首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lespedeza (tribe Desmodieae, Fabaceae) follows a disjunct distribution in eastern Asia and eastern North America. Phylogenetic relationships among its species and related taxa were inferred from nuclear ribosomal internal transcribed spacer (ITS) and plastid sequences (trnH‐psbA, psbK‐psbI, trnK‐matK and rpoC1). We examined 35 species of Lespedeza, two of Kummerowia and one of Campylotropis, the sole constituents of the Lespedeza group. An analysis of these data revealed that the genus Campylotropis is sister to the other two genera. However, we were unable to resolve the relationships between Kummerowia and Lespedeza in the strict consensus trees of parsimony analyses based on plastid and combined DNA data. In the genus Lespedeza, the Old World subgenus Macrolespedeza is monophyletic, whereas the transcontinental subgenus Lespedeza is paraphyletic. Monophyly of eastern Asian species and of North American species is strongly supported. Although inconsistent with the traditional classification, this phylogenetic finding is consistent with seedling morphology. Three subgroups recognized in subgenus Macrolespedeza were unresolved in our phylogenetic trees. An incongruence length difference (ILD) test indicated that the two partitions (nuclear ITS and plastid sequences) were significantly incongruent, perhaps because of hybridization between species in Lespedeza. Most of the primary clades of tribe Desmodieae are Asian, implying that the relatively few New World ones, such as those in Lespedeza, are more recently derived from Asia. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 164 , 221–235.  相似文献   

2.
The nuclear encoded internal transcribed spacer (ITS) region and the plastid encoded trnL-F region were sequenced for 25 populations of Korthalsella, a genus of reduced, monoecious, Old World misletoes. The molecular study confirms the hypothesis that branch shape and cladotaxy (the arrangement of branches with respect to their parent axis) are unreliable indicators of relationship in the genus and demonstrates that many of the taxa previously recognized are not monophyletic. Both gene regions identify three major subgroups within the genus and find lower level relationships within these subgroups highly correlated with geographic distance. An analysis based upon 18S and rbcL sequences identifies Ginalloa as the sister group to Korthalsella, which together with the branching order within the genus, indicates that Korthalsella originated in Papuasia and aids in elucidating evolution of the peculiar inflorescence structure. There are problems associated with species delimitation when evolutionary units are more restricted than morphological lineages, and justification is offered for recognizing only morphologically diagnosable monophyletic lineages as species. Varying substitution rates and differing modes of inheritance in ITS and trnL-F result in complementary utility of the two regions for elucidating infrageneric relationships in Korthalsella.  相似文献   

3.
4.
We used nuclear ribosomal DNA internal transcribed spacer region (ITS 1 - 5.8S - ITS 2; ITS) sequences to generate the first phylogeny of Rubus based on a large, molecular data set. We sampled 57 taxa including 20 species of subgenus Rubus (blackberries), one to seven species from each of the remaining 11 subgenera, and the monotypic and closely related Dalibarda. In Rubus, ITS sequences are most informative among subgenera, and variability is low between closely related species. Parsimony analysis indicates that Rubus plus Dalibarda form a strongly supported clade, and D. repens may nest within Rubus. Of the subgenera with more than one species sampled, only subgenus Orobatus appears monophyletic. Three large clades are strongly supported: one contains all sampled species of nine of the 12 subgenera; another includes extreme Southern Hemisphere species of subgenera Comaropsis, Dalibarda, and Lampobatus; and a third clade consists of subgenus Rubus plus R. alpinus of subgenus Lampobatus. Rubus ursinus appears to be a hybrid between a close relative of R. macraei (subgenus Idaeobatus, raspberries) and an unidentified subgenus Rubus species. ITS sequences are generally consistent with biogeography and ploidy, but traditionally important morphological characters, such as stem armature and leaf type, appear to have limited phylogenetic value in Rubus.  相似文献   

5.
Cicer L. (Leguminosae: Papilionoideae) consists of 42 species of herbaceous or semi-shrubby annuals and perennials distributed throughout the temperate zones of the Northern Hemisphere. The origin and geographical relationships of the genus are poorly understood. We studied the geographical diversification and phylogenetic relationships of Cicer using DNA sequence data sampled from two plastid regions, trnK / matK and trnS - trnG , and two nuclear regions, the internal transcribed spacer (ITS) and external transcribed spacer (ETS) regions of nuclear ribosomal DNA, from 30 species. The results from the phylogenetic analyses of combined nuclear and chloroplast sequence data revealed four well-supported geographical groups: a Middle Eastern group, a West-Central Asian group, an Aegean–Mediterranean group, and an African group. Age estimates for Cicer based on methods that do not assume a molecular clock (for example, penalized likelihood) demonstrate that the genus has a Mediterranean origin with considerable diversification in the Miocene/Pliocene epochs. Geological events, such as mountain orogenesis and environmental changes, are major factors for the dispersal of Cicer species. The early divergence of African species and their geographically distinct region in the genus suggest a broader distribution pattern of the genus in the past than at present.  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society, 2007, 154 , 175–186.  相似文献   

