首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Mexican pseudothelphusid crabs are classified in one subfamily, three tribes, and 13 genera. Up to now, 56 species have been recognized, distributed in a strictly Neotropical pattern, with some of them reaching the state of Sonora on the western slope of Mexico. The tribe Pseudothelphusini is the most diverse, with five genera and 35 species, all of them endemic to Mexico: the two most species‐rich genera are Pseudothelphusa, with 23 species, and Tehuana, with eight species; Epithelphusa includes two species, whereas Disparithelphusa and Smalleyus are monotypic. The Pseudothelphusini lack an updated systematic revision, which could serve as a framework to analyse the monophyletic origin of the group, to clarify the relationships among genera and species, as well as to resolve the taxonomic status of various species complexes. In the present study, an exhaustive morphological revision was conducted using somatic and sexual characters. A phylogenetic analysis was performed using 77 characters and 183 character states, taken from 41 species. Ten trees of the same length were obtained using PAUP 4.0 through a heuristic search. The results show that the tribe as it is actually known constitutes a paraphyletic group, in which the species of Epithelphusa and Pseudothelphusa puntarenas are excluded from the internal group. According to the obtained results, the tribe Pseudothelphusini s.s. includes five genera: Smalleyus, Pseudothelphusa, Tehuana, and two new ones to accommodate Pseudothelphusa galloi and Pseudothelphusa sulcifrons, respectively. This new arrangement considers the provisional suppression of the genus Disparithelphusa, which remained as another species of Pseudothelphusa throughout the cladistic analysis. The phylogenetic results show a strong congruence with the distribution of the species, in several cases grouping species that form morphological clines along a geographical gradient. The previously proposed southern origin of the tribe Pseudothelphusini gains support with the results obtained. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 160 , 457–481  相似文献   

2.
In theory, unisexual taxa have an advantage over ecologically similar bisexual species because unisexuals produce twice as many daughters and, thus, should quickly outcompete coexisting bisexuals in any given population. For sperm‐dependent unisexual (gynogenetic) species, stable coexistence with their bisexual sperm donors can be postulated if male mate choice puts unisexual females at a disadvantage through sperm limitation, thus halving their reproductive output compared to bisexuals (‘behavioural regulation hypothesis’). We tested for a potential life‐history signature of male mate choice in a system of coexisting bisexual sailfin mollies (Poecilia latipinna) and gynogenetic Amazon mollies (Poecilia formosa). Specifically, we gave P. latipinna males an opportunity to freely interact (and mate) with both types of females and, after 25 days, quantified the proportion of (1) females with sperm in their genital tract and (2) pregnant females. A higher proportion of P. latipinna females (53.7%) had sperm in their genital tract (compared to only 25.9% in P. formosa), corroborating a previous study on wild‐caught fish. This translated into a higher frequency (42.6%) of P. latipinna females being pregnant (compared to 29.6% in P. formosa); however, among pregnant females, no significant differences between species in reproductive life‐history traits (such as offspring number or size) were uncovered. Hence, although the findings of the present study confirm that male discrimination against unisexual females leads to reduced reproductive output in unisexuals, the observed magnitude of differences in targeted life histories between the two types of females is unlikely to be the sole factor regulating stable coexistence in this system. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 598–606.  相似文献   

3.

Main conclusion

Vavilovia formosa (Stev.) Fed. is a scientifically valuable common ancestor of the plant tribe Fabeae and also important in breeding and agronomy studies of the cultivated Fabeae, but it is close to extinction. A concerted academic and geovernmental effort is needed to save it.

Abstract

Since 2007, an informal international group of researchers on legumes has been working to increase awareness of Vavilovia formosa (Stev.) Fed., a relict and endangered wild-land relative to crop plant species. A majority of the modern botanical classifications place it within the tribe Fabeae, together with the genera vetchling (Lathyrus L.), lentil (Lens Mill.), pea (Pisum L.) and vetch (Vicia L.). V. formosa is encountered at altitudes from 1,500 m up to 3,500 m in Armenia, Azerbaijan, Georgia, Iran, Iraq, Lebanon, Russia, Syria and Turkey. This species may be of extraordinary importance for broadening current scientific knowledge on legume evolution and taxonomy because of its proximity to the hypothetical common ancestor of the tribe Fabeae, as well as for breeding and agronomy of the cultivated Fabeae species due to its perenniality and stress resistance. All this may be feasible only if a concerted and long-term conservation strategy is established and carried out by both academic and geovernmental authorities. The existing populations of V. formosa are in serious danger of extinction. The main threats are domestic and wild animal grazing, foraging, and early frosts in late summer. A long-term strategy to save V. formosa from extinction and to sustain its use in both basic and applied research comprises much improved in situ preservation, greater efforts for an ex situ conservation, and novel approaches of in vitro propagation.  相似文献   

