首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This is the first comparative study of floral structure of the recently established new family Picrodendraceae (part of Euphorbiaceae s.l.) in Malpighiales. Nine species of eight (out of ca. 28) genera were studied. Female flowers are mainly completely trimerous, and in such flowers the perianth consists of one or two whorls of sepals. A floral disc (which probably functions as a nectary) is mostly present. The free parts of the carpels are simple (unbranched) in all ten species studied. Each carpel contains two crassinucellar, anatropous or hemitropous, epitropous (antitropous) ovules, which are covered by a large obturator. The inner integument is thicker than the outer (equally thick in two species studied), and commonly both integuments form the micropyle. In mature ovules the vascular bundle commonly branches in the chalaza, with the branches extending to the base of the inner integument but not entering it. A nucellar cap and, less often, a nucellar beak is formed. Floral structure supports the close relationship of Picrodendraceae with Phyllanthaceae and Euphorbiaceae s.str. within Malpighiales, as suggested (but not yet strongly supported) by some recent published molecular analyses. These three families share a unique combination of characters, including (1) unisexual, apetalous trimerous flowers, (2) crassinucellar ovules with a nucellar beak, (3) a large obturator, and (4) explosive fruits with carunculate seeds.  相似文献   

2.
Ochnaceae s.l. (Ochnaceae, Quiinaceae and Medusagynaceae), one of the well‐supported subclades of the large order Malpighiales retrieved so far in molecular phylogenetic studies, were comparatively studied with regard to floral structure using microtome section series and scanning electron microscopy (SEM). Floral morphology, anatomy and histology also strongly reflect this close relationship. Potential synapomorphies of the subclade include: flowers nectarless, sepals of different sizes within a flower, petals not retarded in development and forming the protective organs of advanced floral buds, petal aestivation contort, petals with three vascular traces, petals reflexed over the sepals and directed toward the pedicel, polystemony, anthers almost or completely basifixed, gynoecium often with more than five carpels, short gynophore present, styles separate for at least their uppermost part and radiating outwards, suction‐cup‐shaped stigmas, vasculature forming a dorsal band of bundles in the upper stylar region, gynoecium epidermis with large, radially elongate cells, ovules either weakly crassinucellar or incompletely tenuinucellar with an endothelium, abundance of tanniferous tissues and sclerenchyma in floral organs. The most strongly supported subclade of two of the three families in molecular analyses, Quiinaceae and Medusagynaceae, is also particularly well supported by floral structural features, including the presence of functionally and morphologically unisexual flowers, a massive thecal septum that persists after anther dehiscence, styles radiating outward from the ovary, two lateral ovules per carpel, positioned one above the other, conspicuous longitudinal ribs on the ovary wall at anthesis, and a ‘false endothelium’ on the nucellus at anthesis. Additionally, the group fits well in Malpighiales and further emphasizes the relationship of Malpighiales with Celastrales and Oxalidales, and thus the unity of the COM clade. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 170 , 299–392.  相似文献   

3.
Floral morphology, anatomy and histology in the newly circumscribed order Celastrales, comprising Celastraceae, Parnassiaceae and Lepidobotryaceae are studied comparatively. Several genera of Celastraceae and Lepidobotrys (Lepidobotryaceae) were studied for the first time in this respect. Celastraceae are well supported as a group by floral structure (including genera that were in separate families in earlier classifications); they have dorsally bulged‐up locules (and thus apical septa) and contain oxalate druses in their floral tissues. The group of Celastraceae and Parnassiaceae is also well supported. They share completely syncarpous gynoecia with commissural stigmatic lobes (and strong concomitant development of the commissural vascular bundles but weak median carpel bundles), only weakly crassinucellar or incompletely tenuinucellar ovules with an endothelium, partly fringed sepals and petals, protandry in bisexual flowers combined with herkogamy by the movement of stamens and anther abscission, and stamens fused with the ovary. In contrast, Lepidobotryaceae are more distant from the other two families, sharing only a handful of features with Celastraceae (not Parnassiaceae), such as pseudohermaphroditic flowers, united stamen bases forming a collar around the gynoecium and seeds with a conspicuous aril. However, all three families together are also somewhat supported as a group and share petals that are not retarded in late floral bud development, 3‐carpellate gynoecia, ventral slits of carpels closed by long interlocking epidermal cells and pollen tube transmitting tissue encompassing several cell layers, both integuments usually more than two cell layers thick, and only weak or lacking floral indumentum. In some molecular analyses Celastrales form an unsupported clade with Malpighiales and Oxalidales. This association is supported by floral structure, especially between Celastrales and Malpighiales. Among Celastrales, Lepidobotryaceae especially share special features with Malpighiales, including a diplostemonous androecium with ten fertile stamens, epitropous ovules with an obturator and strong vascularization around the chalaza. © 2005 The Linnean Society of London, Botanical Journal of the Linnean Society, 2005, 149 , 129–194.  相似文献   

