首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper deals with a Cox proportional hazards regression model, where some covariates of interest are randomly right‐censored. While methods for censored outcomes have become ubiquitous in the literature, methods for censored covariates have thus far received little attention and, for the most part, dealt with the issue of limit‐of‐detection. For randomly censored covariates, an often‐used method is the inefficient complete‐case analysis (CCA) which consists in deleting censored observations in the data analysis. When censoring is not completely independent, the CCA leads to biased and spurious results. Methods for missing covariate data, including type I and type II covariate censoring as well as limit‐of‐detection do not readily apply due to the fundamentally different nature of randomly censored covariates. We develop a novel method for censored covariates using a conditional mean imputation based on either Kaplan–Meier estimates or a Cox proportional hazards model to estimate the effects of these covariates on a time‐to‐event outcome. We evaluate the performance of the proposed method through simulation studies and show that it provides good bias reduction and statistical efficiency. Finally, we illustrate the method using data from the Framingham Heart Study to assess the relationship between offspring and parental age of onset of cardiovascular events.  相似文献   

2.
We used simulation to investigate robust designs and analyses for detecting trends from population surveys of Alaska harbor seals. We employed an operating model approach, creating simulated harbor seal population dynamics and haul-out behavior that incorporated factors thought to potentially affect the performance of aerial surveys. The factors included the number of years, the number of haul-out sites in an area, the number and timing of surveys within a year, known and unknown covariates affecting haul-out behavior, substrate effects, movement among substrates, and variability in survey and population parameters. We found estimates of population trend were robust to the majority of potentially confounding factors, and that adjusting counts for the effects of covariates was both possible and beneficial. The use of mean or maximum counts by site without covariate correction can lead to substantial bias and low power in trend determination. For covariate-corrected trend estimates, there was minimal bias and loss of accuracy was negligible when surveys were conducted 20 d before or after peak haul-out attendance, survey date became progressively earlier across years, and peak attendance fluctuated across years. Trend estimates were severely biased when the effect of an unknown covariate resulted in a long-term trend in the fraction of the population hauled out. A key factor governing the robustness and power of harbor seal population surveys is intersite variability in trend. This factor is well understood for sites within the Prince William Sound and Kodiak trend routes for which at least 10 consecutive annual surveys have been conducted, but additional annual counts are needed for other areas. The operating model approach proved to be an effective means of evaluating these surveys and should be used to evaluate other marine mammal survey designs.  相似文献   

3.
In randomized clinical trials where the times to event of two treatment groups are compared under a proportional hazards assumption, it has been established that omitting prognostic factors from the model entails an underestimation of the hazards ratio. Heterogeneity due to unobserved covariates in cancer patient populations is a concern since genomic investigations have revealed molecular and clinical heterogeneity in these populations. In HIV prevention trials, heterogeneity is unavoidable and has been shown to decrease the treatment effect over time. This article assesses the influence of trial duration on the bias of the estimated hazards ratio resulting from omitting covariates from the Cox analysis. The true model is defined by including an unobserved random frailty term in the individual hazard that reflects the omitted covariate. Three frailty distributions are investigated: gamma, log‐normal, and binary, and the asymptotic bias of the hazards ratio estimator is calculated. We show that the attenuation of the treatment effect resulting from unobserved heterogeneity strongly increases with trial duration, especially for continuous frailties that are likely to reflect omitted covariates, as they are often encountered in practice. The possibility of interpreting the long‐term decrease in treatment effects as a bias induced by heterogeneity and trial duration is illustrated by a trial in oncology where adjuvant chemotherapy in stage 1B NSCLC was investigated.  相似文献   

