首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hemibrycon sanjuanensis, new species, is described from the upper San Juan River drainage, Pacific versant, Colombia. It is distinguished from Hemibrycon boquiae, Hemibrycon brevispini, Hemibrycon cairoense, Hemibrycon colombianus, Hemibrycon mikrostiktos, Hemibrycon metae, Hemibrycon palomae, Hemibrycon rafaelense and Hemibrycon tridens by the presence of a circular or oblong humeral spot that is located two scales posterior to the opercle (vs. 3–4 scales in Hemibrycon palomae, Hemibrycon rafaelense, Hemibrycon brevispini and Hemibrycon cairoense, and 0–1 scales, in Hemibrycon metae and Hemibrycon boquiae). It further differs from Hemibrycon colombianus in having a round or oblong humeral spot (vs. rectangular). It differs from Hemibrycon beni, Hemibrycon dariensis, Hemibrycon divisorensis, Hemibrycon helleri, Hemibrycon huambonicus, Hemibrycon inambari, Hemibrycon jabonero, Hemibrycon jelskii, Hemibrycon mikrostiktos, Hemibrycon polyodon, Hemibrycon quindos, Hemibrycon raqueliae, Hemibrycon santamartae, Hemibrycon surinamensis, Hemibrycon taeniurus, Hemibrycon tridens, and Hemibrycon yacopiae in having melanophores on the posterior margins of the scales along the sides of body (vs. lacking melanophores on margins of scales along entire length of the sides of body). The new species differs from all congeners mentioned above in having, among other features, six teeth in the outer premaxillary row arranged in a straight line (vs. five or fewer teeth not arranged in straight line except Hemibrycon cairoense with two to six teeth in the outer premaxillary row).  相似文献   

2.
This systematic study documents the taxonomy, diversity, and distribution of the tarantula spider genus Aphonopelma Pocock, 1901 within the United States. By employing phylogenomic, morphological, and geospatial data, we evaluated all 55 nominal species in the United States to examine the evolutionary history of Aphonopelma and the group’s taxonomy by implementing an integrative approach to species delimitation. Based on our analyses, we now recognize only 29 distinct species in the United States. We propose 33 new synonymies (Aphonopelma apacheum, Aphonopelma minchi, Aphonopelma rothi, Aphonopelma schmidti, Aphonopelma stahnkei = Aphonopelma chalcodes; Aphonopelma arnoldi = Aphonopelma armada; Aphonopelma behlei, Aphonopelma vogelae = Aphonopelma marxi; Aphonopelma breenei = Aphonopelma anax; Aphonopelma chambersi, Aphonopelma clarum, Aphonopelma cryptethum, Aphonopelma sandersoni, Aphonopelma sullivani = Aphonopelma eutylenum; Aphonopelma clarki, Aphonopelma coloradanum, Aphonopelma echinum, Aphonopelma gurleyi, Aphonopelma harlingenum, Aphonopelma odelli, Aphonopelma waconum, Aphonopelma wichitanum = Aphonopelma hentzi; Aphonopelma heterops = Aphonopelma moderatum; Aphonopelma jungi, Aphonopelma punzoi = Aphonopelma vorhiesi; Aphonopelma brunnius, Aphonopelma chamberlini, Aphonopelma iviei, Aphonopelma lithodomum, Aphonopelma smithi, Aphonopelma zionis = Aphonopelma iodius; Aphonopelma phanum, Aphonopelma reversum = Aphonopelma steindachneri), 14 new species (Aphonopelma atomicum sp. n., Aphonopelma catalina sp. n., Aphonopelma chiricahua sp. n., Aphonopelma icenoglei sp. n., Aphonopelma johnnycashi sp. n., Aphonopelma madera sp. n., Aphonopelma mareki sp. n., Aphonopelma moellendorfi sp. n., Aphonopelma parvum sp. n., Aphonopelma peloncillo sp. n., Aphonopelma prenticei sp. n., Aphonopelma saguaro sp. n., Aphonopelma superstitionense sp. n., and Aphonopelma xwalxwal sp. n.), and seven nomina dubia (Aphonopelma baergi, Aphonopelma cratium, Aphonopelma hollyi, Aphonopelma mordax, Aphonopelma radinum, Aphonopelma rusticum, Aphonopelma texense). Our proposed species tree based on Anchored Enrichment data delimits five major lineages: a monotypic group confined to California, a western group, an eastern group, a group primarily distributed in high-elevation areas, and a group that comprises several miniaturized species. Multiple species are distributed throughout two biodiversity hotspots in the United States (i.e., California Floristic Province and Madrean Pine-Oak Woodlands). Keys are provided for identification of both males and females. By conducting the most comprehensive sampling of a single theraphosid genus to date, this research significantly broadens the scope of prior molecular and morphological investigations, finally bringing a modern understanding of species delimitation in this dynamic and charismatic group of spiders.  相似文献   