4.
Anacardiaceae and Burseraceae are traditionally distinguished by the number of ovules (1 vs. 2) per locule and the direction of ovule curvature (syntropous vs. antitropous). Recent molecular phylogenetic studies have shown that these families are sister groups in Sapindales after having been separated in different orders for a long time. We present a comparative morphological study of the flower structure in both families. The major clades, usually supported in molecular phylogenetic analyses, are well supported by floral structure. In Anacardiaceae, there is a tendency to gynoecium reduction to a single fertile carpel (particularly in Anacardioideae). The single ovule has a long and unusually differentiated funicle, which connects with the stylar pollen tube transmitting tract in all representatives studied. In Anacardiaceae–Spondiadoideae, there is a tendency to form an extensive synascidiate zone, with a massive remnant of the floral apex in the centre; these features are also present in Beiselia (Burseraceae) and Kirkiaceae (sister to Anacardiaceae plus Burseraceae) and may represent a synapomorphy or apomorphic tendency for the three families. In core Burseraceae, gynoecium structure is much less diverse than in Anacardiaceae and has probably retained more plesiomorphies. Differences in proportions of parts of the ovules in Anacardiaceae and Burseraceae are linked with the different direction of ovule curvature. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 159 , 499–571.  相似文献   

5.
Chrysobalanaceae s.l. , one of the few suprafamilial subclades of Malpighiales that is supported by molecular phylogenetic analyses, and containing Chrysobalanaceae, Dichapetalaceae, Euphroniaceae, and Trigoniaceae, was comparatively studied with regard to floral structure. The subclade is well supported by floral structure. Potential synapomorphies for Chrysobalanaceae s.l. are the following shared features: floral cup; flowers obliquely monosymmetric; sepals congenitally united at base; sepals of unequal size (outer two shorter); fertile stamens concentrated on the anterior side of the flower and sometimes united into a strap; staminodes absent in the posteriormost antepetalous position; anthers extremely introrse, with thecae almost in one plane; endothecium continuous over the dorsal side of the connective; dorsal anther pit; gynoecium completely syncarpous up to the stigma; carpel flanks slightly bulged out transversely and thus carpels demarcated from each other by a longitudinal furrow; flowers with dense unicellular, non-lignified hairs, especially on the gynoecium; light-coloured, dense indumentum on young shoots and inflorescences. Potential synapomorphies for Chrysobalanaceae + Euphroniaceae include: spur in floral cup; clawed petals; lignified hairs on petals; nectary without lobes or scales and mostly annular. Potential synapomorphies for Dichapetalaceae + Trigoniaceae include: special mucilage cells in sepals in mesophyll (in addition to epidermis); anthers almost basifixed; gynoecium synascidiate up to lower style; nectary with lobes or scales and semi-annular.  © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society , 2008, 157 , 249–309.  相似文献   

