首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
Habitat shifts are implicated as the cause of many vertebrate radiations, yet relatively few empirical studies quantify patterns of diversification following colonization of new habitats in fishes. The pufferfishes (family Tetraodon‐tidae) occur in several habitats, including coral reefs and freshwater, which are thought to provide ecological opportunity for adaptive radiation, and thus provide a unique system for testing the hypothesis that shifts to new habitats alter diversification rates. To test this hypothesis, we sequenced eight genes for 96 species of pufferfishes and closely related porcupine fishes, and added 19 species from sequences available in GenBank. We time‐calibrated the molecular phylogeny using three fossils, and performed several comparative analyses to test whether colonization of novel habitats led to shifts in the rate of speciation and body size evolution, central predictions of clades experiencing ecological adaptive radiation. Colonization of freshwater is associated with lower rates of cladogenesis in pufferfishes, although these lineages also exhibit accelerated rates of body size evolution. Increased rates of cladogenesis are associated with transitions to coral reefs, but reef lineages surprisingly exhibit significantly lower rates of body size evolution. These results suggest that ecological opportunity afforded by novel habitats may be limited for pufferfishes due to competition with other species, constraints relating to pufferfish life history and trophic ecology, and other factors.  相似文献   

3.
Mammals adapted to unpredictable and low-energy environments often evolve a “bet-hedging” life history strategy characterized by less costly reproductive outputs over a longer and slower-growing life. In contrast, species adapted to more predictable (i.e., low variation) and higher energy environments may evolve greater fecundity over a shorter and faster-growing life. We tested whether this known interspecific pattern also occurs within a species. We compared life history traits of the ringed seal (Pusa hispida) in the Canadian High Arctic to those closer to the southern limit of the species' circumpolar distribution. We found that northern seals grew slower than southern seals (Brody growth coefficient), achieved a greater asymptotic body weight (82 and 69 kg vs. 74 and 54 kg female and male, respectively), reached sexual maturity later (6.1 years vs. 4.5 years), had lower fecundity (1.8 years vs. 1.3 years interbirth interval), longer average lifespan (5 years vs. 3 years median age), and greater movements (1,269 vs. 681 km). Mating systems also likely differed with northern seals showing morphological evidence of a promiscuous mating system with potential sperm competition as indicated by greater relative testes size. The northern region was also characterized by more unpredictable environmental timing of seasonal events, such as spring sea ice breakup. Life history variation between the intraspecific groups of seals appears to agree with interspecific patterns and provides a better understanding of how species' life history parameters shift in concert with environmental conditions.  相似文献   

4.
Complex interactions such as interference competition and predation, including intraguild predation, are now recognized as important components in animal community structure. At the lower end of a guild, weasels may be highly affected by other guild members due to small body size in relation to other predators. In 2000 and 2001, we radio-collared 24 ermines Mustela erminea and 25 long-tailed weasels M. frenata in 2 areas that differed in abundance of guild members. We tested the hypothesis that when faced with an increased density of other guild members, weasels would modify space and habitat use to reduce the risk of predation associated with encounters involving guild members. We predicted that weasels would increase use of specific habitats (such as refuges) to reduce encounter rates in the presence of a greater number of guild members. Because M. erminea is smaller than M. frenata and thus better able to take advantage of small rodent burrows as refuges from predators and as feeding grounds, we also predicted that M. frenata would show a stronger response to a higher abundance of guild members than M. erminea . Results were consistent with our predictions. Faced with an increased abundance of guild members, M. frenata showed increased habitat selectivity and reduced activity levels, which resulted in increased daily travel distances and increased home ranges. Mustela erminea responded to an increased abundance of guild members through reduced use of preferred habitat which M. frenata already occupied. The contrasting pattern of habitat selection observed between the 2 mustelid species suggested cascading effects, whereby large-predator pressure on M. frenata relaxed pressure of M. frenata on M. erminea . Our results draw attention to the likelihood that competitive intraguild interactions play a facilitating role in M. erminea – M. frenata coexistence.  相似文献   