3.
The cotton aphid, Aphis gossypii, is one of the most biologically diverse species of aphids; a polyphagous species in a family where most are host specialists. It is economically important and belongs to a group of closely related species that has challenged aphid taxonomy. The research presented here seeks to clarify the taxonomic relationships and status of species within the Aphid gossypii group in the North American Midwest. Sequences of the mitochondrial cytochrome oxidase 1 (COI), nuclear elongation factor 1-α (EF1-α), and nuclear sodium channel para-type (SCP) genes were used to differentiate between Aphid gossypii and related species. Aphis monardae, previously synonymised with Aphid gossypii, is re-established as a valid species. Phylogenetic analyses support the close relationship of members of the Aphid gossypii group native to North America (Aphid forbesi, Aphid monardae, Aphid oestlundi, Aphid rubifolii, and Aphid rubicola), Europe (Aphid nasturtii, Aphid urticata and Aphid sedi), and Asia (Aphid agrimoniae, Aphid clerodendri, Aphid glycines, Aphid gossypii, Aphid hypericiphaga, Aphid ichigicola, Aphid ichigo, Aphid sanguisorbicola, Aphid sumire and Aphid taraxicicola). The North American species most closely related to Aphid gossypii are Aphid monardae and Aphid oestlundi. The cosmopolitan Aphid gossypii and Aphid sedi identified in the USA are genetically very similar using COI and EF1-α sequences, but the SCP gene shows greater genetic distance between them. We present a discussion of the biological and morphological differentiation of these species.  相似文献   

4.
Kipling Will 《ZooKeys》2015,(545):131-137
Taxonomic changes are made for several problematic Australian Carabidae in the tribes Harpalini, Abacetini, Pterostichini, and Oodini. Examination of types resulted in the synonymy of Veradia Castelnau, 1867 with Leconomerus Chaudoir, 1850; Nelidus Chaudoir, 1878, Feronista Moore, 1965, and Australomasoreus Baehr, 2007 with Cerabilia Castelnau, 1867; and newly combining Fouquetius variabilis Straneo, 1960 in the genus Pediomorphus Chaudoir, 1878; Australomasoreus monteithi Baehr, 2007 in the genus Cerabilia Castelnau, 1867; and Anatrichis lilliputana W.J. Macleay, 1888 in the genus Nanodiodes Bousquet, 1996. Cuneipectus Sloane, 1907 is placed in Pterostichini Bonelli, 1810, which is a senior synonym of Cuneipectini Sloane, 1907.  相似文献   

5.
Bruno Massa 《ZooKeys》2015,(524):17-44
Results of the study of specimens collected in tropical Africa and preserved in different European collections and museums are reported and extensively illustrated. The following three new species are described: Horatosphaga aethiopica sp. n., Dapanera occulta sp. n. and Cestromoecha laeglae sp. n. In addition, new diagnostic characters or distributional data for Ruspolia differens (Serville, 1838), Thyridorhoptrum senegalense Krauss, 1877, Horatosphaga leggei (Kirby, 1909), Horatosphaga linearis (Rehn, 1910), Preussia lobatipes Karsch, 1890 and Dapanera eidmanni Ebner, 1943 are reported. Finally, Symmetropleura plana (Walker, 1869) is proposed to be transferred to the genus Symmetrokarschia Massa, 2015, Conocephalus carbonarius (Redtenbacher, 1891) to the genus Thyridorhoptrum Rehn & Hebard, 1915; the genus Gonatoxia Karsch, 1889 is proposed to be synonymized with Dapanera Karsch, 1889.  相似文献   