4.
In non-randomized studies, the assessment of a causal effect of treatment or exposure on outcome is hampered by possible confounding. Applying multiple regression models including the effects of treatment and covariates on outcome is the well-known classical approach to adjust for confounding. In recent years other approaches have been promoted. One of them is based on the propensity score and considers the effect of possible confounders on treatment as a relevant criterion for adjustment. Another proposal is based on using an instrumental variable. Here inference relies on a factor, the instrument, which affects treatment but is thought to be otherwise unrelated to outcome, so that it mimics randomization. Each of these approaches can basically be interpreted as a simple reweighting scheme, designed to address confounding. The procedures will be compared with respect to their fundamental properties, namely, which bias they aim to eliminate, which effect they aim to estimate, and which parameter is modelled. We will expand our overview of methods for analysis of non-randomized studies to methods for analysis of randomized controlled trials and show that analyses of both study types may target different effects and different parameters. The considerations will be illustrated using a breast cancer study with a so-called Comprehensive Cohort Study design, including a randomized controlled trial and a non-randomized study in the same patient population as sub-cohorts. This design offers ideal opportunities to discuss and illustrate the properties of the different approaches.  相似文献   

5.
Missing data is a common issue in research using observational studies to investigate the effect of treatments on health outcomes. When missingness occurs only in the covariates, a simple approach is to use missing indicators to handle the partially observed covariates. The missing indicator approach has been criticized for giving biased results in outcome regression. However, recent papers have suggested that the missing indicator approach can provide unbiased results in propensity score analysis under certain assumptions. We consider assumptions under which the missing indicator approach can provide valid inferences, namely, (1) no unmeasured confounding within missingness patterns; either (2a) covariate values of patients with missing data were conditionally independent of treatment or (2b) these values were conditionally independent of outcome; and (3) the outcome model is correctly specified: specifically, the true outcome model does not include interactions between missing indicators and fully observed covariates. We prove that, under the assumptions above, the missing indicator approach with outcome regression can provide unbiased estimates of the average treatment effect. We use a simulation study to investigate the extent of bias in estimates of the treatment effect when the assumptions are violated and we illustrate our findings using data from electronic health records. In conclusion, the missing indicator approach can provide valid inferences for outcome regression, but the plausibility of its assumptions must first be considered carefully.  相似文献   

6.
Huang Y  Leroux B 《Biometrics》2011,67(3):843-851
Summary Williamson, Datta, and Satten's (2003, Biometrics 59 , 36–42) cluster‐weighted generalized estimating equations (CWGEEs) are effective in adjusting for bias due to informative cluster sizes for cluster‐level covariates. We show that CWGEE may not perform well, however, for covariates that can take different values within a cluster if the numbers of observations at each covariate level are informative. On the other hand, inverse probability of treatment weighting accounts for informative treatment propensity but not for informative cluster size. Motivated by evaluating the effect of a binary exposure in presence of such types of informativeness, we propose several weighted GEE estimators, with weights related to the size of a cluster as well as the distribution of the binary exposure within the cluster. Choice of the weights depends on the population of interest and the nature of the exposure. Through simulation studies, we demonstrate the superior performance of the new estimators compared to existing estimators such as from GEE, CWGEE, and inverse probability of treatment‐weighted GEE. We demonstrate the use of our method using an example examining covariate effects on the risk of dental caries among small children.  相似文献   

7.
Evaluation of impact of potential uncontrolled confounding is an important component for causal inference based on observational studies. In this article, we introduce a general framework of sensitivity analysis that is based on inverse probability weighting. We propose a general methodology that allows both non‐parametric and parametric analyses, which are driven by two parameters that govern the magnitude of the variation of the multiplicative errors of the propensity score and their correlations with the potential outcomes. We also introduce a specific parametric model that offers a mechanistic view on how the uncontrolled confounding may bias the inference through these parameters. Our method can be readily applied to both binary and continuous outcomes and depends on the covariates only through the propensity score that can be estimated by any parametric or non‐parametric method. We illustrate our method with two medical data sets.  相似文献   

