首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The guanylate-rich fragments: 150 mg d(G4T4), 180 mg d(T4G4), 350 mg d(T4G4T4), 30 mg d(G4T4G4), 85 mg d(T4G4T4G4)were synthesized using the triester method. By enzymatic ligation of aliquots the 36mer d(G4T4G4T4G4T4G4T4G4) is obtained.  相似文献   

2.
The novel metabolites of arachidonic acid, leukotriene (LT) A4, B4, C4, D4 and E4 have potent myotropic activity on guinea-pig lung parenchymal strip . The receptors responsible for their action were characterized using desensitization experiments and the selective SRS-A antagonist, FPL-55712. During the continuous infusion of LTB4, the tissues became desensitized to LTB4 but were still responsive to histamine, LTA4, LTC4, LTD4 and LTE4. When LTD4 was infused continuously, the lung strips contracted to LTB4 and histamine but were no longer responsive to LTA4, LTC4, LTD4 and LTE4. Furthermore, FPL-55712 (10 ng ml−1− 10 ug ml−1) produced dose-dependent inhibitions of LTA4, LTC4, LTD4 and LTE4 without inhibiting the contraction to LTB4 and histamine. On the basis of these results, it appears that the guinea-pig lung parenchyma may have one type of receptor for LTB4 and another for LTD4; LTA4, LTC4 and LTE4 probably act on the LTD4 receptor.  相似文献   

3.
Tetrapodal ligands H4L1 and H4L2 containing imidazole groups have been synthesized by the reaction of 1,10‐phenanthroline‐5,6‐dione with 1,2,4,5‐tetrakis[(4‐formylphenoxy)methyl]benzene and 1,2,4,5‐tetrakis[(3‐formylphenoxy)methyl]benzene, respectively, in presence of NH4OAc. Two star‐shaped complexes [{Ru(bpy)2}44‐H4L1)](PF6)8 and [{Ru(bpy)2}44‐H4L2)](PF6)8 (bpy = 2,2′‐bipyridine) have been prepared by refluxing Ru(bpy)2Cl2·2H2O and each ligand in ethylene glycol. The deprotonated complexes [{Ru(bpy)2}44‐L1)](PF6)4 and [{Ru(bpy)2}44‐L2)](PF6)4 have been obtained by the reaction of sodium methoxide with [{Ru(bpy)2}44‐H4L1)](PF6)8 and [{Ru(bpy)2}44‐H4L2)](PF6)8, respectively, in methanol. The pH effects on the UV–vis light absorption and emission spectra of both complexes have been studied, and ground‐ and excited‐state ionization constants of both complexes have been derived. The photophysical properties of both complexes are strongly dependent on the solution pH. They act as proton‐induced off–on–off luminescent sensors through two successive deprotonation processes of imidazole groups, with a maximum on–off ratio of 8 in buffer solution at room temperature. Theoretical calculations for the highest occupied molecular orbital (HOMO) and lowest occupied molecular orbital (LOMO) orbitals of bridging ligand are also presented for plausible explanations of the fluorescence changes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
[Me4P]4[Cu4(mnt)4]·2CH3CN (1), [Me4P]4[Cu4(mnt)4]·2CH3NO2 (2), [Me4P]4[Cu4(mnt)4]·2DMF (3) and [Me4P]4[Cu4(mnt)4]·2C3H3N (4) (mnt = maleonitriledithiolate, [S2C2(CN)2]2−) clusters are readily synthesized in several solvents like acetonitrile, nitromethane, N,N-dimethylformamide and acrylonitrile to provide respective solvent as guest within the non-covalent cavity of the cluster ion. The guest species is accommodated within non-covalent cavity that is generated by two adjacent {Cu4(mnt)4} cores bridging with tetramethylphosphonium cation through hydrogen bonding. These hydrogen bonds are not strong and when mixed solvents were used selective DMF binding takes place to yield only complex 3 over other complexes.  相似文献   