6.
The collection of the Southeast Asian tree snail genus Amphidromus Albers, 1850 at the Natural History Museum, London includes more than 100 lots of type specimens representing 85 name-bearing types, 9 paratypes and 6 paralectotypes, and one nomen nudum. Lectotypes are here designated for Amphidromus cambojiensis, Amphidromus perakensis globosus, Amphidromus columellaris gloriosa, Amphidromus maculiferus inflata, Amphidromus lepidus, Amphidromus sinistralis lutea, Amphidromus moniliferus, Amphidromus maculiferus obscura, Amphidromus sinistralis rosea and Amphidromus sinensi vicaria. In addition, the missing types of A.A. Gould were discovered and their type status is discussed. A complete catalogue of these types, including colour photographs is provided for the first time. After examining these type specimens, two new Amphidromus species, Amphidromus (Syndromus) globonevilli Sutcharit & Panha, sp. n. and Amphidromus (Syndromus) principalis Sutcharit & Panha, sp. n. were recognized and are described herein.  相似文献   

7.
A new species of Anteon Jurine, 1807 is described from Thailand, Nan Province: Anteon huettingeri sp. n. Morphologically the new species is similar to Anteon borneanum Olmi, 1984, Anteon jurineanum Latreille, 1809, Anteon insertum Olmi, 1991, Anteon yasumatsui Olmi, 1984, Anteon sarawaki Olmi, 1984, Anteon thai Olmi, 1984 and Anteon krombeini Olmi, 1984, but it is clearly different for the numerous sensorial processes present on the inner side of the paramere; these processes are absent in the other above species. Published identification keys to the Oriental species of Anteon are modified to include the new species.  相似文献   

8.
Methodological improvements now allow routine analyses of highly degraded DNA samples as found in museum specimens. Using these methods could be useful in studying such groups as rodents of the genus Gerbillus for which i) the taxonomy is still highly debated, ii) collection of fresh specimens may prove difficult. Here we address precise taxonomic questions using a small portion of the cytochrome b gene obtained from 45 dry skin/skull museum samples (from 1913 to 1974) originating from two African and three Asian countries. The specimens were labelled Gerbillus gerbillus, Gerbillus andersoni, Gerbillus nanus, Gerbillus amoenus, Gerbillus perpallidus and Gerbillus pyramidum, and molecular results mostly confirmed these assignations. The close relationship between Gerbillus nanus (Asian origin) and Gerbillus amoenus (African origin) confirmed that they represent vicariant sibling species which differentiated in allopatry on either side of the Red Sea. In the closely related Gerbillus perpallidus and Gerbillus pyramidum, specimens considered as belonging to one Gerbillus pyramidum subspecies (Gerbillus pyramidum floweri) appeared closer to Gerbillus perpallidus suggesting that they (Gerbillus pyramidum floweri and Gerbillus perpallidus) may represent a unique species, distributed on both sides of the Nile River, for which the correct name should be Gerbillus floweri. Furthermore, the three other Gerbillus pyramidum subspecies grouped together with no apparent genetic structure suggesting that they may not yet represent genetically differentiated lineages. This study confirms the importance of using these methods on museum samples, which can open new perspectives in this particular group as well as in other groups of interest.  相似文献   

9.
The New World tropics represents the most diverse region for tachinid parasitoids (Diptera: Tachinidae), but it also contains the most narrowly defined, and possibly the most confusing, tachinid genera of any biogeographic region. This over-splitting of genera and taxonomic confusion has limited progress toward our understanding the family in this region and much work is needed to revise, redefine, and make sense of the profusion of finely split taxa. In a recent analysis of the Neotropical genus Erythromelana Townsend, two species previously assigned to this genus, Euptilodegeeria obumbrata (Wulp) and Myiodoriops marginalis Townsend were reinstated as monotypic genera. In the present study, we demonstrate that Euptilodegeeria obumbrata (Wulp), previously assigned to three different genera, represents in fact a species of the large New World genus Eucelatoria Townsend, in which females possess a sharp piercer for oviposition. We also show that the species Eucelatoria carinata (Townsend) belongs to the same species group as Eucelatoria obumbrata, which we here define and characterize as the Eucelatoria obumbrata species group. Additionally, we describe Eucelatoria flava sp. n. as a new species within the Eucelatoria obumbrata species group. Finally, we redescribe the genus Myiodoriops Townsend and the single species Myiodoriops marginalis Townsend.  相似文献   