8.
Longitudinal data often contain missing observations and error-prone covariates. Extensive attention has been directed to analysis methods to adjust for the bias induced by missing observations. There is relatively little work on investigating the effects of covariate measurement error on estimation of the response parameters, especially on simultaneously accounting for the biases induced by both missing values and mismeasured covariates. It is not clear what the impact of ignoring measurement error is when analyzing longitudinal data with both missing observations and error-prone covariates. In this article, we study the effects of covariate measurement error on estimation of the response parameters for longitudinal studies. We develop an inference method that adjusts for the biases induced by measurement error as well as by missingness. The proposed method does not require the full specification of the distribution of the response vector but only requires modeling its mean and variance structures. Furthermore, the proposed method employs the so-called functional modeling strategy to handle the covariate process, with the distribution of covariates left unspecified. These features, plus the simplicity of implementation, make the proposed method very attractive. In this paper, we establish the asymptotic properties for the resulting estimators. With the proposed method, we conduct sensitivity analyses on a cohort data set arising from the Framingham Heart Study. Simulation studies are carried out to evaluate the impact of ignoring covariate measurement error and to assess the performance of the proposed method.  相似文献   

9.
It has been well known that ignoring measurement error may result in substantially biased estimates in many contexts including linear and nonlinear regressions. For survival data with measurement error in covariates, there has been extensive discussion in the literature with the focus on proportional hazards (PH) models. Recently, research interest has extended to accelerated failure time (AFT) and additive hazards (AH) models. However, the impact of measurement error on other models, such as the proportional odds model, has received relatively little attention, although these models are important alternatives when PH, AFT, or AH models are not appropriate to fit data. In this paper, we investigate this important problem and study the bias induced by the naive approach of ignoring covariate measurement error. To adjust for the induced bias, we describe the simulation‐extrapolation method. The proposed method enjoys a number of appealing features. Its implementation is straightforward and can be accomplished with minor modifications of existing software. More importantly, the proposed method does not require modeling the covariate process, which is quite attractive in practice. As the precise values of error‐prone covariates are often not observable, any modeling assumption on such covariates has the risk of model misspecification, hence yielding invalid inferences if this happens. The proposed method is carefully assessed both theoretically and empirically. Theoretically, we establish the asymptotic normality for resulting estimators. Numerically, simulation studies are carried out to evaluate the performance of the estimators as well as the impact of ignoring measurement error, along with an application to a data set arising from the Busselton Health Study. Sensitivity of the proposed method to misspecification of the error model is studied as well.  相似文献   

10.
The pooling robustness property of distance sampling results in unbiased abundance estimation even when sources of variation in detection probability are not modeled. However, this property cannot be relied upon to produce unbiased subpopulation abundance estimates when using a single pooled detection function that ignores subpopulations. We investigate by simulation the effect of differences in subpopulation detectability upon bias in subpopulation abundance estimates. We contrast subpopulation abundance estimates using a pooled detection function with estimates derived using a detection function model employing a subpopulation covariate. Using point transect survey data from a multispecies songbird study, species-specific abundance estimates are compared using pooled detection functions with and without a small number of adjustment terms, and a detection function with species as a covariate. With simulation, we demonstrate the bias of subpopulation abundance estimates when a pooled detection function is employed. The magnitude of the bias is positively related to the magnitude of disparity between the subpopulation detection functions. However, the abundance estimate for the entire population remains unbiased except when there is extreme heterogeneity in detection functions. Inclusion of a detection function model with a subpopulation covariate essentially removes the bias of the subpopulation abundance estimates. The analysis of the songbird point count surveys shows some bias in species-specific abundance estimates when a pooled detection function is used. Pooling robustness is a unique property of distance sampling, producing unbiased abundance estimates at the level of the study area even in the presence of large differences in detectability between subpopulations. In situations where subpopulation abundance estimates are required for data-poor subpopulations and where the subpopulations can be identified, we recommend the use of subpopulation as a covariate to reduce bias induced in subpopulation abundance estimates.  相似文献   