5.
Tetraethylammonium tetrahydroborate, Et4NBH4, in suspension in refluxing decane-dodecane mixtures has been pyrolysed at temperatures between 175 and 190 °C. Et3NBH3, which is produced by partial decomposition of Et4NBH4, reacts with Et4NBH4 to give the intermediate Et4NB3H8. Et4NBH4 and Et3NBH3 are also involved in the conversion of Et4NB3H8. to (Et4N)2B9H9, (Et4N)2B10H10, Et4NB11H14 and (Et4N)2B12H12 which are formed in varying proportions during the pyrolysis. A 1:1 Et4NBH4Et3NBH3 mixture gives the same mixture of final products in the same proportions as Et4NBH4 alone, but the reaction time is shorter.Results obtained under various conditions, for instance without solvent at 10−2 torr (50% yield), are explained by the transfer of BH3 groups occurring not only through Et3NBH3, but also by solid—solid reactions involving Et4NBH4. A more complete reaction of Et3NBH3 is obtained, giving quantitative yields, only when Et3N is evacuated from the reaction mixture. Optimum conditions for the formation of each hydroborate are examined.  相似文献   

6.
Depending on experimental conditions and the nature of the phosphite, the reaction of OsH2P4 [P=P(OEt)3 and PPh(OEt)2] with bis(aryldiazonium) salts [N2Ar-ArN2](BF4)2 [Ar-Ar=4,4-C6H4-C6H4, 4,4-(2-CH3)C6H3-C6H3(2-CH3), 4,4-C6H4-CH2-C6H4 and 1,5-C10H6] afford the cis and the trans binuclear [{OsHP4}2(μ-HNNAr-ArNNH)](BPh4)21, 2 aryldiazene derivatives. These complexes 1, 2 further react with the mono(diazonium) (4-CH3C6H4N2)BF4 salt to give the bis(aryldiazene) [{Os(4-CH3C6H4NNH)P4}2(μ-HNNAr-ArNNH)](BPh4)43, 4 derivatives. Binuclear bis(aryldiazenido) [{OsP4}2(μ-N2Ar-ArN2)](BPh4)2 (6) [P=P(OEt)3; Ar-Ar=4,4-C6H4-C6H4, 4,4-C6H4-CH2-C6H4] complexes were prepared by deprotonating with NEt3 the nitrile-diazene [{Os(4-CH3C6H4CN)P4}2(μ-HNNAr-ArNNH)](BPh4)4 (5) derivatives. The aryldiazenido compounds 6 react with HCl to give the new aryldiazene [{OsClP4}2(μ-HNNAr-ArNNH)](BPh4)2 (7) derivatives. The characterisation of the complexes by IR and 1H, 31P, 15N NMR data is also discussed. The reaction of the hydride OsH2(PPh2OEt)4 with mono(diazonium) salts was also studied and led exclusively to the mono(aryldiazene) [OsH(ArN NH)(PPh2OEt)4]BPh4 (8) (Ar=C6H5, 4-CH3C6H4) derivatives. Spectroscopic data (1H, 31P, 15N NMR) on 15N-labelled derivatives suggest the presence of two isomers with the N-bonded and the π-bonded ArNNH ligand, respectively.  相似文献   

7.
The molybdenum hydride complexes Mo(PMe3)5H2 and Mo(PMe3)4H4 are capable of cleaving the C-S bonds of thiophene, benzothiophene and dibenzothiophene. For example, Mo(PMe3)5H2 reacts with thiophene to give the η5-thiophene and butadiene-thiolate complexes, (η5-C4H4S)Mo(PMe3)3 and (η5-C4H5S)Mo(PMe3)22-CH2PMe2). These complexes are also obtained from the reaction between Mo(PMe3)4H4 and thiophene under photochemical conditions, whereas at elevated temperatures thiophene is desulfurized to liberate but-1-ene. Similarly, Mo(PMe3)4H4 desulfurizes benzothiophene at elevated temperatures to liberate ethylbenzene, while the arylthiolate complex Mo(PMe3)4(SC6H4Et)H3 is obtained photochemically. Furthermore, Mo(PMe3)4H4 cleaves the C-S bond of dibenzothiophene to give [η61-C6H5C6H4S]Mo(PMe3)2H.  相似文献   