6.
Incongruence between phylogenetic estimates based on nuclear and chloroplast DNA (cpDNA) markers was used to infer that there have been at least two instances of chloroplast transfer, presumably through wide hybridization, in subtribe Helianthinae. One instance involved Simsia dombeyana, which exhibited a cpDNA restriction site phenotype that was markedly divergent from all of the other species of the genus that were surveyed but that matched the restriction site pattern previously reported for South American species of Viguiera. In contrast, analysis of sequence data from the nuclear ribosomal DNA internal transcribed spacer (ITS) region showed Simsia to be entirely monophyletic and placed samples of S. dombeyana as the sister group to the relatively derived S. foetida, a result concordant with morphological information. A sample of a South American species of Viguiera was placed by ITS sequence data as the sister group to a member of V. subg. Amphilepis, which was consistent with cpDNA restriction site data. Samples of Tithonia formed a single monophyletic clade based on ITS sequence data, whereas they were split between two divergent clades based on cpDNA restriction site analysis. The results suggested that cpDNA transfer has occurred between taxa diverged to the level of morphologically distinct genera, and highlight the need for careful and complete assessment of molecular data as a source of phylogenetic information.  相似文献   

7.
Liu Q  Ge S  Tang H  Zhang X  Zhu G  Lu BR 《The New phytologist》2006,170(2):411-420
To estimate the phylogenetic relationship of polyploid Elymus in Triticeae, nuclear ribosomal internal transcribed spacer (ITS) and chloroplast trnL-F sequences of 45 Elymus accessions containing various genomes were analysed with those of five Pseudoroegneria (St), two Hordeum (H), three Agropyron (P) and two Australopyrum (W) accessions. The ITS sequences revealed a close phylogenetic relationship between the polyploid Elymus and species from the other genera. The ITS and trnL-F trees indicated considerable differentiation of the StY genome species. The trnL-F sequences revealed an especially close relationship of Pseudoroegneria to all Elymus species included. Both the ITS and trnL-F trees suggested multiple origins and recurrent hybridization of Elymus species. The results suggested that: the St, H, P, and W genomes in polyploid Elymus were donated by Pseudoroegneria, Hordeum, Agropyron and Australopyrum, respectively, and the St and Y genomes may have originated from the same ancestor; Pseudoroegneria was the maternal donor of the polyploid Elymus; and some Elymus species showed multiple origin and experienced recurrent hybridization.  相似文献   

8.
The putative complexity of Combretaceae and lack of information on phylogenetic relationships within the family led us to explore relationships between genera of Combretaceae by means of combined analyses of plastid and nuclear sequences. We collected DNA sequence data from the nuclear ribosomal internal transcribed spacer region and plastid rbcL, psaA‐ycf3 spacer and psbA‐trnH spacer for 14 of the 17 genera of Combretaceae. The current classification of the family into two subfamilies, Strephonematoideae and Combretoideae, is corroborated. Within Combretoideae, division into two tribes, Laguncularieae and Combreteae, is strongly supported. Within Combreteae subtribe Terminaliinae, relationships between genera are largely unresolved. Terminalia is not supported as monophyletic and two groups were identified, one containing mainly African species and another of mostly Asian species. Pteleopsis, Buchenavia and Anogeissus are embedded within Terminalia, and we suggest that all genera of Terminaliinae, with the exception of Conocarpus, should be included in an expanded circumscrition of Terminalia. Within subtribe Combretinae, a clade formed by the two monotypic genera Guiera and Calycopteris is sister to the rest of the subtribe. Groupings in Combretinae are consistent with recent results based on morphological data. Combretum is currently divided into three subgenera: Apethalanthum, Cacoucia and Combretum. The last two were included in this study and supported as monophyletic if Quisqualis is included within subgenus Cacoucia. Meiostemon is sister to subgenus Combretum. We recommend that subgenus Combretum should be expanded to include Meiostemon and subgenus Cacoucia to include Quisqualis. The sectional classification within Combretum proposed in earlier morphological studies is confirmed except for the exclusion of C. imberbe from section Hypocrateropsis in a separate and monotypic section and the inclusion of C. zeyheri (section Spathulipetala) in section Macrostigmatea. In order to accommodate C. imberbe, a new section is suggested. The reinstatement of previously recognized sections Grandiflora and Trichopetala, both of which had been sunk into subgenus Cacoucia section Poivrea, is proposed. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 162 , 453–476.  相似文献   