5.
Microplastics (MPs) are widespread in aquatic environments and have become a critical environmental issue in recent years due to their adverse impacts on the physiology, reproduction, and survival of aquatic animals. Exposure to MPs also has the potential to induce sub‐lethal behavioral changes that can affect individual fitness, but these effects are understudied. Many plastic additives introduced during the manufacture of MPs are known endocrine‐disrupting chemicals (EDCs) that mimic the action of natural hormones, alter sexual and competitive behavior, and impair reproductive success in fish. In addition, EDCs and other aquatic contaminants may adhere to MPs in the environment, the latter of which may serve as transport vectors for these compounds (i.e., the vector hypothesis). In this study, we staged territorial contests between control males, and males exposed to virgin MP particles or to MPs previously immersed in one of two environmentally relevant concentrations of 17‐alpha ethinyl estradiol (EE2; 5 ng/L and 25 ng/L) to evaluate the independent and synergistic effects of exposure to MPs and a common environmental estrogen on male–male aggression and competitive territory acquisition in a freshwater fish, Pimephales promelas. Short‐term (30 days) dietary exposure to MPs did not impair the ability of males to successfully compete for and obtain a breeding territory. Overall levels of aggression in control and exposed males were also similar across trial series. These results help to fill a critical knowledge gap regarding the direct and indirect (vector‐borne) effects of MPs on the reproductive behavior of aquatic vertebrates in freshwater systems.  相似文献   

6.
Predation strongly influences reproductive behaviours because reproducing individuals must balance mortality risks to themselves and to their offspring. In many freshwater turtles, the nest predation risk decreases with nest distance from water, whereas the predation risk to females increases farther from water. To determine whether predation pressure influences the distance from water at which female turtles nest, we measured predation pressure on nesting females and on nests, as well as the distances of nests to water, in two populations of painted turtles. Using models, we found that female survival in both populations was high and did not vary with distance from water. Nest survival was also uncorrelated with nest distance to water, although it was significantly lower than adult survival in both populations and was only 1.2% in one population. Our results suggest that nest sites are not predictably safe from predators. Instead, turtles may hedge their bets by nesting over a wide range of distances from water because any distance is risky for nests and no distance is particularly risky for the nesting female. We suggest that other factors, such as suitable incubation conditions and/or post‐emergence hatchling survival, probably play a larger role than predation in driving nest‐site choice in painted turtles.  相似文献   

7.
Habitat degradation contributes to species decline, and habitat quality is an important factor influencing reintroduction success globally. Habitat quality can include a range of physical resources such as nest sites and food resources but also anything that can restrict the use of these resources such as predation risk or competition. In arid Australia, introduced predators are thought to be the primary cause of mammal extinction and reintroduction failure although habitat clearance and alteration are also major causes of population decline. Common brushtail possums are one arid Australian marsupial close to regional extinction. To understand whether habitat quality was limiting their recovery, we reintroduced 148 possums into an area where introduced red foxes were controlled but historic overgrazing had degraded the habitat. We measured both direct (hollow availability, midstorey cover and high‐quality plant foods) and indirect (survival, condition, reproduction, movement) measures of habitat quality. Sixty‐seven released possums and 26 post‐release recruits were radiocollared for up to 2 years after release. Post‐release survival of radiocollared possums was high after 12 months (0.70), and there were no deaths from starvation. Predation by feral cats was the most common cause of mortality, and the open, degraded habitat may have exacerbated predation risk. Continuous breeding, good body condition and comparative home ranges with other sites suggested that food resources were not limiting. Possums used natural tree hollows in Eucalyptus spp. with no use of artificial nest boxes. Results suggest that historically degraded habitat was not a barrier to short‐term reintroduction success when foxes were controlled and natural tree hollows were plentiful. However, demographic data on hollow‐bearing tree species suggest a possible future decline in availability of hollows. These factors, combined with the unknown effects of drought, and synergistic effects of predation and poor quality habitat, suggest long‐term reintroduction success may require improved habitat and cat control.  相似文献   