10.
New species are described in the genera Wormaldia (Trichoptera, Philopotamidae) and Drusus (Trichoptera, Limnephilidae, Drusinae). Additionally, the larva of the new species Drusus crenophylax sp. n. is described, and a key provided to larval Drusus species of the bosnicus-group, in which the new species belongs. Observations on the threats to regional freshwater biodiversity and caddisfly endemism are discussed.The new species Wormaldia sarda sp. n. is an endemic of the Tyrrhenian island of Sardinia and differs most conspicuously from its congeners in the shape of segment X, which is trilobate in lateral view. The new species Drusus crenophylax sp. n. is a micro-endemic of the Western Balkans, and increases the endemism rate of Balkan Drusinae to 79% of 39 species. Compared to other Western Balkan Drusus, males of the new species are morphologically most similar to Drusus discophorus Radovanovic and Drusus vernonensis Malicky, but differ in the shape of superior and intermediate appendages. The females of Drusus crenophylax sp. n. are most similar to those of Drusus vernonensis, but differ distinctly in the outline of segment X. Larvae of Drusus crenophylax sp. n. exhibit toothless mandibles, indicating a scraping grazing-feeding ecology.  相似文献   

11.
Japanese melithaeid type material is re-examined and re-described. The sclerites of the different species are depicted using Scanning Electron Microscopy. All Japanese species of the family Melithaeidae treated here belong to the genus Melithaea and are endemic to Japanese waters. Old museum material and newly collected specimens from Japanese waters are identified after comparison with this type material. Acabaria modesta var. abyssicola is regarded a separate species, here named Melithaea abyssicola (Kükenthal, 1909). In addition, 11 new species are described: Melithaea boninensis sp. n., Melithaea doederleini sp. n., Melithaea isonoi sp. n., Melithaea keramaensis sp. n., Melithaea oyeni sp. n., Melithaea ryukyukensis sp. n., Melithaea sagamiensis sp. n., Melithaea satsumaensis sp. n., Melithaea suensoni sp. n., Melithaea tanseii sp. n., and Melithaea tokaraensis sp. n.. Pleurocorallium confusum Moroff, 1902, Pleurocoralloides formosum Moroff, 1902, Melitodes flabellifera Kükenthal, 1908, and Melitodes densa Kükenthal, 1908 are synonymized with Melithaea japonica (Verrill, 1865). We have designated a neotype for Melithaea mutsu Minobe, 1929. A key to the Japanese melithaeids is presented.  相似文献   

12.
13.
14.
We carried out a quantitative assessment of the consumption of herbaceous plants by Opatrum sabulosum (Linnaeus, 1761) – a highly significant agricultural pest species. We researched the feeding preferences of this pest species with respect to 33 uncultivated and 22 cultivated plant species. This species of darkling beetle feeds on many uncultivated plant species, including those with hairy leaves and bitter milky sap, such as Scabiosa ucrainca (5.21 mg/specimen/24 hours), Euphorbia virgata (3.45), Solanum nigrum (3.32), Centauria scabiosa (2.47), Lamium album (2.41), Aristolochia clematitis (1.76), Chenopodium album (1.73), Arctium lappa (1.51), Asperula odorata (1.20). A high rate of leaf consumption is also characteristic for cultivated species, for example, Perilla nankinensis (5.05 mg/specimen/24 hours), Lycopersicon esculentum (3.75), Tropaeolum majus (3.29), Nicotiana tabacum (2.66), Rumex acetosa (1.96), Beta vulgaris (1.27). Opatrum sabulosum is capable of feeding on plants which are poisonous to cattle. This species of darkling beetle consumes 95.5% of the cultivated and 48.5% of the uncultivated herbaceous plants researched.  相似文献   