6.
Within the rosid order Malpighiales, Rhizophoraceae and Erythroxylaceae (1) are strongly supported as sisters in molecular phylogenetic studies and possibly form a clade with either Ctenolophonaceae (2) or with Linaceae, Irvingiaceae and Caryocaraceae (less well supported) (3). In order to assess the validity of these relationships from a floral structural point of view, these families are comparatively studied for the first time in terms of their floral morphology, anatomy and histology. Overall floral structure reflects the molecular results quite well and Rhizophoraceae and Erythroxylaceae are well supported as closely related. Ctenolophonaceae share some unusual floral features (potential synapomorphies) with Rhizophoraceae and Erythroxylaceae. In contrast, Linaceae, Irvingiaceae and Caryocaraceae are not clearly supported as a clade, or as closely related to Rhizophoraceae and Erythroxylaceae, as their shared features are probably mainly symplesiomorphies at the level of Malpighiales or a (still undefined) larger subclade of Malpighales, rather than synapomorphies. Rhizophoraceae and Erythroxylaceae share (among other features) conduplicate petals enwrapping stamens in bud, antepetalous stamens longer than antesepalous ones, a nectariferous androecial tube with attachment of the two stamen whorls at different positions: one whorl on the rim, the other below the rim of the tube, the ovary shortly and abruptly dorsally bulged and the presence of a layer of idioblasts (laticifers?) in the sepals and ovaries. Ctenolophonaceae share with Rhizophoraceae and/or Erythroxylaceae (among other features) sepals with less than three vascular traces, a short androgynophore, an ovary septum thin and severed or completely disintegrating during development, leading to a developmentally secondarily unilocular ovary, a zigzag‐shaped micropyle and seeds with an aril. Special features occurring in families of all three groupings studied here are, for example, synsepaly, petals not retarded and thus forming protective organs in floral bud, petals postgenitally fused or hooked together in bud, androecial tube and petals fusing above floral base, androecial corona, apocarpous unifacial styles, nucellus thin and long, early disintegrating (before embryo sac is mature), and nectaries on the androecial tube. Some of these features may be synapomorphies for the entire group, if it forms a supported clade in future molecular studies, or for subgroups thereof. Others may be plesiomorphies, as they also occur in other Malpighiales or also in Celastrales or Oxalidales (COM clade). The occurrence of these features within the COM clade is also discussed. © 2011 The Linnean Society of London, Botanical Journal of the Linnean Society, 2011, 166 , 331–416.  相似文献   

7.
Floral structure of all putative families of Crossosomatales as suggested by molecular studies was comparatively studied. The seven comprise Crossosomataceae, Stachyuraceae, Staphyleaceae, Aphloiaceae, Geissolomataceae, Ixerbaceae, and Strasburgeriaceae. The entire clade (1) is highly supported by floral structure, also the clades (in sequence of diminishing structural support): Ixerbaceae/Strasburgeriaceae (2), Geissolomataceae/Ixerbaceae/Strasburgeriaceae (3), Aphloiaceae/Geissolomataceae/Ixerbaceae/Strasburgeriaceae (4), and Crossosomataceae/Stachyuraceae/Staphyleaceae (5). Among the prominent floral features of Crossosomatales (1) are solitary flowers, presence of a floral cup, imbricate sepals with outermost smaller than inner, pollen grains with horizontally extended endoapertures, shortly stalked gynoecium, postgenitally united carpel tips forming a compitum, stigmatic papillae two‐ or more‐cellular, ovary locules tapering upwards, long integuments forming zigzag micropyles, cell clusters with bundles of long yellow crystals, mucilage cells, seeds with smooth, sclerified testa and without a differentiated tegmen. Clade (2) is characterized by large flowers, petals forming a tight, pointed cone in bud, stamens with long, stout filaments and sagittate anthers, streamlined, conical gynoecium, antitropous ovules, rudimentary aril, lignified, unicellular, T‐shaped hairs and idioblasts with striate mucilaginous cell walls. Clade (3) is characterized by alternisepalous carpels, punctiform stigma formed by postgenitally united and twisted carpel tips, synascidiate ovary, only one or two pendant ovules per carpel, nectary recesses between androecium and gynoecium. Clade (4) is characterized by pronounced ‘pollen buds’. Clade (5) is characterized by polygamous or functionally unisexual flowers, x‐shaped anthers, free and follicular carpels (not in Stachyuraceae). Crossosomataceae and Aphloiaceae, although not retrieved as a clade in molecular studies, share several special floral features: polystemonous androecium; basifixed anthers without a connective protrusion; stigma with two more or less decurrent crests; camplyotropous ovules and reniform seeds; simple, disc‐shaped nectaries and absence of hairs. © 2005 The Linnean Society of London, Botanical Journal of the Linnean Society, 2005, 147 , 1–46.  相似文献   