8.
Leukotriene F4 (LTF4 and LTF4 sulfone have been synthesized and their biological activities determined in the guinea pig. LFT4 displayed comparable activity to LTD4 on guinea pig trachea and parenchyma but was less active on the ileum. When injected intravenously into the guinea pig, LTF4 induced a bronchoconstriction (ED50 16 μg Kg−1) which was blocked by indomethacin and FPL-55712 and was 50–100 X less potent than LTD4 in this assay. LTF4 sulfone was approximately 2–5 times less active than LTF4 and . When injected into guinea pig skin with PGE2 (100 ng); LTF4 and LTF4 sulfone (10–1000 ng) induced changes in vascular permeability. The order of potency in this assay was LTE4 sulfone = LTD4 = LTD4 sulfone > LTE4 > LTF4 = LTF4 sulfone.  相似文献   

9.
Zirconium tetrahydroborate Zr(BH4)4 and its deuteride compound Zr(BD4)4 were successfully synthesized by mechanochemical reaction between NaBH4 or NaBD4 and ZrCl4, reaching yields of 55% and 46%, respectively. The influence of the synthesis parameters on the yield of Zr(BH4)4 was analyzed. The composition of the ZrCl4:NaBH4 starting mixture and the use of LiBH4 instead of NaBH4 as reactive show a clear effect on the Zr(BH4)4 yield. Instead, milling atmosphere does not affect the amount of the obtained product. FTIR analysis of atmosphere inside of milling vial allows to determine the formation of diborane during milling from Zr(BH4)4 decomposition. Thermal stability of pure Zr(BH4)4 and its deuterated compound was studied by combined gas-phase FTIR and DSC measurements under flowing Ar. We found that Zr(BH4)4/Zr(BD4)4 melt at about 305/303 K, decompose at about 430 K from the gas-phase and show evolution of B2H6/B2D6 under heating.  相似文献   

10.
The study of the mid-late first row transition metal co-ordination chemistry of the pyridazine-containing Schiff-base macrocycle L1 [derived from the (2 + 2) condensation of 3,6-diformylpyridazine and 1,3-diaminopropane] has been completed. Transmetallation reactions of [Pb2(4 + 4)](ClO4)4 (1) under appropriate conditions have led to the formation of the following complexes, [Ni2L1(NCS)2(SCN)2] (3), [{Pb2L1}23-OH)2](ClO4)6 (4), and [Zn2L1(CH3CN)4](ClO4)4 (5 · 4CH3CN), all of which have been structurally characterised. The analogous triflate salt of 5, [Zn2L1](CF3SO3)4 (6), can only be obtained by template reaction, as transmetallation of 1 with Zn(CF3SO3)2 · 6H2O gave 5, albeit in reduced yield. Attempts to synthesise pure [Fe2L1(CH3CN)4](ClO4)4 (7) using the transmetallation procedure, from either [Pb2(4 + 4)](ClO4)4 or [Zn2L1(CH3CN)4](ClO4)4, were unsuccessful. The electrochemical studies carried out on [Zn2L1](ClO4)4 (5) revealed multiple reduction processes and associated oxidations, but no processes corresponding to oxidation of 5.  相似文献   

11.
Vanadium‐based fluorophosphates are promising sodium‐ion battery cathode materials. Different phases of NaVPO4F and Na3V2(PO4)2F3 are reported in the literature. However, experiments in this work suggest that there could be confusions about the single‐phase NaVPO4F in solid‐state synthesis. Here, systematic investigation of the mechanism underlying structural and compositional evolution of solid‐state synthesis (NaF:VPO4 = 1:1) is determined by in situ and ex situ X‐ray diffraction and electrochemical measurements. Three reactions—3NaF + 3VPO4 → Na3V2(PO4)2F3 + VPO4 (up to 500 °C), Na3V2(PO4)2F3 + VPO4 → Na3V2(PO4)3 + VF3↑ (600–800 °C), and 2Na3V2(PO4)3 → 2(VO)2P2O7 + Na4P2O7 + amorphous products (above 800 °C)—are validated by in situ XRD and thermogravimetric analysis/differential scanning calorimetry. None of the products reported in this work is consistent with single‐phase NaVPO4F at any temperature. It is speculated that the assignments of I4/mmm and C2/c NaVPO4F from solid‐state synthesis are incorrect, which are instead multiphase mixtures of Le Meins' Na3V2(PO4)2F3, unreacted VPO4, and hexagonal Na3V2(PO4)3. Liquid‐electrolyte‐based electrochemical ion exchange of LiVPO4F produces a tavorite NaVPO4F structure, which is very different from Le Meins' family of Na3Al2(PO4)2F3 polymorphs.  相似文献   