15.
A review on the Chinese species of Tetraserica Ahrens, 2004, is presented. The lectotype of Tetraserica tonkinensis (Moser, 1908), comb. n. is designated. Twenty-nine new Tetraserica species are described from China and adjacent regions: Tetraserica anhuaensis sp. n., Tetraserica changjiangensis sp. n., Tetraserica changshouensis sp. n., Tetraserica damaidiensis sp. n., Tetraserica daqingshanica sp. n., Tetraserica fikaceki sp. n., Tetraserica graciliforceps sp. n., Tetraserica jinghongensis sp. n., Tetraserica leishanica sp. n., Tetraserica liangheensis sp. n., Tetraserica linaoshanica sp. n., Tetraserica longipenis sp. n., Tetraserica longzhouensis sp. n., Tetraserica maoershanensis sp. n., Tetraserica mengeana sp. n., Tetraserica menglongensis sp. n., Tetraserica pingjiangensis sp. n., Tetraserica ruiliana sp. n., Tetraserica ruiliensis sp. n., Tetraserica sculptilis sp. n., Tetraserica shangsiensis sp. n., Tetraserica shunbiensis sp. n., Tetraserica sigulianshanica sp. n., Tetraserica tianchiensis sp. n., Tetraserica wandingensis sp. n., Tetraserica wangtongensis sp. n., Tetraserica xichouensis sp. n., Tetraserica yaoanica sp. n., Tetraserica yaoquensis sp. n. A key to the Chinese Tetraserica species is given, species distribution as well as the habitus and male genitalia of all species are illustrated.  相似文献   

