of 22 months. Ecosystem respiration (ER) and gross primary production (GPP) were estimated and related to organic matter inputs and photosynthetically active radiation (PAR) in order to understand the effect of the riparian forest on stream metabolism. 2. Annual ER was 1690 g O2 m?2 year?1 and annual GPP was 275 g O2 m?2 year?1. Fuirosos was therefore a heterotrophic stream, with P : R ratios averaging 0.16. 3. GPP rates were relatively low, ranging from 0.05 to 1.9 g O2 m?2 day?1. The maximum values of GPP occurred during a few weeks in spring, and ended when the riparian canopy was fully closed. The phenology of the riparian vegetation was an important determinant of light availability, and consequently, of GPP. 4. On a daily scale, light and temperature were the most important factors governing the shape of photosynthesis–irradiance (P–I) curves. Several patterns could be generalised in the P–I relationships. Hysteresis‐type curves were characteristic of late autumn and winter. Light saturation responses (that occurred at irradiances higher than 90 μE m?2 s?1) were characteristic of early spring. Linear responses occurred during late spring, summer and early autumn when there was no evidence of light saturation. 5. Rates of ER were high when compared with analogous streams, ranging from 0.4 to 32 g O2 m?2 day?1. ER was highest in autumn 2001, when organic matter accumulations on the streambed were extremely high. By contrast, the higher discharge in autumn 2002 prevented these accumulations and caused lower ER. The Mediterranean climate, and in its effect the hydrological regime, were mainly responsible for the temporal variation in benthic organic matter, and consequently of ER.  相似文献   

19.
20.
Aim Using New Zealand land snails as a case study, we evaluated recent spatial modelling approaches for the analysis of diversity in species‐rich invertebrate groups. Applications and prospects for improved conservation assessment were investigated. Location New Zealand. Methods The study used a spatially extensive and taxonomically comprehensive, plot‐based dataset on community structure in New Zealand land snails. Generalized regression analysis and spatial prediction (GRASP) was used to model and predict species richness as a function of environmental variables (including aspects of climate, soils and vegetation). Generalized dissimilarity modelling (GDM) was used to model turnover in species composition in relation to environmental and geographical distances, and to assess community similarity and the representativeness of the reserve network. Results Observed land snail richness in 20 × 20 m plots ranged from 1 to 74 (mean 17.5). The GRASP model explained a modest 27% of the variation in richness. The GDM model explained 57% of the variation in species turnover and indicated approximately equal amounts related to environmental (Cody’s beta diversity) and geographical distance (Cody’s gamma diversity). Temperature and moisture were the most important environmental variables. Results indicate that snail distributions are not only sorted by environment but are also strongly influenced by historical effects consistent with those expected of poorly dispersing taxa that have persisted in refugia during past climatic change. The GDM model enabled spatial classifications of snail communities, highlighting diverse communities in heterogeneous regions, such as the South Island mountains, and also enabled continuous depictions of community similarity and adequacy of New Zealand’s protected natural areas network. Main conclusions The GRASP and GDM analyses allowed us to model and depict spatial patterns of diversity in land snail communities involving 845 species, and produce community classifications and estimates of community similarity. These tools advance conservation assessment in species‐rich groups, but require further conceptual and methodological development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号