8.
9.
The floral development of two Clematis species and four Anemone species (including Pulsatilla) (Anemoneae, Ranunculaceae) is described. Shared features are: (1) sepals shortly after initiation broad, crescent‐shaped, as opposed to the other organs, which are narrow and hemispherical; (2) outermost organs of the androecium often smaller than the others and sometimes sterile; (3) carpels ascidiate, with distinctive stalk, stigma papillate, decurrent; the carpels have one median fertile ovule and a few lateral sterile ovules in all species studied; the fertile ovule appears before the carpel closes. Generic differences are: (1) In Clematis, four sepals are initiated in two pairs; sometimes one of the sepals in the second pair appears to be divided into two organs (double position) resulting in a pentamerous perianth; the first eight stamens are positioned in two alternating whorls, the outer whorl alternating with the four sepals. In Anemone, the perianth organs, if five, are initiated in spiral sequence; in the Pulsatilla group of Anemone, six sepals are initiated in two whorls; the first three organs of the androecium (staminodes) alternate with the inner sepals. (2) Further androecial organs are mostly in complex whorls (i.e. including double positions) in Clematis, but in an irregular spiral or in irregular complex whorls in Anemone. (3) Anther maturation is largely centripetal in Clematis, but centrifugal or bidirectional in Anemone. In Clematis macropetala, the outermost organs of the androecium lack anthers and the filaments expand and become petal‐like. In contrast, in the Pulsatilla group of Anemone, these organs retain sterile anthers and become small, capitate organs. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 162 , 77–100.  相似文献   

10.
The flowers of Dichorisandra thyrsiflora (Commelinaceae) are monosymmetric and composed of three sepals, three petals, six stamens, and three connate carpels. The anthers are poricidal and possess a wall of five cell layers (tapetum included). This type of anther wall, not previously observed in the Commelinaceae, is developmentally derived from the monocotyledonous type via an additional periclinal division and the persistence of the middle layers through anther dehiscence. Secondary endothecial thickenings develop in the cells of the two middle layers only. The tapetum is periplasmodial and contains raphides. Microsporogenesis is successive and yields both decussate and isobilateral tetrads. Pollen is shed as single binucleate grains. The gynoecium is differentiated into a globose ovary, hollow elongate style, and trilobed papillate stigma. Each locule contains six to eight hemianatropous to slightly campylotropous crassinucellar ovules with axile (submarginal) placentation. The ovules are bitegmic with a slightly zig-zag micropyle. Megagametophyte development is of the Polygonum type. The mature megagametophyte consists of an egg apparatus and fusion nucleus; the antipodals having degenerated. The floral vasculature is organized into an outer and inner system of bundles in the pedicel. The outer system becomes ventral carpellary bundles. All other floral vascular traces originate from the inner system.  相似文献   