12.
The synthesis of palladacyclopentadiene derivatives with the mixed-donor bidentate ligands o-Ph2PC6H4CHNR (NP) has been achieved. The new complexes of general formula [Pd{C4(COOMe)4}(o-Ph2PC6H4CHNR)] [R=Me (1), Et (2), iPr (3), tBu (4), NHMe (5)] have been prepared by reaction between the precursor [Pd{C4(COOMe)4}]n and the corresponding iminophosphine. The polymer complex [Pd{C4(COOMe)4}]n also reacts with pyridazine (C4H4N2) to give the insoluble dinuclear complex [Pd{C4(COOMe)4}(μ-C4H4N2)]2 (6), which has been successfully employed as precursor in the synthesis of pyridazine-based palladacyclopentadiene complexes. The reaction of 6 with tertiary phosphines yielded complexes containing an N,P-donor setting of formula [Pd{C4(COOMe)4}(C4H4N2)(L)] (L=PPh3 (7), PPh2Me (8), P(p-MeOC6H4)3 (9), P(p-FC6H4)3 (10)). The new complexes were characterized by partial elemental analyses and spectroscopic methods (IR, 1H, 19F and 31P NMR). The molecular structure of complex 3 has been determined by a single-crystal diffraction study, showing that the iminophosphine acts as chelating ligand with coordination around the palladium atom slightly distorted from the square-planar geometry.  相似文献   

13.
The synthesis, the spectroscopic and structural characterization of different thiophenolate-capped zinc clusters are reported and described. In particular, different reactions of 4-chlorobenzenethiol with zinc salts yield the clusters [Me4N][Et3NH][Zn4(μ-S-C6H4-Cl)6(S-C6H4-Cl)4] (2a), [Et3NH]2[Zn4(μ-S-C6H4-Cl)6(S-C6H4-Cl)4] (2b), and [Me4N]2[Zn4(μ-S-C6H4-Cl)6(S-C6H4-Cl)4] (2c), and also the thiophenolate derivative [Et3NH]2[Zn4(μ-S-C6H5)6(S-C6H5)4] (1b) was obtained.The nanosized thiophenolate-capped clusters were investigated by 1H and 13C NMR, elemental analysis, and electrospray ionization (ESI) mass spectrometry. NMR experiments provided insights into the dynamic behaviour of the clusters. The thermal decomposition patterns of 2c were analyzed in air as well as in nitrogen, indicating the formation of zinc oxide and metallic zinc, respectively. The X-ray structure of 2a revealed that the cluster core consists of an adamantane-like framework analogous to those realized in many other M4(SR)10 metal complexes.  相似文献   

14.
The silver(I) complexes [Ag{C5H4N(NC)}]n(BF4)n (1), [Ag{C5H4N(NC)}2]n(BF4)n (2), [Ag{C6H4(NC)2}]n(BF4)n (3), and [Ag{C6H4(NC)2}2]n(BF4)n (4) have been synthesized using different Ag:L ratios of 2-isocyanopyridine (or 2-pyridylisocyanide, CNPy-2) or 1,2-phenylenediisocyanide ligands. The polymeric complex 2 has been characterized by X-ray diffraction revealing a polymeric chain structure. Breaking the polymeric structure of [Ag{C6H4(NC)2}]n(BF4)n (3) with acetonitrile, the dimeric complex [Ag{(CN)2C6H4)}(NCMe)2]2(BF4)2 (5) is formed, which has been also characterized by X-ray diffraction.  相似文献   