9.
Phylogenetic relationships of 38 species of the Alibertia group (Rubiaceae) and two outgroup species were investigated using the nuclear ribosomal 5S nontranscribed spacer (5S-NTS) and the internal transcribed spacers (ITS). Analysis of the data sets separately and in combination resulted in several well-supported and congruent groupings. However, the three analyses yielded different results as to the branching order of the basal clades. With the exception of Alibertia hispida, the species in the genus Alibertia appear in one weakly to moderately supported clade. This clade is in turn composed of two strongly supported subclades. One comprises several Alibertia species, including the type (A. edulis), three Borojoa species, and Randia tessmannii. The other subclade consists of Alibertia species only. This division is also generally supported morphologically by fruit size, corolla size, number of corolla lobes, and pollen aperture (porate vs. colporate). The sister group to the Alibertia clade comprises Duroia with Amaioua species internested. The close relationship of Ibetralia and Kutchubaea is corroborated. In addition, Alibertia hispida is a member of this strongly supported clade. Likewise, the two "Genipa" species are supported as a monophyletic group in 100% of the bootstrap replicates. It is concluded that the 5S spacer is superior to the commonly used ITS region in terms of resolution and robustness among closely related taxa.  相似文献   

10.
The phylogenetic relationships among sexually reproducing species of Antennaria (Asteraceae) are poorly understood. An earlier cladistic analysis based on morphology did not fully resolve the phylogeny of these taxa and therefore a different approach using molecular data was explored. The internal transcribed spacer regions (ITS-1 and ITS-2) of nuclear ribosomal DNA were sequenced for 30 species of Antennaria and one species from each of the outgroup genera Anaphalis, Ewartia, Leontopodium, and Pseudognaphalium. The ITS-1 sequence in Antennaria ranged from 253 to 260 base pairs (bp) in length, and the proportion of nucleotide differences between pairs of species of Antennaria ranged from 1 to 14%. For ITS-2, the divergence between pairs of species of Antennaria ranged from 0 to 8%. ITS-2 is shorter than ITS-1, ranging from 213 to 219 bp. Phylogenetic analysis indicates that, relative to the outgroups included, Antennaria is a well-supported monophyletic group. Based on the genera surveyed, Leontopodium appears to be the sister genus of Antennaria. The general topology of the molecular trees agrees with that based on previous morphological analyses and indicates that Antennaria is composed of six clades of equal rank, corresponding to the traditionally recognized informal groups, the Geyeriae, Argenteae, Arcuatae, Dimorphae, Pulcherrimae, and Catipes. Sequence and morphological data indicate that the Alpinae and Dioicae are unnatural, polyphyletic units that should be abandoned and redefined as the monophyletic Catipes group. Phylogenetic analysis of ITS sequences also suggests the dissociation of A. stenophylla from the Dimorphae, where it is traditionally placed, and its affiliation with the Argenteae, as well as the placement of A. arcuata in its own group.  相似文献   

11.
12.
The phylogenetic relationships of subtribe Chloraeinae, a group of terrestrial orchids endemic to southern South America, have not been satisfactorily investigated. A previous molecular phylogenetic analysis based on plastid DNA supported the monophyly of Chloraeinae and Gavilea, but showed that Chloraea is non‐monophyletic and that the sole species of Bipinnula analysed is sister to Geoblasta. However, that analysis included only 18 of the 73 species belonging to this subtribe. Here, the phylogenetic relationships of Chloraeinae were assessed by analysing aproximately 7500 bp of nucleotide sequences from nuclear ribosomal internal transcribed spacer (ITS) and plastid DNA (rbcL, matK, trnL‐trnF, rpoB‐trnC) for 42 species representing all four currently accepted genera of Chloraeinae and appropriate outgroups. Nuclear and plastid data were analysed separately and in combination using two different methods, namely parsimony and Bayesian inference. Our analyses support the monophyly of Chloraeinae and their inclusion in an expanded concept of Cranichideae, but none of the genera of Chloraeinae that includes more than one species is monophyletic. Gavilea and Bipinnula are paraphyletic, with Chloraea chica nested in Gavilea and Geoblasta penicillata in Bipinnula. As currently delimited, Chloraea is polyphyletic. The taxonomic changes proposed recently are for the most part not justifiable on phylogenetic grounds, except for recognition of the monotypic genus Correorchis. The lack of resolution for the relationships among species of ‘core’Chloraea suggests a relatively recent diversification of this group. The current generic classification is in need or revision, but additional study is advisable before carrying out further taxonomic changes. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 168 , 258–277.  相似文献   