16.
All genus-group names listed in the second edition of the catalogue (1833-1836) of Dejean’s beetle collection are recorded. For each new genus-group name the originally included available species are listed and for generic names with at least one available species, the type species and the current status are given. Names available prior to the publication of Dejean’s second catalogue (1833-1836) are listed in an appendix.The following new synonymies are proposed: Cyclonotum Dejean, 1833 (= Dactylosternum Wollaston, 1854) [Hydrophilidae], Hyporhiza Dejean, 1833 (= Rhinaspis Perty, 1830) [Scarabaeidae], Aethales Dejean, 1834 (= Epitragus Latreille, 1802) [Tenebrionidae], Arctylus Dejean, 1834 (= Praocis Eschscholtz, 1829) [Tenebrionidae], Euphron Dejean, 1834 (= Derosphaerus Thomson, 1858) [Tenebrionidae], Hipomelus Dejean, 1834 (= Trachynotus Latreille, 1828) [Tenebrionidae], Pezodontus Dejean, 1834 (= Odontopezus Alluaud, 1889) [Tenebrionidae], Zygocera Dejean, 1835 (= Disternopsis Breuning, 1939) [Cerambycidae], and Physonota Chevrolat, 1836 (= Anacassis Spaeth, 1913) [Chrysomelidae]. Heterogaster pilicornis Dejean, 1835 [Cerambycidae] and Labidomera trimaculata Chevrolat, 1836 [Chrysomelidae] are placed for the first time in synonymy with Anisogaster flavicans Deyrolle, 1862 and Chrysomela clivicollis Kirby, 1837 respectively. Type species of the following genus-group taxa are proposed: Sphaeromorphus Dejean, 1833 (Sphaeromorphus humeralis Erichson, 1843) [Scarabaeidae], Adelphus Dejean, 1834 (Helops marginatus Fabricius, 1792) [Tenebrionidae], Cyrtoderes Dejean, 1834 (Tenebrio cristatus DeGeer, 1778) [Tenebrionidae], Selenepistoma Dejean, 1834 (Opatrum acutum Wiedemann, 1823) [Tenebrionidae], Charactus Dejean, 1833 (Lycus limbatus Fabricius, 1801) [Lycidae], Corynomalus Chevrolat, 1836 (Eumorphus limbatus Olivier, 1808) [Endomychidae], Hebecerus Dejean, 1835 (Acanthocinus marginicollis Boisduval, 1835) [Cerambycidae], Pterostenus Dejean, 1835 (Cerambyx abbreviatus Fabricius, 1801) [Cerambycidae], Psalicerus Dejean, 1833 (Lucanus femoratus Fabricius, 1775) [Lucanidae], and Pygolampis Dejean, 1833 (Lampyris glauca Olivier, 1790) [Lampyridae]. A new name, Neoeutrapela Bousquet and Bouchard [Tenebrionidae], is proposed for Eutrapela Dejean, 1834 (junior homonym of Eutrapela Hübner, 1809).The following generic names, made available in Dejean’s catalogue, were found to be older than currently accepted valid names: Catoxantha Dejean, 1833 over Catoxantha Solier, 1833 [Buprestidae], Pristiptera Dejean, 1833 over Pelecopselaphus Solier, 1833 [Buprestidae], Charactus Dejean, 1833 over Calopteron Laporte, 1836 [Lycidae], Cyclonotum Dejean, 1833 over Dactylosternum Wollaston, 1854 [Hydrophilidae], Ancylonycha Dejean, 1833 over Holotrichia Hope, 1837 [Scarabaeidae], Aulacium Dejean, 1833 over Mentophilus Laporte, 1840 [Scarabaeidae], Sciuropus Dejean, 1833 over Ancistrosoma Curtis, 1835 [Scarabaeidae], Sphaeromorphus Dejean, 1833 over Ceratocanthus White, 1842 [Scarabaeidae], Psalicerus Dejean, 1833 over Leptinopterus Hope, 1838 [Lucanidae], Adelphus Dejean, 1834 over Praeugena Laporte, 1840 [Tenebrionidae], Amatodes Dejean, 1834 over Oncosoma Westwood, 1843 [Tenebrionidae], Cyrtoderes Dejean, 1834 over Phligra Laporte, 1840 [Tenebrionidae], Euphron Dejean, 1834 over Derosphaerus Thomson, 1858 [Tenebrionidae], Pezodontus Dejean, 1834 over Odontopezus Alluaud, 1889 [Tenebrionidae], Anoplosthaeta Dejean, 1835 over Prosopocera Blanchard, 1845 [Cerambycidae], Closteromerus Dejean, 1835 over Hylomela Gahan, 1904 [Cerambycidae], Hebecerus Dejean, 1835 over Ancita Thomson, 1864 [Cerambycidae], Mastigocera Dejean, 1835over Mallonia Thomson, 1857 [Cerambycidae], Zygocera Dejean, 1835 over Disternopsis Breuning, 1939 [Cerambycidae], Australica Chevrolat, 1836 over Calomela Hope, 1840 [Chrysomelidae], Edusa Chevrolat, 1836 over Edusella Chapuis, 1874 [Chrysomelidae], Litosonycha Chevrolat, 1836 over Asphaera Duponchel and Chevrolat, 1842 [Chrysomelidae], and Pleuraulaca Chevrolat, 1836 over Iphimeis Baly, 1864 [Chrysomelidae]. In each of these cases, Reversal of Precedence (ICZN 1999: 23.9) or an applicationto the International Commission on Zoological Nomenclature will be necessary to retain usage of the younger synonyms.  相似文献   

17.
Yong Zhou  Ottó Merkl  Bin Chen 《ZooKeys》2014,(451):93-108
Three species of the genus Xenocerogria Merkl, 2007 have been recorded in China, Xenocerogria feai (Borchmann, 1911), Xenocerogria ignota (Borchmann, 1941) and Xenocerogria ruficollis (Borchmann, 1912). Xenocera xanthisma Chen, 2002 is proposed as a junior synonym of Xenocerogria ruficollis. Lectotype of Xenocerogria ignota is designated, and the species is transferred to the genus Lagria Fabricius, 1775. New Chinese province records of Xenocerogria ruficollis are provided.  相似文献   

