首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Transposable elements and microevolutionary changes in natural populations   总被引:1,自引:0,他引:1  
Transposable elements (TEs) usually represent the most abundant and dynamic fraction of genomes in almost all living organisms. The overall capacity of such ‘junk DNA’ to induce mutations and foster the reorganization of functional genomes suggests that TE may be of central evolutionary significance. However, to what extent TE dynamics drive and is driven by the evolutionary trajectory of host taxa remains poorly known. Further work addressing the fate of TE insertions in natural populations is necessary to shed light on their impact on microevolutionary processes. Here, we highlight methodological approaches (i.e. transposon displays and high‐throughput sequencing), tracking TE insertions across large numbers of individuals and discuss their pitfalls and benefits for molecular ecology surveys.  相似文献   

3.
The evolutionary implications of transposable element (TE) influences on gene regulation are explored here. An historical perspective is presented to underscore the importance of TE influences on gene regulation with respect to both the discovery of TEs and the early conceptualization of their potential impact on host genome evolution. Evidence that points to a role for TEs in host gene regulation is reviewed, and comparisons between genome sequences are used to demonstrate the fact that TEs are particularly lineage-specific components of their host genomes. Consistent with these two properties of TEs, regulatory effects and evolutionary specificity, human-mouse genome wide sequence comparisons reveal that the regulatory sequences that are contributed by TEs are exceptionally lineage specific. This suggests a particular mechanism by which TEs may drive the diversification of gene regulation between evolutionary lineages.  相似文献   

4.
Transposable elements (TEs) are self-replicating “genetic parasites” ubiquitous to eukaryotic genomes. In addition to conflict between TEs and their host genomes, TEs of the same family are in competition with each other. They compete for the same genomic niches while experiencing the same regime of copy-number selection. This suggests that competition among TEs may favor the emergence of new variants that can outcompete their ancestral forms. To investigate the sequence evolution of TEs, we developed a method to infer clades: collections of TEs that share SNP variants and represent distinct TE family lineages. We applied this method to a panel of 85 Drosophila melanogaster genomes and found that the genetic variation of several TE families shows significant population structure that arises from the population-specific expansions of single clades. We used population genetic theory to classify these clades into younger versus older clades and found that younger clades are associated with a greater abundance of sense and antisense piRNAs per copy than older ones. Further, we find that the abundance of younger, but not older clades, is positively correlated with antisense piRNA production, suggesting a general pattern where hosts preferentially produce antisense piRNAs from recently active TE variants. Together these findings suggest a pattern whereby new TE variants arise by mutation and then increase in copy number, followed by the host producing antisense piRNAs that may be used to silence these emerging variants.  相似文献   

5.
6.
Transposable elements (TEs) are selfish DNA sequences that multiply within host genomes. They are present in most species investigated so far at varying degrees of abundance and sequence diversity. The TE composition may not only vary between but also within species and could have important biological implications. Variation in prevalence among populations may for example indicate a recent TE invasion, whereas sequence variation could indicate the presence of hyperactive or inactive forms. Gaining unbiased estimates of TE composition is thus vital for understanding the evolutionary dynamics of transposons. To this end, we developed DeviaTE, a tool to analyse and visualize TE abundance using Illumina or Sanger sequencing reads. Our tool requires sequencing reads of one or more samples (tissue, individual or population) and consensus sequences of TEs. It generates a table and a visual representation of TE composition. This allows for an intuitive assessment of coverage, sequence divergence, segregating SNPs and indels, as well as the presence of internal and terminal deletions. By contrasting the coverage between TEs and single copy genes, DeviaTE derives unbiased estimates of TE abundance. We show that naive approaches, which do not consider regions spanned by internal deletions, may substantially underestimate TE abundance. Using published data we demonstrate that DeviaTE can be used to study the TE composition within samples, identify clinal variation in TEs, compare TE diversity among species, and monitor TE invasions. Finally we present careful validations with publicly available and simulated data. DeviaTE is implemented in Python and distributed under the GPLv3 ( https://github.com/W-L/deviaTE ).  相似文献   

7.
Recent studies on transposable elements (TEs) have shed light on the mechanisms that have shaped their evolution. In addition to accumulating nucleotide substitutions over evolutionary time, TEs appear to be especially prone to genetic rearrangements and vertical transmissions across even distantly related species. As a consequence of replicating in host genomes, TEs have a significant mutational effect on their hosts. Although most TE-insertion mutations seem to exert a negative effect on host fitness, a growing body of evidence indicates that some TE-mediated genetic changes have become established features of host species genomes indicating that TEs can contribute significantly to organismic evolution.  相似文献   