13.
Internal transcribed spacer (ITS-1) sequences from 97 accessions representing 23 species of Lactuca and related genera were determined and used to evaluate species relationships of Lactuca sensu lato (s.l.). The ITS-1 phylogenies, calculated using PAUP and PHYLIP, correspond better to the classification of Feráková than to other classifications evaluated, although the inclusion of sect. Lactuca subsect. Cyanicae is not supported. Therefore, exclusion of subsect. Cyanicae from Lactuca sensu Feráková is proposed. The amended genus contains the entire gene pool (sensu Harlan and De Wet) of cultivated lettuce (Lactuca sativa). The position of the species in the amended classification corresponds to their position in the lettuce gene pool. In the ITS-1 phylogenies, a clade with L. sativa, L. serriola, L. dregeana, L. altaica, and L. aculeata represents the primary gene pool. L. virosa and L. saligna, branching off closest to this clade, encompass the secondary gene pool. L. virosa is possibly of hybrid origin. The primary and secondary gene pool species are classified in sect. Lactuca subsect. Lactuca. The species L. quercina, L. viminea, L. sibirica, and L. tatarica, branching off next, represent the tertiary gene pool. They are classified in Lactuca sect. Lactucopsis, sect. Phaenixopus, and sect. Mulgedium, respectively. L. perennis and L. tenerrima, classified in sect. Lactuca subsect. Cyanicae, form clades with species from related genera and are not part of the lettuce gene pool.  相似文献   

14.
Melanthiaceae (Liliales) comprise 17 genera of rhizomatous or bulbous perennials and are distributed across the Northern Hemisphere. The relationships among the five tribes in this family have been evaluated in many molecular and morphological studies. In this study, we performed a phylogenetic analysis of the 17 genera, including 106 species of Melanthiaceae sensu APG III and nine related species as outgroups, based on sequences of five plastid regions (atpB, rbcL, matK, ndhF and trnL‐F). Support values for the monophyly of the family (BSMP = 96%, BSML = 100%, PPBI = 1.00) and each tribe were improved in comparison with previous studies. Among the tribes, Melanthieae were sister to the remainder of the family and sister relationships between Xerophylleae and Parideae (BSMP = 96%, BSML = 100%, PPBI = 1.00) and Chionographideae and Heloniadeae (BSMP = 96%, BSML = 100%, PPBI = 1.00) were confirmed. Notably, the generic concept of Veratrum s.l. including Melanthium was not supported in the present study and these genera should be treated as distinct. In the case of Parideae, the relationship of Trillium govanianum to the other species remains uncertain and requires further studies. Finally, we mapped seven representative morphological characters onto the molecular phylogenetic tree for Melanthiaceae.  相似文献   

15.
16.
Genera Lamiophlomis and Paraphlomis were originally separated from genus Phlomis s.l. on the basis of particular morphological characteristics. However, their relationship was highly contentious, as evidenced by the literature. In the present paper, the systematic positions of Lamiophlomis, Paraphlomis, and their related genera were assessed based on nuclear internal transcribed spacer (ITS) and chloroplast rpl16 and trnL-F sequence data using maximum parsimony (MP) and Bayesian methods. In total, 24 species representing six genera of the ingroup and outgroup were sampled. Analyses of both separate and combined sequence data were conducted to resolve the systematic relationships of these genera. The results reveal that Lamiophlomis is nested within Phlomis sect. Phlomoides and its genetic status is not supported. With the inclusion of Lamiophlomis rotata in sect. Phlomoides, sections Phlomis and Phlomoides of Phlomis were resolved as monophyletic. Paraphlomis was supported as an inde-pendent genus. However, the resolution of its monophyly conflicted between MP and Bayesian analyses, suggesting the need for expended sampling and further evidence.  相似文献   