11.
The Balanopaceae, whose flowers were poorly known, have, in the past, been variously allocated to the Fagales, Euphorbiaceae, Salicales or other hamamelids and rosids (these groups being in Fagales, Malpighiales and Saxifragales, according to the Angiosperm Phylogeny Group). This paper attempts a clarification based on flower morphology. Female flowers and cupules were studied in Balanops vieillardii, young fruits in B. australiana. The cupules are simple involucres of bracts which are spirally arranged (according to a Fibonacci pattern) on the floral axis preceding the flower. They contrast with the complicated cupules of Fagaceae which consist of a condensed cymose ramification system of axes of several orders around the flower. Flowers appear later than most of the cupular bracts, in contrast to Fagaceae. In addition to a terminal flower there may be several smaller lateral flowers in the axil of cupular bracts, each surrounded by its own small cupule. The female flowers do not have a perianth. They consist of two to three large carpels. At anthesis, the ovary is completely septate; the syncarpous part (ovary and lower style) is completely symplicate. The carpels are free for most of their length, with the free parts once, twice or three times bifurcate, in contrast to simple in Fagales. The stigmatic surface covers the ventral side of each stigmatic branch and at the margins also spreads to the dorsal side. The stigma is wet and secretion appears holocrine. The two ovules per carpel are collateral and axile in early development. However, at anthesis they appear one above the other, because in one ovule the funicle greatly elongates. As the ovary elongates only above the placenta, the ovules appear basal at anthesis. The ovules are (weakly) crassinucellar, bitegmic (not unitegmic), anatropous, and intermediate between apotropous and epitropous (not apotropous). The ovules are mature at anthesis, in contrast to Fagales. In mature ovules the upper part of the nucellus disintegrates, and a weakly differentiated endothelium is present in the inner integument. The morphological results of this study support a position of Balanopaceae in Malpighiales, and not Fagales or other orders, and are thus in accordance with recent molecular results based on chloroplast rbcL sequences data. However, within Malpighiales, as opposed to molecular results, Balanopaceae agree more with Euphorbiaceae s.l. than with Dichapetalaceae/Trigoniaceae and Chrysobalanaceae/Euphroniaceae.  相似文献   

12.
13.
Flowers of Anisophyllea(Anisophylleaceae, Cucurbitales) andCeratopetalum(Cunoniaceae, Oxalidales) are surprisingly similar in appearance.To date, these families have never been interpreted as closelyrelated, and even in present molecular (rbcL) studies they appearin different orders of eurosids I (APG, Annals of the MissouriBotanical Garden85:531–553, 1998). In this investigation,flowers of selected taxa of both families are morphologicallyand anatomically compared. In addition, previous work on thetwo families is reviewed. The results strongly emphasize thegreat similarity in all floral organs. Some special similaritiesinclude the occurrence of trimerous flowers, isomerous organwhorls (including the gynoecium), valvate sepals, digitate petals,obdiplostemony, incurved filaments in bud with similar anthers,similar pollen, similar nectaries, carpels with free styles,a canal in the centre of each individual carpel as well as inthe centre of the entire gynoecium along the symplicate zone,and similar ovules with a slit-shaped micropyle. In addition,recently recovered Late Cretaceous floral fossils that sharefeatures of both families further emphasize a potential closerelationship. However, if more extensive molecular studies areperformed in the future that support the current disparate positionof the two families, then an explanation of the biological/functionalsimilarities in floral structure should be attempted: specifically,whether this suite of features is a symplesiomorphy for basalrosids, or an autapomorphy for each family. Copyright 2001 Annalsof Botany Company Anisophylleaceae, Cucurbitales, Cunoniaceae, eudicots, floral structure, molecular systematics, Myrtales, Oxalidales, Saxifragales  相似文献   

14.
Cardiopteris is unique in the expanded Cardiopteridaceae for several distinctive features, including its gynoecial structure and ovular morphology. We studied the floral development of Cardiopteris to clarify floral morphology and document floral development. Cardiopteris has three carpel primordia, which are separate at their tips but congenitally fused at their bases. The synascidiate zone (the fused proximal part) develops into the unilocular ovary; the three discrete carpel apices diverge in development: the apex of the adaxial carpel differentiates into a style and stigma, while the apices of the two lateral-abaxial carpels elongate and develop into a fleshy appendage only after fertilization. The ovules are attached to the lateral-abaxial carpels. At anthesis, the ovules are ategmic and orthotropous without funicles (morphologically undifferentiated). Functional differentiation occurs in the three carpels of Cardiopteris: the adaxial one is the site of pollination, while the lateral-abaxial two produce ovules. The ategmic orthotropous ovule is unusual in Cardiopteridaceae and is an apomorphy of Cardiopteris.  相似文献   