8.
The constant bombardment of mammalian genomes by transposable elements (TEs) has resulted in TEs comprising at least 45% of the human genome. Because of their great age and abundance, TEs are important in comparative phylogenomics. However, estimates of TE age were previously based on divergence from derived consensus sequences or phylogenetic analysis, which can be unreliable, especially for older more diverged elements. Therefore, a novel genome-wide analysis of TE organization and fragmentation was performed to estimate TE age independently of sequence composition and divergence or the assumption of a constant molecular clock. Analysis of TEs in the human genome revealed approximately 600,000 examples where TEs have transposed into and fragmented other TEs, covering >40% of all TEs or approximately 542 Mbp of genomic sequence. The relative age of these TEs over evolutionary time is implicit in their organization, because newer TEs have necessarily transposed into older TEs that were already present. A matrix of the number of times that each TE has transposed into every other TE was constructed, and a novel objective function was developed that derived the chronological order and relative ages of human TEs spanning >100 million years. This method has been used to infer the relative ages across all four major TE classes, including the oldest, most diverged elements. Analysis of DNA transposons over the history of the human genome has revealed the early activity of some MER2 transposons, and the relatively recent activity of MER1 transposons during primate lineages. The TEs from six additional mammalian genomes were defragmented and analyzed. Pairwise comparison of the independent chronological orders of TEs in these mammalian genomes revealed species phylogeny, the fact that transposons shared between genomes are older than species-specific transposons, and a subset of TEs that were potentially active during periods of speciation.  相似文献   

9.
In addition to the strong divergent evolution and significant and episodic evolutionary transitions and speciation we previously attributed to TE‐Thrust, we have expanded the hypothesis to more fully account for the contribution of viruses to TE‐Thrust and evolution. The concept of symbiosis and holobiontic genomes is acknowledged, with particular emphasis placed on the creativity potential of the union of retroviral genomes with vertebrate genomes. Further expansions of the TE‐Thrust hypothesis are proposed regarding a fuller account of horizontal transfer of TEs, the life cycle of TEs, and also, in the case of a mammalian innovation, the contributions of retroviruses to the functions of the placenta. The possibility of drift by TE families within isolated demes or disjunct populations, is acknowledged, and in addition, we suggest the possibility of horizontal transposon transfer into such subpopulations. “Adaptive potential” and “evolutionary potential” are proposed as the extremes of a continuum of “intra‐genomic potential” due to TE‐Thrust. Specific data is given, indicating “adaptive potential” being realized with regard to insecticide resistance, and other insect adaptations. In this regard, there is agreement between TE‐Thrust and the concept of adaptation by a change in allele frequencies. Evidence on the realization of “evolutionary potential” is also presented, which is compatible with the known differential survivals, and radiations of lineages. Collectively, these data further suggest the possibility, or likelihood, of punctuated episodes of speciation events and evolutionary transitions, coinciding with, and heavily underpinned by, intermittent bursts of TE activity.  相似文献   

10.
Family of Tc1-like elements from fish genomes and horizontal transfer   总被引:1,自引:0,他引:1  
Pocwierz-Kotus A  Burzynski A  Wenne R 《Gene》2007,390(1-2):243-251
The involvement of horizontal transfer (HT) in the evolution of vertebrate transposable elements (TEs) is a matter of an ongoing debate. The phylogenetic relationships between Tc1 TEs, based on limited dataset have been previously used to infer a case of Tc1 HT between the genomes of fish and frogs. Here this hypothesis has been critically evaluated by the experimental approach including comparative data on the range of fish species available today. The distribution of a Tc1 subfamily of TE in selected fish species was investigated by PCR with a single primer complementary to ITRs and showed that they are widespread in the studied 17 fish species. They belong to five different subfamilies of Tc1 TEs, as revealed by the comparison with current genomic data for fish and amphibians. The original hypothesis would get much weaker support from the current data, although at least one novel potential and more convincing case of HT was identified between genomes of Perciformes fish. An interesting case of recombination-driven mobilisation of a degenerated TE by distantly related TE from different subfamily was discovered in the genome of pike. The occurrence of such cases widens the range of TE elements identifiable with the employed experimental approach. Further similar studies would help to explain the evolution of the multiple Tc1 lineages including species for which full genome sequences will not be available soon.  相似文献   