4.
Metalasia is a genus in tribe Gnaphalieae (Asteraceae), endemic to South Africa and with its main distribution in the Cape Floristic Region. The genus comprises 57 species and, with a number of closely related genera, it constitutes the ‘Metalasia clade’. A species‐level phylogenetic analysis is presented, based on DNA sequences from two nuclear (internal and external transcribed spacer: ITS, ETS) and two plastid (psbA‐trnH, trnL‐trnF) regions together with morphological data. Analyses combining molecular and morphological data attempt not only to resolve species interrelationships, but also to detect patterns in character evolution. Phylogenetic analyses corroborate our earlier study and demonstrate that Metalasia is formed of two equally sized, well‐supported sister groups, one of which is characterized by papillose cypselas. The results differ greatly from earlier hypotheses based on morphology alone, as few morphological characters support the phylogenetic patterns obtained. The two clades of Metalasia do, however, appear to differ in distribution, corresponding to the different rainfall regimes of South Africa. Analyses show a few taxa to be problematic; one example is the widely distributed M. densa which appears to be an intricate species complex. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 174 , 173–198.  相似文献   

5.
6.
7.
8.
Immature stages of Eretmocerus mundus Mercet and Encarsia formosa Gahan (both Hymenoptera: Aphelinidae) compete in larvae of their host, Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae). Laboratory tests were carried out on excised tree tobacco leaves, exposing B. tabaci nymphs to one of the parasitoid species alone or to both species, one after the other, to obtain multi‐parasitization. Parasitization by E. mundus and E. formosa was allowed on specific host stages in order to obtain interactions between different immature stages of the two parasitoids (eggs, and first, second, and third instars). The outcome from each multi‐parasitization treatment was verified by analysing data on parasitoid adult emergence. Observations under a stereomicroscope and dissections of multi‐parasitized hosts were also performed in order to demonstrate any factors potentially determining the outcome of competition. Eretmocerus mundus clearly prevailed over E. formosa when multi‐parasitism occurred. A higher percentage of adults emerging from multi‐parasitized hosts belonged to this parasitoid species (68.0–88.9% depending on the treatment). The lowest percent emergence by E. mundus (68.0%) and total percent emergence of parasitoid adults (52.2%) were obtained when E. mundus first instars interacted with hosts parasitized by E. formosa third instars. Observations and dissections showed that first‐instar E. mundus induced mortality in E. formosa immatures at penetration into the hosts, although they encountered greater difficulty in exploiting hosts inside which E. formosa had reached the third stage of development. In contrast, development of E. formosa immatures was not immediately inhibited if parasitization took place on hosts inside which E. mundus larvae had already penetrated. In this case, however, E. mundus also prevailed over E. formosa (72.5% of the emerged adults). Implications for the use of these parasitoid species against B. tabaci in biological control programmes are discussed.  相似文献   

9.
Sequences from two mitochondrial genes (cytochrome b and NADH1) were used to produce a molecular phylogeny for 12 named and two undescribed species of the genus Oligoryzomys. All analyses placed Oligoryzomys microtis as the most basal taxon, a finding consistent with previous studies that suggested the west‐central Amazon as a centre of origin for the tribe Oryzomyini to which Oligoryzomys belongs. Biogeographically, this suggests that Oligoryzomys had a South American origin, and later advanced northwards, entering Central America and Mexico more recently. Different analyses have provided consistent support for several additional clades that did not necessarily agree with the species groups hypothesized by previous studies. A molecular clock derived for these data suggests an origin for the genus of 6.67 Mya, with most speciation within the genus occurring between 3.7 and 1.5 Mya. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 160 , 551–566.  相似文献   