11.
Spatial models for disease mapping should ideally account for covariates measured both at individual and area levels. The newly available “indiCAR” model fits the popular conditional autoregresssive (CAR) model by accommodating both individual and group level covariates while adjusting for spatial correlation in the disease rates. This algorithm has been shown to be effective but assumes log‐linear associations between individual level covariates and outcome. In many studies, the relationship between individual level covariates and the outcome may be non‐log‐linear, and methods to track such nonlinearity between individual level covariate and outcome in spatial regression modeling are not well developed. In this paper, we propose a new algorithm, smooth‐indiCAR, to fit an extension to the popular conditional autoregresssive model that can accommodate both linear and nonlinear individual level covariate effects while adjusting for group level covariates and spatial correlation in the disease rates. In this formulation, the effect of a continuous individual level covariate is accommodated via penalized splines. We describe a two‐step estimation procedure to obtain reliable estimates of individual and group level covariate effects where both individual and group level covariate effects are estimated separately. This distributed computing framework enhances its application in the Big Data domain with a large number of individual/group level covariates. We evaluate the performance of smooth‐indiCAR through simulation. Our results indicate that the smooth‐indiCAR method provides reliable estimates of all regression and random effect parameters. We illustrate our proposed methodology with an analysis of data on neutropenia admissions in New South Wales (NSW), Australia.  相似文献   

12.
Optimal multivariate matching before randomization   总被引:1,自引:0,他引:1  
Although blocking or pairing before randomization is a basic principle of experimental design, the principle is almost invariably applied to at most one or two blocking variables. Here, we discuss the use of optimal multivariate matching prior to randomization to improve covariate balance for many variables at the same time, presenting an algorithm and a case-study of its performance. The method is useful when all subjects, or large groups of subjects, are randomized at the same time. Optimal matching divides a single group of 2n subjects into n pairs to minimize covariate differences within pairs-the so-called nonbipartite matching problem-then one subject in each pair is picked at random for treatment, the other being assigned to control. Using the baseline covariate data for 132 patients from an actual, unmatched, randomized experiment, we construct 66 pairs matching for 14 covariates. We then create 10000 unmatched and 10000 matched randomized experiments by repeatedly randomizing the 132 patients, and compare the covariate balance with and without matching. By every measure, every one of the 14 covariates was substantially better balanced when randomization was performed within matched pairs. Even after covariance adjustment for chance imbalances in the 14 covariates, matched randomizations provided more accurate estimates than unmatched randomizations, the increase in accuracy being equivalent to, on average, a 7% increase in sample size. In randomization tests of no treatment effect, matched randomizations using the signed rank test had substantially higher power than unmatched randomizations using the rank sum test, even when only 2 of 14 covariates were relevant to a simulated response. Unmatched randomizations experienced rare disasters which were consistently avoided by matched randomizations.  相似文献   

13.
In randomized trials, the treatment influences not only endpoints but also other variables measured after randomization which, when used as covariates to adjust for the observed imbalance, become pseudo‐covariates. There is a logical circularity in adjusting for a pseudo‐covariate because the variability in the endpoint that is attributed not to the treatment but rather to the pseudo‐covariate may actually represent an effect of the treatment modulated by the pseudo‐covariate. This potential bias is well known, but we offer new insight into how it can lead to reversals in the direction of the apparent treatment effect by way of stage migration. We then discuss a related problem that is not generally appreciated, specifically how the absence of allocation concealment can lead to this reversal of the direction of the apparent treatment effect even when adjustment is for a true covariate measured prior to randomization. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.

Background

In the absence of randomized clinical trials, meta-analysis of individual patient data (IPD) from observational studies may provide the most accurate effect estimates for an intervention. However, confounding by indication remains an important concern that can be addressed by incorporating individual patient covariates in different ways. We compared different analytic approaches to account for confounding in IPD from patients treated for multi-drug resistant tuberculosis (MDR-TB).