11.
Evidence accumulated over the last decade has shown that allopolyploid genomes may undergo drastic reorganization. However, timing and mechanisms of structural diploidization over evolutionary timescales are still poorly known. As transposable elements (TEs) represent major and labile components of plant genomes, they likely play a pivotal role in fuelling genome changes leading to long-term diploidization. Here, we exploit the 4.5 MY old allopolyploid Nicotiana section Repandae to investigate the impact of TEs on the evolutionary dynamics of genomes. Sequence-specific amplified polymorphisms (SSAP) on seven TEs with expected contrasted dynamics were used to survey genome-wide TE insertion polymorphisms. Comparisons of TE insertions in the four allopolyploid species and descendents of the diploid species most closely related to their actual progenitors revealed that the polyploids showed considerable departure from predicted additivity of the diploids. Large numbers of new SSAP bands were observed in polyploids for two TEs, but restructuring for most TE families involved substantial loss of fragments relative to the genome of the diploid representing the paternal progenitor, which could be due to changes in allopolyploids, diploid progenitor lineages or both. The majority of non-additive bands were shared by all polyploid species, suggesting that significant restructuring occurred early after the allopolyploid event that gave rise to their common ancestor. Furthermore, several gains and losses of SSAP fragments were restricted to N. repanda, suggesting a unique evolutionary trajectory. This pattern of diploidization in TE genome fractions supports the hypothesis that TEs are central to long-term genome turnover and depends on both TE and the polyploid lineage considered.  相似文献   

12.
13.
Transposable elements (TEs) are a major source of genetic variability in genomes, creating genetic novelty and driving genome evolution. Analysis of sequenced genomes has revealed considerable diversity in TE families, copy number, and localization between different, closely related species. For instance, although the twin species Drosophila melanogaster and D. simulans share the same TE families, they display different amounts of TEs. Furthermore, previous analyses of wild type derived strains of D. simulans have revealed high polymorphism regarding TE copy number within this species. Several factors may influence the diversity and abundance of TEs in a genome, including molecular mechanisms such as epigenetic factors, which could be a source of variation in TE success. In this paper, we present the first analysis of the epigenetic status of four TE families (roo, tirant, 412 and F) in seven wild type strains of D. melanogaster and D. simulans. Our data shows intra- and inter-specific variations in the histone marks that adorn TE copies. Our results demonstrate that the chromatin state of common TEs varies among TE families, between closely related species and also between wild type strains.  相似文献   

14.
15.
Transposable elements (TEs) are one of the major driving forces of genome evolution, raising the question of the long-term dynamics underlying their evolutionary success. Some TEs were proposed to evolve under a pattern of periodic extinctions-recolonizations, in which elements recurrently invade and quickly proliferate within their host genomes, then start to disappear until total extinction. Depending on the model, TE extinction is assumed to be driven by purifying selection against colonized host genomes (Sel-DE model) or by saturation of host genomes (Sat-DE model). Bacterial group II introns are suspected to follow an extinction-recolonization model of evolution, but whether they follow Sel-DE or Sat-DE dynamics is not known. Our analysis of almost 200 group II intron copies from 90 sequenced Enterobacteriales genomes confirms their extinction-recolonization dynamics: patchy element distributions among genera and even among strains within genera, acquisition of new group II introns through plasmids or other mobile genetic elements, and evidence for recent proliferations in some genomes. Distributions of recent and past proliferations and of their respective homing sites further provide strong support for the Sel-DE model, suggesting that group II introns are deleterious to their hosts. Overall, our observations emphasize the critical impact of host properties on TE dynamics.  相似文献   

16.
DNA methylation is essential for gene regulation, imprinting and silencing of transposable elements (TEs). Although bursts of transposable elements are common in many plant lineages, how plant DNA methylation is related to transposon bursts remains unclear. Here we explore the landscape of DNA methylation of tea, a species thought to have experienced a recent transposon burst event. This species possesses more transposable elements than any other sequenced asterids (potato, tomato, coffee, pepper and tobacco). The overall average DNA methylation levels were found to differ among the tea, potato and tomato genomes, and methylation at CHG sequence sites was found to be significantly higher in tea than that in potato or tomato. Moreover, the abundant TEs resulting from burst events not only resulted in tea developing a very large genome size, but also affected many genes involved in importantly biological processes, including caffeine, theanine and flavonoid metabolic pathway genes. In addition, recently transposed TEs were more heavily methylated than ancient ones, implying that DNA methylation is proportionate to the degree of TE silencing, especially on recent active ones. Taken together, our results show that DNA methylation regulates transposon silencing and may play a role in genome size expansion.  相似文献   

17.