17.
The phylogenetic origin of Beckmannia remains unknown. The genus has been placed within the Chlorideae, Aveneae (Agrostideae), Poeae, or treated as an isolate lineage, Beckmanniinae. In the present study, we used nuclear internal transcribed spacer (ITS) and chloroplast trnL-F sequences to examine the phylogenetic relationship between Beckmannia and those genera that have assumed to be related. On the basis of the results of our studies, the following conclusions could be drawn: (i) Beckmannia and Alopecurus are sister groups with high support; and (ii) Beckmannia and Alopecurus are nested in the Poeae clade with high support. The results of our analysis suggest that Beckmannia should be placed in Poeae.  相似文献   

18.
The phylogenetic relationships of Silphium and subtribe Engelmanniinae were examined using DNA sequence data. The internal transcribed spacer (ITS) region and the external transcribed spacer (ETS) region were sequenced for 39 specimens representing the six genera of subtribe Engelmanniinae (Berlandiera, Chrysogonum, Dugesia, Engelmannia, Lindheimera, and Silphium), plus five additional genera identified as closely related to the Engelmanniinae by chloroplast DNA restriction site analysis, and three outgroups. Phylogenetic analysis supported the monophyly of Silphium with Lindheimera as sister. Silphium can be divided into two sections based upon two well-supported clades that correspond to root type and growth form. These results also supported the expansion of subtribe Engelmanniinae to include Balsamorhiza, Borrichia, Rojasianthe, Vigethia, and Wyethia. We hypothesize that subtribe Engelmanniinae originated in Mesoamerica and later radiated to the United States. We suggest that the cypsela complex, which is present in Berlandiera, Chrysogonum, Engelmannia, and Lindheimera, arose only once and was subsequently lost in Silphium.  相似文献   

19.
 Phylogenetic relationships in Stylosanthes are inferred by DNA sequence analysis of the ITS region (ITS1–5.8S–ITS2) of the nuclear ribosomal DNA in 119 specimens, representing 36 species of Stylosanthes and 7 species of the outgroup genera Arachis and Chapmannia. In all examined specimens of any particular diploid and (allo)polyploid species, only a single ITS sequence type was observed. This allowed us to identify a parental genome donor for some of the polyploids. In several diploid and polyploid species, different specimens contained a different ITS sequence. Some of these sequence types were present in more than one species. Parsimony analysis yielded several well-supported clades that agree largely with analyses of the chloroplast trnL intron and partially with the current sectional classification. Discordances between the nuclear and cpDNA analyses are explained by a process of allopolyploidization with inheritance of the cpDNA of one parent and fixation of the ITS sequences of the other. S. viscosa has been an important genome donor in this process of speciation by allopolyploidy. Received August 14, 2001; accepted March 4, 2002 Published online: November 14, 2002 Addresses of the authors: Jacqueline Vander Stappen, Steven Van Campenhout and Guido Volckaert (E-mail: guido.volckaert@agr.kuleuven.ac.be), Katholieke Universiteit Leuven, Laboratory of Gene Technology, Kasteelpark Arenberg 21, B-3001 Leuven, Belgium. Jan De Laet, American Museum of Natural History, Division of Invertebrate Zoology, Central Park West at 79th Street, New York 10024–5192, USA. Susana Gama-López, Universidad Nacional Autónoma de México, Unidad de Biología, Tecnología y Protipos (UBIPRO), FES-Iztacala, Laboratorio de Recursos Naturales, Av. de Los Barrios S/N, Colonia Los Reyes Iztacala, Municipio Tlalnepantla, Estado de México, C.P. 54090, México. Present address: Apartado Postal 154, Cto. Parque No. 3, C.P. 53102, México.  相似文献   

20.
We investigated the phylogenetic relationships in Tulipa in Turkey using DNA sequences from the plastid trnL‐trnF region and the internal transcribed spacer (ITS) of nuclear ribosomal DNA. We generated trnL‐trnF and nuclear ITS sequences for 11 Tulipa spp. from Turkey and compared the utility of trnL‐trnF and ITS sequences for phylogenetic analysis. Neighbor‐joining, Bayesian and maximum parsimony methods were implemented using the same matrices. Our study of Tulipa based on molecular data revealed congruent results with previous studies. Despite the relatively lower resolution of trnL‐trnF than that of ITS, both sequence matrices generated similar results. Three clades were clearly distinguished, corresponding to subgenera Tulipa, Eriostemones and Orithyia. It is not fully resolved whether Clusianae should be recognized as a separate section of subgenus Tulipa or a distinct subgenus. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 172 , 270–279.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号