Methods

Two antibiotic classes were evaluated, fluoroquinolones—considered the cornerstone of effective MDR-TB treatment—and macrolides, which are known to be safe, yet are ineffective in vitro. The primary outcome was treatment success against treatment failure, relapse or death. Effect estimates were obtained using multivariable and propensity-score based approaches.

Results

Fluoroquinolone antibiotics were used in 28 included studies, within which 6,612 patients received a fluoroquinolone and 723 patients did not. Macrolides were used in 15 included studies, within which 459 patients received this class of antibiotics and 3,670 did not. Both standard multivariable regression and propensity score-based methods resulted in similar effect estimates for early and late generation fluoroquinolones, while macrolide antibiotics use was associated with reduced treatment success.

Conclusions

In this individual patient data meta-analysis, standard multivariable and propensity-score based methods of adjusting for individual patient covariates for observational studies yielded produced similar effect estimates. Even when adjustment is made for potential confounding, interpretation of adjusted estimates must still consider the potential for residual bias.  相似文献   

15.
Rosenbaum PR 《Biometrics》2011,67(3):1017-1027
Summary In an observational or nonrandomized study of treatment effects, a sensitivity analysis indicates the magnitude of bias from unmeasured covariates that would need to be present to alter the conclusions of a naïve analysis that presumes adjustments for observed covariates suffice to remove all bias. The power of sensitivity analysis is the probability that it will reject a false hypothesis about treatment effects allowing for a departure from random assignment of a specified magnitude; in particular, if this specified magnitude is “no departure” then this is the same as the power of a randomization test in a randomized experiment. A new family of u‐statistics is proposed that includes Wilcoxon's signed rank statistic but also includes other statistics with substantially higher power when a sensitivity analysis is performed in an observational study. Wilcoxon's statistic has high power to detect small effects in large randomized experiments—that is, it often has good Pitman efficiency—but small effects are invariably sensitive to small unobserved biases. Members of this family of u‐statistics that emphasize medium to large effects can have substantially higher power in a sensitivity analysis. For example, in one situation with 250 pair differences that are Normal with expectation 1/2 and variance 1, the power of a sensitivity analysis that uses Wilcoxon's statistic is 0.08 while the power of another member of the family of u‐statistics is 0.66. The topic is examined by performing a sensitivity analysis in three observational studies, using an asymptotic measure called the design sensitivity, and by simulating power in finite samples. The three examples are drawn from epidemiology, clinical medicine, and genetic toxicology.  相似文献   

16.
Summary Naive use of misclassified covariates leads to inconsistent estimators of covariate effects in regression models. A variety of methods have been proposed to address this problem including likelihood, pseudo‐likelihood, estimating equation methods, and Bayesian methods, with all of these methods typically requiring either internal or external validation samples or replication studies. We consider a problem arising from a series of orthopedic studies in which interest lies in examining the effect of a short‐term serological response and other covariates on the risk of developing a longer term thrombotic condition called deep vein thrombosis. The serological response is an indicator of whether the patient developed antibodies following exposure to an antithrombotic drug, but the seroconversion status of patients is only available at the time of a blood sample taken upon the discharge from hospital. The seroconversion time is therefore subject to a current status observation scheme, or Case I interval censoring, and subjects tested before seroconversion are misclassified as nonseroconverters. We develop a likelihood‐based approach for fitting regression models that accounts for misclassification of the seroconversion status due to early testing using parametric and nonparametric estimates of the seroconversion time distribution. The method is shown to reduce the bias resulting from naive analyses in simulation studies and an application to the data from the orthopedic studies provides further illustration.  相似文献   

17.
We consider the statistical modeling and analysis of replicated multi-type point process data with covariates. Such data arise when heterogeneous subjects experience repeated events or failures which may be of several distinct types. The underlying processes are modeled as nonhomogeneous mixed Poisson processes with random (subject) and fixed (covariate) effects. The method of maximum likelihood is used to obtain estimates and standard errors of the failure rate parameters and regression coefficients. Score tests and likelihood ratio statistics are used for covariate selection. A graphical test of goodness of fit of the selected model is based on generalized residuals. Measures for determining the influence of an individual observation on the estimated regression coefficients and on the score test statistic are developed. An application is described to a large ongoing randomized controlled clinical trial for the efficacy of nutritional supplements of selenium for the prevention of two types of skin cancer.  相似文献   