18.
In order to evaluate the diversity of Central European Myriapoda species in the course of the German Barcode of Life project, 61 cytochrome c oxidase I sequences of the genus Cryptops Leach, 1815, a centipede genus of the order Scolopendromorpha, were successfully sequenced and analyzed. One sequence of Scolopendra cingulata Latreille, 1829 and one of Theatops erythrocephalus Koch, 1847 were utilized as outgroups. Instead of the expected three species (Cryptops parisi Brolemann, 1920; Cryptops anomalans Newport, 1844; Cryptops hortensis (Donovan, 1810)), analyzed samples included eight to ten species. Of the eight clearly distinguishable morphospecies of Cryptops, five (Cryptops parisi; Cryptops croaticus Verhoeff, 1931; Cryptops anomalans; Cryptops umbricus Verhoeff, 1931; Cryptops hortensis) could be tentatively determined to species level, while a further three remain undetermined (one each from Germany, Austria and Croatia, and Slovenia). Cryptops croaticus is recorded for the first time from Austria. A single specimen (previously suspected as being Cryptops anomalans), was redetermined as Cryptops umbricus Verhoeff, 1931, a first record for Germany. All analyzed Cryptops species are monophyletic and show large genetic distances from one another (p-distances of 13.7–22.2%). Clear barcoding gaps are present in lineages represented by >10 specimens, highlighting the usefulness of the barcoding method for evaluating species diversity in centipedes. German specimens formally assigned to Cryptops parisi are divided into three clades differing by 8.4–11.3% from one another; their intra-lineage genetic distance is much lower at 0–1.1%. The three clades are geographically separate, indicating that they might represent distinct species. Aside from Cryptops parisi, intraspecific distances of Cryptops spp. in Central Europe are low (<3.3%).  相似文献   

19.
Muricea is an amphi-American genus. Verrill proposed dividing the species from the Pacific Ocean into three genera and established the genus Eumuricea for five eastern Pacific species with tubular calyces. Eumuricea is basically characterized by colonies with elongate, cylindrical calyces with truncate margins and star-like opercula, and the occurrence of unilateral spinous spindles. According to these characteristics, Eumuricea does not show enough difference from Muricea to be treated as a separate genus. Original type material of Eumuricea was morphologically analysed and illustrated using optical and scanning electron microscopy. We conclude that the eastern Pacific species should be placed in the genus Muricea and form a group characterised by tubular calyces that comprises four species at present, Muricea acervata, Muricea hispida, Muricea squarrosa, and Muricea tubigera and a dubious species Muricea horrida. Lectotypes were designated for Muricea squarrosa and Muricea hispida to establish their taxonomic status. The genus Eumuricea has also been misunderstood by former authors who erroneously assigned species to it. For these species we propose new combinations: Swiftia pusilla, Astrogorgia splendens and Astrogorgia ramosa.  相似文献   

20.
All known taxa of the genus Endothyrella Zilch, 1960 (family Plectopylidae) are reviewed. Altogether 23 Endothyrella species are recognized. All species are illustrated and whenever possible, photographs of the available type specimens are provided. Five new species are described: Endothyrella angulata Budha & Páll-Gergely, sp. n., Endothyrella dolakhaensis Budha & Páll-Gergely, sp. n. and Endothyrella nepalica Budha & Páll-Gergely, sp. n. from Nepal, Endothyrella robustistriata Páll-Gergely, sp. n. from the Naga Hills, India, and Endothyrella inexpectata Páll-Gergely, sp. n. from Sichuan, China. Helix (Plectopylis) munipurensis Godwin-Austen, 1875 is synonymized with Helix (Plectopylis) serica Godwin-Austen, 1875, and Plectopylis (Endothyra) gregorsoni Gude, 1915 is synonymized with Helix (Plectopylis) macromphalus W. Blanford, 1870. Plectopylis plectostoma var. exerta Gude, 1901 is a synonym of Plectopylis plectostoma var. tricarinata Gude, 1896, which is a species in its own right. Five species of the genus Chersaecia viz. Plectopylis (Chersaecia) bedfordi Gude, 1915, Helix (Plectopylis) brahma Godwin-Austen, 1879, Helix (Plectopylis) Oglei Godwin-Austen, 1879, Helix (Plectopylis) serica Godwin-Austen, 1875, and Plectopylis (Endothyra) williamsoni Gude, 1915 are moved to Endothyrella. The holotype of Plectopylis hanleyi Godwin-Austen, 1879 seems to be lost; therefore, Plectopylis hanleyi is considered to be a nomen dubium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号