15.
We describe in detail the floral ontogeny of Nymphaea tetragona from a wild population to provide evidence regarding the phylogenetic position of Nymphaea and to reveal evolutionary trends of flowers in Nymphaeaceae by comparison with that of the other genera. Four sepals are initiated unidirectionally. The basal petals are initiated unidirectionally and alternate with the sepals. The dome‐shaped floral apex continues to expand and produces more petal and stamen primordia. The remaining petals and all stamens are initiated in spirals or whorls. Later, the periphery of the floral apex grows more quickly than the centre and results in a depression in the centre of the apex after all stamens have been initiated. Carpels are simultaneously initiated in a cycle at the periphery of the depression. They are ascidiate. After all organs have been initiated, the centre of the depression on the floral apex grows and develops into a globular structure. The connected inferior ovary, stigma caps and the globular floral apex together form an extragynoecial compitum. Within Nymphaeaceae, the floral ontogeny of Nymphaea is most similar to that of Euryale and Victoria. It differs more from Ondinea and Barclaya, and differs most from Nuphar. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 159 , 211–221.  相似文献   

16.
Female flower and fruit anatomy, including vasculature, are studied for the first time in Tetroncium (Juncaginaceae: Alismatales). Other members of Juncaginaceae (and the relatively close Maundiaceae) possess a peculiar type of gynoecium with pronounced carpel fusion via the floral centre. Their carpels are supplied by individual vascular traces and can be interpreted either as synascidiate (if viewed as horizontally inserted) or free and plicate (if viewed as obliquely inserted on an elongated receptacle). In Tetroncium, the gynoecium is tetracarpellate and clearly has a well‐developed synascidiate zone with septa formed by united flanks of adjacent carpels. The gynoecium of Tetroncium is supplied by a common ring of vascular tissue that splits into dorsal and heterocarpellary ventral (synventral) bundles, a condition that can be expected in a typical syncarpous gynoecium. The fruit is indehiscent and contains one or two seeds. The syncarpy of Tetroncium is of functional significance for fruit formation, as it allows the thin septa to be distorted, thus providing more space for the developing seed(s). The occurrence of typical syncarpy in Tetroncium provides further evidence for the highly homoplastic evolution of gynoecium characters in the early‐divergent monocot order Alismatales. Either the similarity between gynoecia of Maundiaceae and Triglochin (Juncaginaceae) is due to parallel evolution or the syncarpy of Tetroncium should be viewed as secondarily derived. In the latter scenario, fusion via the floral centre is probably a synapomorphy of core Alismatales (Helobiae) and more typical syncarpy evolved independently in several lineages, such as Scheuchzeria, Tetroncium and Butomus/Hydrocharitaceae. In total, Tetroncium differs from other Juncaginaceae in 13 structural characters, including ensiform leaves that are similar to those of Tofieldiaceae. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 712–724.  相似文献   

17.
Scanning electron microscopical investigations of flower buds of the perennial herbBergenia cordifolia (Haw.)A. Br. (Saxifragaceae) reveal a primitive gynoecium. During ontogenesis the margins of the carpel lamina transgress on the apical cone of the axis by meristem incorporation and finally fuse with the margins of the opposite carpel. These processes of meristem incorporation and fusion first lead to gamophylly and furthermore to carpel peltation, as is demonstrated by SEM-photographs (ring-shaped dike and common septum of the two carpels). As a result of carpel peltation, the lowest point of the septum deliminates the synascidiate zone. Above this point, the symplicate and, eventually, the plicate zone follows (vid. ventral suture). The margins of the carpel lamina merely touch each other without being coalesced. The preparation of a window in the carpel's dorsal side permits a look at a massive lateral placenta (Leinfellner 1951) developing the ovules. In the lower third—in lateral position at the placenta's margin—the first ovules are seen, the next ones follow in acropetal and basipetal direction, as well as to the periphery of the placenta.
  相似文献   