18.
VanderWeele TJ  Shpitser I 《Biometrics》2011,67(4):1406-1413
Summary We propose a new criterion for confounder selection when the underlying causal structure is unknown and only limited knowledge is available. We assume all covariates being considered are pretreatment variables and that for each covariate it is known (i) whether the covariate is a cause of treatment, and (ii) whether the covariate is a cause of the outcome. The causal relationships the covariates have with one another is assumed unknown. We propose that control be made for any covariate that is either a cause of treatment or of the outcome or both. We show that irrespective of the actual underlying causal structure, if any subset of the observed covariates suffices to control for confounding then the set of covariates chosen by our criterion will also suffice. We show that other, commonly used, criteria for confounding control do not have this property. We use formal theory concerning causal diagrams to prove our result but the application of the result does not rely on familiarity with causal diagrams. An investigator simply need ask, “Is the covariate a cause of the treatment?” and “Is the covariate a cause of the outcome?” If the answer to either question is “yes” then the covariate is included for confounder control. We discuss some additional covariate selection results that preserve unconfoundedness and that may be of interest when used with our criterion.  相似文献   

19.
Pan W  Lin X  Zeng D 《Biometrics》2006,62(2):402-412
We propose a new class of models, transition measurement error models, to study the effects of covariates and the past responses on the current response in longitudinal studies when one of the covariates is measured with error. We show that the response variable conditional on the error-prone covariate follows a complex transition mixed effects model. The naive model obtained by ignoring the measurement error correctly specifies the transition part of the model, but misspecifies the covariate effect structure and ignores the random effects. We next study the asymptotic bias in naive estimator obtained by ignoring the measurement error for both continuous and discrete outcomes. We show that the naive estimator of the regression coefficient of the error-prone covariate is attenuated, while the naive estimators of the regression coefficients of the past responses are generally inflated. We then develop a structural modeling approach for parameter estimation using the maximum likelihood estimation method. In view of the multidimensional integration required by full maximum likelihood estimation, an EM algorithm is developed to calculate maximum likelihood estimators, in which Monte Carlo simulations are used to evaluate the conditional expectations in the E-step. We evaluate the performance of the proposed method through a simulation study and apply it to a longitudinal social support study for elderly women with heart disease. An additional simulation study shows that the Bayesian information criterion (BIC) performs well in choosing the correct transition orders of the models.  相似文献   

20.
BackgroundComparative effectiveness studies of cancer therapeutics in observational data face confounding by patterns of clinical treatment over time. The validity of survival analysis in longitudinal health records depends on study design choices including index date definition and model specification for covariate adjustment.MethodsOverall survival in cancer is a multi-state transition process with mortality and treatment switching as competing risks. Parametric Weibull regression quantifies proportionality of hazards across lines of therapy in real-world cohorts of 12 solid tumor types. Study design assessments compare alternative analytic models in simulations with realistic disproportionality. The multi-state simulation framework is adaptable to alternative treatment effect profiles and exposure patterns.ResultsEvent-specific hazards of treatment-switching and death are not proportional across lines of therapy in 12 solid tumor types. Study designs that include all eligible lines of therapy per subject showed lower bias and variance than designs that select one line per subject. Confounding by line number was effectively mitigated across a range of simulation scenarios by Cox proportional hazards models with stratified baseline hazards and inverse probability of treatment weighting.ConclusionQuantitative study design assessment can inform the planning of observational research in clinical oncology by demonstrating the potential impact of model misspecification. Use of empirical parameter estimates in simulation designs adapts analytic recommendations to the clinical population of interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号