8.
Discovering the mechanisms by which communities of co‐existing species exist has proven to be one of the greatest challenges for evolutionary ecologists. A recent perspective emphasizes the role of functional traits, such as whole‐organism performance, as key limiting factors in the evolution of communities, yet few studies have examined this possibility. We examine how bite force and morphology influence the ability of ten lizard species in a single community to access insect prey, as defined by prey type and prey hardness. We gathered over 3 years of data from a desert lizard community comprised of ten species and found significant variation among species for bite force and prey hardness, as well as significant differences in performance and niche breadth for each species. In general, higher levels of absolute bite force broadens resource accessibility (sizes of prey), and does not generally result in a reduced ability to access smaller prey. For example, large lizard species that are hard biters can still consume soft prey. On the other hand, small lizard species that are weak biters are more limited in their ability to access hard prey, although the overall decline in resource accessibility is modest. Our findings highlight how functional traits can influence which species can access key resources within a community of similar species. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, ●● , ●●–●●.  相似文献   

9.
10.
Ecological theory suggests that the coexistence of species is promoted by the partitioning of available resources, as in dietary niche partitioning where predators partition prey. Yet, the mechanisms underlying dietary niche partitioning are not always clear. We used fecal DNA metabarcoding to investigate the diets of seven nocturnal insectivorous bird and bat species. Low diet overlap (2%–22%) supported resource partitioning among all species. Differences in diet corresponded with species identity, prey detection method, and foraging behavior of predators. Insects with ultrasonic hearing capabilities were consumed significantly more often by birds than bats, consistent with an evolved avoidance of echolocating strategies. In turn, bats consumed a greater proportion of noneared insects such as spruce budworms. Overall, our results suggest that evolutionary interactions among bats and moths translate to dietary niche partitioning and coexistence among bats and nocturnal birds.  相似文献   

11.
Habitat usage comprises interactions between ecological parameters and organismal capacities, and the selective pressures that ultimately determine the outcome of such processes in an evolutionary scale may be conflicting when the same morphological structure is recruited for different activities. Here, we investigate the roles of diet and locomotion in the evolution of cranial design in gymnophthalmid lizards and test the hypothesis that microhabitat use drives head shape evolution, particularly in head-first burrowers. Morphological factors were analysed in relation to continuous ecological indexes (prey hardness and substrate compactness) using conventional and phylogenetic approaches. Results suggest that the evolution of head morphology in Gymnophthalmidae was shaped under the influence of microhabitat use rather than diet: burrowers have shorter heads with lower rostral angulation, independently of the prey consumed. Food preferences appear to be relatively conserved throughout the phylogeny of the group, which may have permitted the extensive radiation of gymnophthalmids into fossorial microhabitats.  相似文献   

12.
Adaptive radiations provide unique opportunities to test whether and how recent ecological and evolutionary diversification of host species structures the composition of entire bacterial communities. We used 16S rRNA gene sequencing of faecal samples to test for differences in the gut microbiota of six species of Puerto Rican Anolis lizards characterized by the evolution of distinct ‘ecomorphs’ related to differences in habitat use. We found substantial variation in the composition of the microbiota within each species and ecomorph (trunk‐crown, trunk‐ground, grass‐bush), but no differences in bacterial alpha diversity among species or ecomorphs. Beta diversity analyses revealed subtle but significant differences in bacterial composition related to host phylogeny and species, but these differences were not consistently associated with Anolis ecomorph. Comparison of a trunk‐ground species from this clade (A. cristatellus) with a distantly related member of the same ecomorph class (A. sagrei) where the two species have been introduced and are now sympatric in Florida revealed pronounced differences in the alpha diversity and beta diversity of their microbiota despite their ecological similarity. Comparisons of these populations with allopatric conspecifics also revealed geographic differences in bacterial alpha diversity and beta diversity within each species. Finally, we observed high intraindividual variation over time and strong effects of a simplified laboratory diet on the microbiota of A. sagrei. Collectively, our results indicate that bacterial communities are only weakly shaped by the diversification of their lizard hosts due to the strikingly high levels of bacterial diversity and variation observed within Anolis species.  相似文献   