10.
New species of caesalpinioid legumes, Cynometra sensu lato and Afzelia, are described from the Late Oligocene (27.23 Ma) Guang River flora in north‐western Ethiopia. Both taxa show leaf characteristics that are shared with extant species in the Guineo‐Congolian, Sudanian and/or Zambezian regions of Africa today. The presence of these two species in Ethiopia during the Palaeogene provides further evidence of the importance of the legume tribe Detarieae in northern and north‐eastern Africa throughout much of the Cenozoic, even although the clade is poorly represented in these regions today. The fossil record documents a significant palaeogeographical and evolutionary history of Detarieae in Africa, especially compared with that of Europe and Anatolia. Based on this evidence, it is unlikely that significant diversification of extant African Detarieae took place on the Eurasian landmass. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 163 , 44–54.  相似文献   

11.
During a stay at the Kirstenbosch Research Centre in Cape Town (South Africa), several groups of Asteraceae were studied. One of these was the genus Marasmodes (tribe Anthemideae). After a careful taxonomic study of additional material, including the first species described by A. P. de Candolle, the author has concluded that eight collections should be considered as new species. These new species are described and their relationships with the most similar species of the genus are discussed. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 159 , 330–342.  相似文献   

12.
Fluorescence in situ hybridization (FISH) with 35S and 5S rDNA probes was used to characterize cytogenetically representatives of Artemisia subgenus Dracunculus and allied species and to explore their evolution following polyploidization. At the diploid level two rDNA loci were observed in most species belonging to the A. dracunculus complex, a pattern considered to be the ancestral state for diploid Artemisia. In contrast, representative species from the Eurasian grade which belong to the other major lineage of the subgenus had more heterogeneous rDNA profiles, with three to five loci at the diploid level. Divergent patterns of locus evolution were also detected in polyploids, with the number and distribution of rDNA loci broadly fitting the two main diversification lineages in the subgenus. In the polyploid complex of A. dracunculus, the number of rDNA loci was almost proportional to ploidy, although monoploid genome size was shown to decrease with increasing ploidy. However, in polyploids from the Eurasian grade we found a remarkable reduction in the number of rDNA sites, suggesting that these species might have experienced either a complete loss of loci or a significant reduction in the number of repeats following polyploid formation. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013 , 171 , 655–666.  相似文献   

13.
Molecular phylogenetic analysis presents two challenges when it is transformed into formal classifications: the taxonomic challenge (whether and how to distinguish monophyletic sister clades or how to deal with paraphyletic grades) and the nomenclatural challenge (naming clades, i.e. placing name‐giving types accurately on a tree). One approach to the latter is morphology‐based phylogenetic binning, which places specimens based on phenotypic features on a molecular tree and assigns uncertainty values to alternative placement options. Here, we use the example of the lichenized fungal genus Leptotrema to demonstrate how morphology‐based phylogenetic binning can help to clarify taxonomic and nomenclatural issues when naming phylogenetically defined entities. Leptotrema is known for a common and widespread species, L. wightii, and phylogenetic analyses have been based exclusively on this species, including the recognition of a separate tribe, Leptotremateae. However, the genus name Leptotrema and the tribal name Leptotremateae are based on the name L. zollingeri, which was initially considered to be a synonym of L. wightii, but has recently been shown to represent a distinct species. As L. zollingeri differs considerably in phenotypic features from L. wightii, it can be questioned whether the two are at all related or whether L. zollingeri is actually closer to the genera Myriotrema and Ocellularia in tribe Ocellularieae. The solution to this problem is not trivial, as it affects the correct use of the names Leptotrema and Leptotremateae. Morphology‐based phylogenetic binning indeed demonstrated that L. zollingeri clusters with the Myriotrema album group in tribe Ocellularieae with high support. Hence, in contrast with current use, the name Leptotrema becomes available for the M. album group and Leptotremateae becomes a synonym of Ocellularieae. As a consequence, the new names Sanguinotrema and Sanguinotremateae are introduced to accommodate L. wightii and the tribe including this species and the genus Reimnitzia. Although the studied case is specific to lichen fungi, the approach can be used in a much broader context with any kind of taxon or organism. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 436–443.  相似文献   