15.
Reactions of [Pt2(μ-S)2(PPh3)4] with the diarylthallium(III) bromides Ar2TlBr [Ar = Ph and p-ClC6H4] in methanol gave good yields of the thallium(III) adducts [Pt2(μ-S)2(PPh3)4TlAr2]+, isolated as their salts. The corresponding selenide complex [Pt2(μ-Se)2(PPh3)4TlPh2]BPh4 was similarly synthesised from [Pt2(μ-Se)2(PPh3)4], Ph2TlBr and NaBPh4. The reaction of [Pt2(μ-S)2(PPh3)4] with PhTlBr2 gave [Pt2(μ-S)2(PPh3)4TlBrPh]+, while reaction with TlBr3 gave the dibromothallium(III) adduct [Pt2(μ-S)2(PPh3)4TlBr2]+[TlBr4]. The latter complex is a rare example of a thallium(III) dihalide complex stabilised solely by sulfur donor ligands. X-ray crystal structure determinations on the complexes [Pt2(μ-S)2(PPh3)4TlPh2]BPh4, [Pt2(μ-S)2(PPh3)4TlBrPh]BPh4 and [Pt2(μ-S)2(PPh3)4TlBr2][TlBr4] reveal a greater interaction between the thallium(III) centre and the two sulfide ligands on stepwise replacement of Ph by Br, as indicated by shorter Tl-S and Pt?Tl distances, and an increasing S-Tl-S bond angle. Investigations of the ESI MS fragmentation behaviour of the thallium(III) complexes are reported.  相似文献   

16.
Summary This study was conducted to determine the effect of short term application of NH4NO3 on nodule function and to determine whether the rhizobial isolate used was a significant factor in this effect. Pea plants were inoculated with 10 differentRhizobium leguminosarum isolates and grown for 3 weeks in N-free medium before addition of 0, 1, 2 or 5 mM NH4NO3 for 2 to 7 days. Acetylene reduction and leghemoglobin content decreased with increasing exposure time to NH4NO3 and with increasing concentration of NH4NO3. NH 4 + and NO 3 depletion from the nutrient medium were assayed in plants exposed to 5 mM NH4NO3 and mean uptake rates were similar for each ion. There were significant differences among isolates in the rate of decrease of C2H2 reduction with increasing NH4NO3 concentration (C2H2 reduction responsiveness to NH4NO3) 4 and 7 days after addition of NH4NO3 but no differences after 2 days of exposure to NH4NO3. There were significant differences among isolates in NH 4 + depletion from the nutrient medium but these differences were not correlated with the differences observed in C2H2 reduction. Ranking of the isolates for C2H2 reduction responsiveness to NH4NO3 applied to plants with nodules was different from that obtained when NH4NO3 was applied at seeding. Isolates with varying sensitivity to NH4NO3 may be useful tools for determining the mechanisms responsible for inhibition of symbiotic N2 fixation by combined nitrogen. NRCC paper no. 25863.  相似文献   

17.
New C-ansa-zirconocene complexes containing methoxythiophenolate and mercaptophenolate ligands have been synthesized and characterized. The reaction of (HSC6H4-n-OMe) (n = 2, 3 or 4) with [Zr{(t-Bu)HC(η5-C5Me4)(η5-C5H4)}Me2] (1) led to the formation of monosubstituted complexes [Zr{(t-Bu)HC(η5-C5Me4)(η5-C5H4)}Me(κ,S-SC6H4-n-OMe)] (= 2 (2); = 3 (3)) and the disubstituted complex [Zr{(t-Bu)HC(η5-C5Me4)(η5-C5H4)}(κ,S-SC6H4-4-OMe)2] (4). The complexes [Zr{(R)HC(η5-C5Me4)(η5-C5H4)}(κ,O-OC6H4-4-SH)2] (R = t-Bu (6); R = CH2CHCH2 (7)) and [Zr(η5-C5H4)2(OC6H4-n-SH)2] (= 3 (9); = 4 (10)) have been synthesized using the corresponding dimethyl zirconocene and mercaptophenol. However, the reaction of [Zr{(t-Bu)HC(η5-C5Me4)(η5-C5H4)}Cl2] (11) with 4-mercaptophenol in the presence of NEt3 led to the formation of the first example of a homoleptic six-coordinate mercaptophenolate complex of zirconium, namely [HNEt3]2[Zr(κ,O-OC6H4-4-SH)6] (12). Complex 12 can be obtained in higher yield by the reaction of ZrCl4 with six equivalents of 4-mercaptophenol and NEt3. The reaction of 12 with [Zr(η5-C5H4)2Cl2] gave the unexpected disubstituted complex [Zr(η5-C5H4)2(OC6H4-4-SH)2] (10). The molecular structures of 4 and 12 have been determined by single-crystal X-ray diffraction studies.  相似文献   