13.
Predator avoidance of noxious prey, aposematism and defensive mimicry are normally associated with bright, contrasting patterns and colours. However, noxious prey may be unable to evolve conspicuous coloration because of other selective constraints, such as the need to be inconspicuous to their own prey or to specialist predators. Many venomous snakes, particularly most vipers, display patterns that are apparently cryptic, but nevertheless highly characteristic, and appear to be mimicked by other, non-venomous snakes. However, predator avoidance of viper patterns has never been demonstrated experimentally. Here, the analysis of 813 avian attacks on 12,636 Plasticine snake models in the field shows that models bearing the characteristic zigzag band of the adder (Vipera berus) are attacked significantly less frequently than plain models. This suggests that predator avoidance of inconspicuously but characteristically patterned noxious prey is possible. Our findings emphasize the importance of mimicry in the ecological and morphological diversification of advanced snakes.  相似文献   

14.
Understanding whether and how ecological traits affect species’ geographic distributions is a fundamental issue that bridges ecology and biogeography. While climate is thought to be the major determinant of species’ distributions, there is considerable variation in the strength of species’ climate–distribution relationships. One potential explanation is that species with relatively low dispersal ability cannot reach all geographic areas where climatic conditions are suitable. We tested the hypothesis that species from different taxonomic groups varied in their climate–distribution relationships because of differences in life history strategies, in particular dispersal ability. We conducted a meta‐analysis by combining the discrimination ability (AUC values) from 4317 species distribution models (SDMs) using fit as an indication of the strength of the species’ climate–distribution relationship. We found significant differences in the strength of species’ climate–distribution relationships across taxonomic groups, however we did not find support for the dispersal hypothesis. Our results suggest that relevant ecological trait variation among broad taxonomic groups may be related to differences in species’ climate–distribution relationships, however which ecological traits are important remains unclear.  相似文献   

15.
β‐Peptides are analogs of natural α‐peptides and form a variety of remarkably stable structures. Having an additional carbon atom in the backbone of each residue, their folded conformation is not only influenced by the side‐chain sequence but also and foremost by their substitution pattern. The precise mechanism by which the side chains interact with the backbone is, however, hitherto not completely known. To unravel the various effects by which the side chains influence the backbone conformation, we quantify to which extent the dihedral angles of a β3‐substited peptide with an additional methyl group on the central Cα‐atom can be regarded as independent degrees of freedom and analyze the distributions of these dihedral angles. We also selectively capture the steric effect of substituents on the Cα‐ and Cβ‐atoms of the central residue by alchemically changing them into dummy atoms, which have no nonbonded interactions. We find that the folded state of the β3‐peptide is primarily stabilized by a steric exclusion of large parts of the unfolded state (entropic effect) and only subsequently by mutual dependence of the ψ‐dihedral angles (enthalpic effect). The folded state of β‐peptides is stabilized by a different mechanism than that of α‐peptides. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
The North American greater snow goose population has increased dramatically during the last 40 years. We evaluated whether refuge creation, changes in land use on the wintering and staging grounds, and climate warming have contributed to this expansion by affecting the distribution, habitat use, body condition, and migration phenology of birds. We also reviewed the effects of the increasing population on marshes on the wintering grounds, along the migratory routes and on the tundra in summer. Refuges established before 1970 may have contributed to the initial demographic increase. The most important change, however, was the switch from a diet entirely based on marsh plants in spring and winter (rhizomes of Scirpus/Spartina) to one dominated by crops (corn/young grass shoots) during the 1970s and 1980s. Geese now winter further north along the US Atlantic coast, leading to reduced hunting mortality. Their migratory routes now include portions of southwestern Québec where corn production has increased exponentially. Since the mid‐1960s, average temperatures have increased by 1–2.4°C throughout the geographic range of geese, which may have contributed to the northward shift in wintering range and an earlier migration in spring. Access to spilled corn in spring improved fat reserves upon departure for the Arctic and may have contributed to a high fecundity. The population increase has led to intense grazing of natural wetlands used by geese although these habitats are still largely undamaged. The foraging in fields allowed the population to exceed limits imposed by natural marshes in winter and spring, but also prevented permanent damage because of their overgrazing.  相似文献   