18.
The multi-ovulate pomoids, Chaenomeles, Cydonia, and Docynia, all have closed sutures and extensive fusion between carpel and floral cup and between ovular and wing bundles. Although the ovules in Docynia are generally apotropic and few in number (4–7), the ovules in the other two genera are pleurotropic and numerous (15–48). A statistical treatment of the whole tribe of Pomoideae shows that in carpels with open sutures ovular and wing bundles definitely tend to be separate while in those with closed sutures these bundles tend to be fused. To a lesser degree carpels with open sutures also tend to have bitegmic ovules, separate carpels, and a lesser extent of fusion between carpel and floral cup, while carpels with closed sutures tend to have monotegmic ovules, united carpels, and a greater extent of fusion between carpel and floral cup.  相似文献   

19.
灌木铁线莲(毛茛科)花器官的发生与发育   总被引:1,自引:1,他引:0  
用扫描电子显微镜(SEM)对铁线莲属(Clematis L.)植物灌木铁线莲(C. fruticosa Turcz.)花的形态发生和发育过程进行了观察。灌木铁线莲花原基形成后,4枚萼片以交互对生的方式首先发生,呈轮状排列。最早的4枚雄蕊原基在4枚萼片交接的位置上近螺旋状发生,此后,随着雄蕊原基的向心发生和数目不断增多,其发生的螺旋状序列逐渐明显。雄蕊原基发生后,在花原基顶端,心皮原基沿着雄蕊原基的发生序列呈螺旋状发生。本文结果支持在原始被子植物花中螺旋状排列和轮状排列同时存在的观点。此外,本文也进一步证实了花萼与苞片的同源性。  相似文献   

20.
Gynoecium diversity and systematics in basal monocots   总被引:5,自引:0,他引:5  
Gynoecium and ovule structure was comparatively studied in representatives of the basal monocots, including Acorales (Acoraceae), Alismatales (Araceae, Alismataceae, Aponogetonaceae, Butomaceae, Hydrocharitaceae, Junc‐aginaceae, Limnocharitaceae, Potamogetonaceae, Scheuchzeriaceae, Tofieldiaceae), Dioscoreales (Dioscoreaceae, Taccaceae), and Triuridaceae as a family of uncertain position in monocots. In all taxa studied the carpels or gynoecia are closed at anthesis. This closure is attained in different ways: (1) by secretion without postgenital fusion (Araceae, Hydrocharitaceae); (2) by partly postgenitally fused periphery but with a completely unfused canal (Alismataceae, Aponogetonaceae, Butomaceae, Limnocharitaceae, Scheuchzeriaceae, Dioscoreaceae, Taccaceae); (3) by completely postgenitally fused periphery but with an unfused canal in the centre (Acoraceae, Tofieldiaceae); (4) by complete postgenital fusion and without an (unfused) canal (Juncaginaceae, Potamogetonaceae). In many Alismatales (but without Araceae) carpels have two lateral lobes. The stigmatic surface is restricted to the uppermost part of the ventral slit (if the carpel is plicate); it is never distinctly double‐crested (Butomaceae?). Stigmas are commonly unicellular‐papillate and secretory in most taxa. The locules are filled with a (often) mucilaginous secretion in a number of taxa. Superficial (probably intrusive) ethereal oil cells were found in the carpel wall of Acorus gramineus (as in Piperales!). Idioblasts in carpels are otherwise rare. A number of basal monocots has orthotropous ovules, which is perhaps the plesiomorphic condition in the group. The presence of almost tenuinucellar (pseudocrassinucellar) ovules is relatively common (Acoraceae, many Araceae, some Alismatales s.s.), whereas completely tenuinucellar ovules are rare and do not characterize larger groups. However, crassinucellar ovules occur in the largest number of families among the study group (basal Araceae, many Alismatales s.s.) The outer integument is always annular in orthotropous ovules. The inner integument is often lobed and it mostly forms the micropyle, whereas the outer integument is always unlobed. Gynoecium structure supports the isolated position of Acoraceae as sister to all other monocots. However, in an overall view, if compared with all other families, Acoraceae clearly shows the greatest similarities with Araceae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号