Background

Despite having predominately deleterious fitness effects, transposable elements (TEs) are major constituents of eukaryote genomes in general and of plant genomes in particular. Although the proportion of the genome made up of TEs varies at least four-fold across plants, the relative importance of the evolutionary forces shaping variation in TE abundance and distributions across taxa remains unclear. Under several theoretical models, mating system plays an important role in governing the evolutionary dynamics of TEs. Here, we use the recently sequenced Capsella rubella reference genome and short-read whole genome sequencing of multiple individuals to quantify abundance, genome distributions, and population frequencies of TEs in three recently diverged species of differing mating system, two self-compatible species (C. rubella and C. orientalis) and their self-incompatible outcrossing relative, C. grandiflora.

Results

We detect different dynamics of TE evolution in our two self-compatible species; C. rubella shows a small increase in transposon copy number, while C. orientalis shows a substantial decrease relative to C. grandiflora. The direction of this change in copy number is genome wide and consistent across transposon classes. For insertions near genes, however, we detect the highest abundances in C. grandiflora. Finally, we also find differences in the population frequency distributions across the three species.

Conclusion

Overall, our results suggest that the evolution of selfing may have different effects on TE evolution on a short and on a long timescale. Moreover, cross-species comparisons of transposon abundance are sensitive to reference genome bias, and efforts to control for this bias are key when making comparisons across species.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-602) contains supplementary material, which is available to authorized users.  相似文献   

18.
Evolution is frequently concentrated in bursts of rapid morphological change and speciation followed by long‐term stasis. We propose that this pattern of punctuated equilibria results from an evolutionary tug‐of‐war between host genomes and transposable elements (TEs) mediated through the epigenome. According to this hypothesis, epigenetic regulatory mechanisms (RNA interference, DNA methylation and histone modifications) maintain stasis by suppressing TE mobilization. However, physiological stress, induced by climate change or invasion of new habitats, disrupts epigenetic regulation and unleashes TEs. With their capacity to drive non‐adaptive host evolution, mobilized TEs can restructure the genome and displace populations from adaptive peaks, thus providing an escape from stasis and generating genetic innovations required for rapid diversification. This “epi‐transposon hypothesis” can not only explain macroevolutionary tempo and mode, but may also resolve other long‐standing controversies, such as Wright's shifting balance theory, Mayr's peripheral isolates model, and McClintock's view of genome restructuring as an adaptive response to challenge.  相似文献   

19.
The widespread occurrence of sex is one of the most elusive problems in evolutionary biology. Theory predicts that asexual lineages can be driven to extinction by uncontrolled proliferation of vertically transmitted transposable elements (TEs), which accumulate because of the inefficiency of purifying selection in the absence of sex and recombination. To test this prediction, we compared genome-wide TE load between a sexual lineage of the parasitoid wasp Leptopilina clavipes and a lineage of the same species that is rendered asexual by Wolbachia-induced parthenogenesis. We obtained draft genome sequences at 15-20× coverage of both the sexual and the asexual lineages using next-generation sequencing. We identified transposons of most major classes in both lineages. Quantification of TE abundance using coverage depth showed that copy numbers in the asexual lineage exceeded those in the sexual lineage for DNA transposons, but not LTR and LINE-like elements. However, one or a small number of gypsy-like LTR elements exhibited a fourfold higher coverage in the asexual lineage. Quantitative PCR showed that high loads of this gypsy-like TE were characteristic for 11 genetically distinct asexual wasp lineages when compared to sexual lineages. We found no evidence for an overall increase in copy number for all TE types in asexuals as predicted by theory. Instead, we suggest that the expansions of specific TEs are best explained as side effects of (epi)genetic manipulations of the host genome by Wolbachia. Asexuality is achieved in a myriad of ways in nature, many of which could similarly result in TE proliferation.  相似文献   

20.
Transposable elements (TEs) are self-replicating genetic sequences and are often described as important ‘drivers of evolution’. This driving force is because TEs promote genomic novelty by enabling rearrangement, and through exaptation as coding and regulatory elements. However, most TE insertions potentially lead to neutral or harmful outcomes, therefore host genomes have evolved machinery to suppress TE expansion. Through horizontal transposon transfer (HTT) TEs can colonize new genomes, and since new hosts may not be able to regulate subsequent replication, these TEs may proliferate rapidly. Here, we describe HTT of the Harbinger-Snek DNA transposon into sea kraits (Laticauda), and its subsequent explosive expansion within Laticauda genomes. This HTT occurred following the divergence of Laticauda from terrestrial Australian elapids approximately 15–25 Mya. This has resulted in numerous insertions into introns and regulatory regions, with some insertions into exons which appear to have altered UTRs or added sequence to coding exons. Harbinger-Snek has rapidly expanded to make up 8–12% of Laticauda spp. genomes; this is the fastest known expansion of TEs in amniotes following HTT. Genomic changes caused by this rapid expansion may have contributed to adaptation to the amphibious-marine habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号