17.
  • Despite evidence that prior exposure to drought can increase subsequent plant freezing tolerance, few studies have explored such interactions over ecologically relevant time spans. We examined the combined effects of drought and subsequent freezing on tiller growth and leaf sugar concentrations in the grass, Poa pratensis .
  • We exposed tillers to no drought (?0.04 MP a), moderate drought (?0.19 MP a) or severe drought (?0.42 MP a) for 3 weeks in summer. Tillers were then frozen in autumn or spring at ?5 °C (frost damage) or at 0 °C (control) for 3 days and harvested after a re‐growth period.
  • For shoot growth, there was a significant interaction between drought and autumn freezing, whereby the relative effect of freezing on growth was least for the plants previously exposed to severe drought; however, there was no significant interaction between drought and spring freezing. For root growth, there were no significant interactions between drought and freezing in either season. Leaf sugar concentrations increased significantly with drought intensity, but these effects dissipated within a month, prior to the onset of the autumn freezing treatment.
  • Overall, our results suggest that interactions between prior drought and subsequent freezing in P. pratensis may be most relevant in the context of autumn freezing, and despite the important role of soluble sugars in increasing both drought and freezing tolerance in this species, the retention of these compounds after drought stress does not appear to explain the occurrence of drought–frost interactions at ecologically relevant time scales.
  相似文献   

18.
Theoretical models predict weakening of negative biotic interactions and strengthening of positive interactions with increasing abiotic stress. However, most empirical tests have been restricted to plant-plant interactions. No empirical study has examined theoretical predictions of interactions between plants and below-ground micro-organisms, although soil biota strongly regulates plant community composition and dynamics. We examined variability in soil biota effects on tree regeneration across an abiotic gradient. Our candidate tree species was European beech (Fagus sylvatica L.), whose regeneration is extremely responsive to soil biota activity. In a greenhouse experiment, we measured tree survival in sterilized and non-sterilized soils collected across an elevation gradient in the French Alps. Negative effects of soil biota on tree survival decreased with elevation, similar to shifts observed in plant-plant interactions. Hence, soil biota effects must be included in theoretical models of plant biotic interactions to accurately represent and predict the effects of abiotic gradient on plant communities.  相似文献   

19.
In landscape ecology, correlational approaches are typically used to analyse links between local population abundance, and the surrounding habitat amount to estimate biologically-relevant landscape size (extent) for managing endangered or pest populations. The direction, strength, and spatial extent of the correlations are then sometimes interpreted in terms of species population parameters. Here we simulated the population dynamics of generalized species across spatially explicit landscapes that included two distinct habitat types. We investigated how characteristics of a landscape (structure), including the variation in habitat quality and spatial aggregation of the habitat, and the precise population-dynamic properties of the simulated species (dispersal and growth rates) affect the correlation between population abundance and amount of surrounding favourable habitat in the landscape. To evaluate these spatial extents of correlation, proportions of favourable habitat were calculated within several circles of increasing diameter centred on sampling patches of favourable habitat where population abundance was recorded.We found that the value of the correlation coefficients between population abundance and amount of surrounding favourable habitat depended on both population dynamic parameters and landscape characteristics. Coefficients of correlation increased with the variation in habitat quality and the aggregation of favourable habitat in the landscape, but decreased with the dispersal distance. The distance at which the correlation was maximized was sensitive to an interaction between the level of aggregation of the habitat and the dispersal distance; whereas the greatest distance at which a significant correlation occurred was more sensitive to the variation in habitat quality. Our results corroborate the view that correlational analyses do provide information on the local population dynamics of a species in a given habitat type and on its dispersal rate parameters. However, even in simplified, model frameworks, direct relationships are often difficult to disentangle and global landscape characteristics should be reported in any studies intended to derive population-dynamic parameters from correlations. Where possible, replicated landscapes should be examined in order to control for the interaction between population dynamics and landscape structure. Finally, we recommend using species-specific, population-dynamic modelling in order to interpret correctly the observed patterns of correlation in the landscape.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号