14.
The world's richest mangrove‐restricted avifauna is in Australia and New Guinea. The history of differentiation of the species involved and their patterns of intraspecific genetic variation remain poorly known. Here, we use sequence data derived from two mitochondrial protein‐coding genes to study the evolutionary history of eight co‐distributed mangrove‐restricted and mangrove‐associated birds from the Australian part of this region. Utilizing a comparative phylogeographical framework, we observed that the study species present concordantly located phylogeographical breaks across their shared geographical distribution, a plausible signature of common mechanisms of vicariance underlying this pattern. Barriers such as the Canning Gap, Bonaparte Gap, and the Carpentarian Gaps all had important but varying degrees of impact on the studied species. The Burdekin Gap along Australia's eastern seaboard probably had only a minor influence as a barrier to gene flow in mangrove birds. Statistical phylogeographical simulations were able to discriminate among alternative scenarios involving six different geographical and temporal population separations. Species exhibiting recent colonizations into mangroves include Rhipidura phasiana, Myiagra ruficollis, and Myzomela erythrocephala. By contrast, Peneoenanthe pulverulenta, Pachycephala melanura, Pachycephala lanioides, Zosterops luteus, and Colluricincla megarhyncha all had deeper histories, reflected as more marked phylogeographical divisions separating populations on the eastern seaboard/Cape York Peninsula from more western regions such as the Arnhem Land, the Pilbara, and the Kimberley. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 574–598.  相似文献   

15.
Three diatom species, Stephanodiscus hantzschii (Ehr.) Grun., Asterionella formosa Hass. and Fragilaria crotonensis Kitt. Hass. were isolated from Lake Maarsseveen where they are dominant and show a successional sequence. The physiological responses of each species to temperature and limitation by silicon and phosphorus were determined over the temperature range of 5° to 20° C using short-term batch culture methods. Stephanodiscus hantzschii had higher maximum growth rates than the other two species at all temperatures, and the maximum growth rates of all species increased with increasing temperature. Temperature affected not only maximum growth rates but also half-saturation constants (Ks) and the minimum cell quotas. S. hantzschii had low silicon requirements for growth under Si-limiting conditions, and A. formosa and F. crotonensis had higher and nearly identical silicon requirements. The Ks values for silicon for S. hantzschii were essentially constant from 5° to 20° C but varied greatly for the other two species. A. formosa had the lowest requirements for growth under phosphorus limitation, F. crotonensis was intermediate and S. hantzschii had the highest growth requirements for phosphorus. The K1 values for phosphorus were constant over the temperature range for both A. formosa and F. crotonensis and were much higher and variable for S. hantzschii. Nutrient competition experiments were performed in continuous cultures at four temperatures and various Si:P ratios. The results generally, but not always, confirmed the predictions based on the Monod relationships for each species. Results not in agreement with predictions were usually because of similar physiological properties of A. formosa and F. crotonensis or because of decreased loss rates for F. crotonensis due to wall growth. In cultures with all three species phosphorus-limited (Si:P > 75), A. formosa often dominated as predicted, although F. crotonensis was sometimes the most abundant species. As predicted, S. hantzschii never dominated at high Si:P ratios. At intermediate Si:P ratios when A. formosa and F. crotonensis were both Si-limited and S. hantzschii P-limited, all three species coexisted because A. formosa and F. crotonensis have almost identical silicon requirements, although sometimes F. crotonensis was more abundant than predicted. At 10°C the results agreed best with the predictions; A. formosa dominated at high Si:P ratios and S. hantzschii dominated as predicted at low Si:P ratios when all three species were Si-limited.  相似文献   

16.
Leucophyllum is one of the most remarkable endemic genera of North American deserts, with its simultaneous bloom of showy purple flowers. With Eremogeton and probably Capraria it forms part of tribe Leucophylleae. Leucophyllum has 16 species distributed mostly throughout the Chihuahuan and Tehuacán deserts. The three genera were sampled to investigate the phylogenetic relationships among them and to test the monophyly of Leucophyllum, based on plastid DNA (trnL‐F, rps16) and nuclear ribosomal (nr)DNA (internal transcribed spacer) sequences. Bayesian inference and maximum‐likelihood analyses confirmed that tribe Leucophylleae is monophyletic and formed by the three Neotropical genera. Separate (plastid DNA and nrDNA) and combined analyses retrieved Leucophyllum as paraphyletic, with L. mojinense as the sister species to the rest of the species in the tribe and Capraria spp. nested in one of two clades of Leucophyllum. Further monographic work is needed to identify the defining characters and limits of the genera, but we suggest that L. mojinense, with its different vegetative architecture, distinctive flowers and dissimilar distribution could be placed in its own genus. Each of the two clades in Leucophyllum could be considered a genus in its own right, and Capraria and Eremogeton can be recognized as independent genera, as they are at present. Leucophyllum ambiguum, the type species of the genus, belongs to one of the clades so the species of the other could be considered members of a new genus. The only diagnostic character detected at present is a ventricose corolla tube in one of the clades in Leucophyllum and a pressed corolla tube in the other. © 2013 The Linnean Society of London  相似文献   