18.
Synthetic leukotrienes (LT) C4 and D4 elicited concentration-dependent contractions of the guinea pig uterus between 10?8-10?6M, whereas LTE4 appeared 1000-fold weaker. The potencies of LTC4 and LTD4 were similar to that of acetylcholine and PGF but weaker than that of PGE2. The maximal contractions elicited by LTC4 and LTD4 were 66.0 ± 2.1% and 63.8 ± 4.6% that elicited by acetylcholine. FPL 55712 (10?5M) antagonized the uterine contractile activity of LTD4, while meclofenamic acid at 10?5M but not at 10?6M also antagonized the LTD4-induced contration. Radioimmunoassay of the uterine tissue bathing fluid following LTD4 indicated the variable presence of low concentrations of PGE2, PGF and TXB2. These results demonstrate the LTC4 and LTD4 possess significant uterine contractile activity, which may only partially be mediated indirectly via prostaglandin products.  相似文献   

19.
Five new complexes, [Co3(HL1)2(Py)8]·4CH3OH (1), [Ni3(HL1)2(Py)4]2·2DMF (2), [Co3(H2L2)2(Py)8]·2NO3 (3), [Ni2(HL2)(Py)6] (4) and [Cu4(HL2)2(Py)4]·4DMF (5) (H4L1 = N-propionyl-4-hydroxysalicylhydrazide, H44-hopshz; H5L2 = N-(3-carboxy-cis-2-propenoyl)-4-hydroxysalicylhydrazide, H54-hocpshz) have been obtained from two N,N′-diacylhydrazide ligands and characterized by elemental analysis, FT-IR, X-ray diffraction and antimicrobial activities. These di-, tri-, and tetrameric complexes are connected into three-dimensional supramolecular architectures with interesting topologies through O-H?O, C-H?O and C-H?π interactions. 1-3 are linear trimeric complexes with the ligands triply-deprotonated. Topological analysis indicates that they exhibit 2D (4,4), 3D (6,8)-connected (3349526)(3441257647) and 8-connected (42563) net, respectively. 4 and 5 possess dimeric and tetrameric structures, which are extended into 7-connected (33413536) and 4-connected (4,4) net, respectively.  相似文献   

20.
A series of 2-oxo-quinoline-3-carbaldehyde Schiff-base derivatives 4a14n2 were designed and synthesized based on the 2-oxo-quinoline structure core as novel antioxidants. In vitro antioxidant activities of these compounds were evaluated and compared with commercial antioxidants ascorbic acid, BHT and BHA, employing DPPH assay, ABTS+ assay, O2? assay and OH assay. The results showed that IC50 of most compounds were lower than standard value 10 mg/mL, indicating good antioxidant activities of these compounds. In addition, in vitro antioxidant activities screening revealed that 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activities of compounds 4b2, 4e1, 4e2 and 4g2, 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate) cation (ABTS+) radical scavenging activities of compounds 4a1, 4e1, 4e2, 4f1, 4f2, 4g1, 4g2, 4h1, 4h2, 4k1, 4k2, 4n1 and 4n2, superoxide anion radical scavenging activities of 4b1, 4e1, 4f2, 4j1, 4k1, 4k2, 4m1, 4m2, and 4n2, and hydroxyl radical scavenging activity of almost all the compounds except 4f1, 4f2, 4j2, 4l1 and 4l2 were better than that of the commercial antioxidant butylated hydroxytoluene (BHT).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号