17.
Abstract Liriomyza trifolii is an important pest of vegetables and ornamental crops around the world. This pest is attacked by many parasitoid species. The principal management tactic used against L. trifolii is insecticide application. Insecticides vary in their effects on parasitoid species and insecticides that have less harmful effects should be preferred for the control of this pest. In this study, novaluron, abamectin, λ‐cyhalothrin and spinetoram were investigated for their lethal effects on adults of Neochrysocharis formosa and Ganaspidium nigrimanus, two important parasitoids of L. trifolii. Three different bioassays were used on adult parasitoids: direct insecticide application, insecticide intake and insecticide residue. Adult parasitoid response to novaluron exhibited the least lethal effects among the bioassays and insecticides tested. Abamectin had significant mortality to both parasitoid species in the direct application and insecticide intake bioassays and mortality were high for G. nigrimanus in the residue bioassay. Spinetoram was the most harmful insecticide to the adult parasitoids in all three bioassays. λ‐cyhalothrin effects varied between the two parasitoids. In the direct application, it was harmful to G. nigrimanus and had no effect on N. formosa. In the insecticide intake bioassay λ‐cyhalothrin had no effect in survival of either species, and in the residue bioassay it reduced parasitoid survival of both species. Potential tolerance of N. formosa to λ‐cyhalothrin is discussed.  相似文献   

18.
Synonymy is considered as a great problem for diversity characterization and further applications, especially for biological control success with regard to the accurate identification of natural enemies. The present study focuses on two synonymy cases of natural enemies, belonging to the family Phytoseiidae, the genus Neoseiulella, specifically five species of this genus: Neoseiulella tiliarum, Neoseiulella formosa, Neoseiulella aceri, Neoseiulella squamiger, and Neoseiulella aceris. Morphological and molecular analyses [12S rRNA, cytochrome b (Cytb) mitochondrial (mt)DNA, internal transcribed spacer DNA] were applied. First, the results obtained support the synonymy of N. tiliarum and N. formosa. Second, because morphological differences (solenostomes occurrence) were observed for the first time between the type material of N. aceris and N. squamiger, the present study does not provide sufficient evidence to synomymize these two species and further analyses are required. Lastly, we assume that N. squamiger and N. aceri are synonyms. However, three groups of specimens, including N. aceri and N. squamiger, were identified by two mitochondrial DNA genes (12S rRNA and Cytb mtDNA). Therefore, the present study highlights the problems encountered when using only mitochondrial genes to diagnose species. The great mtDNA variations observed appear to reflect population differentiation (linked to plant support). This is the first time that such high intraspecific differentiation is be observed within the family Phytoseiidae. Further experiments, such as cross‐breeding and microsatellite DNA marker analyses, are planned to characterize gene flow and reproductive isolation levels within this species. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 323–344.  相似文献   

19.
Polyphyletic arrangements in DNA phylogenies are often indicators of cryptic species diversity masked by erroneous taxonomic treatments that are frequently based on morphological data. Although mitochondrial (mt)DNA polyphyly is detected relatively rarely in phylogenetic studies, it has recently been found in a variety of tyrant‐flycatcher (Tyrannidae) groups. In the present study, we provide a DNA phylogeny for a mitochondrial and a nuclear locus with a complete species sampling in Zimmerius flycatchers, showing that the genus is characterized by multiple mtDNA polyphyly. Based on phylogenetic and life‐history information, we suggest the elevation of a number of taxa to species status, leading to a doubling of Zimmerius species‐level diversity compared to taxonomic treatments conducted before 2001. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, ●●, ●●–●●.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号