首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Invasive bigheaded carp species (Hypophthalmichthys spp.) from Asia have experienced rapid range expansion and population explosions in rivers of the United States resulting in ecosystem damage currently being witnessed and documented by fishery biologists. In addition, silver carp (H. molitrix) present a danger of injury and death to unsuspecting boaters, water skiers or recreational fishers due to their propensity to jump in response to boat motor noise. Fishing‐down bigheaded carp populations for human consumption will reduce environmental damage and potential human injury and mortality until other control measures become available. The name “carp” conveys an extremely negative brand name for purposes of product marketing. We suggest that the silver carp be renamed by the professional scientific community to silverfin (a trademarked name currently used in culinary circles) and the bighead carp (H. nobilis) to bighead. The suggested common names changes represent a simple, albeit small step to reducing bigheaded carp population numbers based on sound product naming strategies developed and used in marketing science.  相似文献   

2.
Bigheaded carps are invasive fishes threatening to invade the Great Lakes basin and establish spawning populations, and have been monitored using environmental DNA (eDNA). Not only does eDNA hold potential for detecting the presence of species, but may also allow for quantitative comparisons like relative abundance of species across time or space. We examined the relationships among bigheaded carp movement, hydrography, spawning and eDNA on the Wabash River, IN, USA. We found positive relationships between eDNA and movement and eDNA and hydrography. We did not find a relationship between eDNA and spawning activity in the form of drifting eggs. Our first finding demonstrates how eDNA may be used to monitor species abundance, whereas our second finding illustrates the need for additional research into eDNA methodologies. Current applications of eDNA are widespread, but the relatively new technology requires further refinement.  相似文献   

3.
4.
  1. While invasions of large rivers by exotic fish species are well documented, assessing actual or potential impacts on native species is a challenge. Rapid assessments may be possible through the application of a combination of bioenergetic and population dynamic models.
  2. Paddlefish (Polyodon spathula) is a native species in the central USA with a history of population decline due to waterway development and overharvesting for roe. It is not known whether paddlefish are impacted by resource competition from invasive bigheaded carp populations, including silver (Hypophthalmichthys molitrix) and bighead carp (Hypophthalmichthys nobilis), which have expanded dramatically in the Mississippi River.
  3. We used bioenergetic models to project the potential impact of invasive silver and bighead carp on zooplankton density and paddlefish somatic growth in backwater habitat. Bioenergetic outputs were translated to impacts on fecundity, becoming inputs for 50-year metapopulation simulations of backwater habitat connected to the main-stem Mississippi River by episodic flood events.
  4. Competition with carp reduced growth and increased the risk of population decline for paddlefish. Impacts increased disproportionately with increased carp abundance and were further exacerbated in scenarios with increased diet overlap or decreased zooplankton abundance.
  5. We also analysed paddlefish condition data collected at sites near the lower Mississippi River with varying histories of carp invasion. These data give credence to the bioenergetic model output; paddlefish had reduced body condition at sites with long-established, high-density carp populations.
  6. We conclude that invasive bigheaded carps have great potential to reduce paddlefish growth, fecundity, and abundance. The pairing of bioenergetics and population models is likely to be broadly useful in assessing the risks posed by other invasive species.
  相似文献   

5.
6.
Phenotypic plasticity can allow organisms to respond to environmental changes by producing better matching phenotypes without any genetic change. Because of this, plasticity is predicted to be a major mechanism by which a population can survive the initial stage of colonizing a novel environment. We tested this prediction by challenging wild Drosophila melanogaster with increasingly extreme larval environments and then examining expression of alcohol dehydrogenase (ADH) and its relationship to larval survival in the first generation of encountering a novel environment. We found that most families responded in the adaptive direction of increased ADH activity in higher alcohol environments and families with higher plasticity were also more likely to survive in the highest alcohol environment. Thus, plasticity of ADH activity was positively selected in the most extreme environment and was a key trait influencing fitness. Furthermore, there was significant heritability of ADH plasticity that can allow plasticity to evolve in subsequent generations after initial colonization. The adaptive value of plasticity, however, was only evident in the most extreme environment and had little impact on fitness in less extreme environments. The results provide one of the first direct tests of the adaptive role of phenotypic plasticity in colonizing a novel environment.  相似文献   

7.
8.
Heterozygosity has been positively associated with fitness and population survival. However, the relationship between heterozygosity and adaptive phenotypic plasticity (i.e., plasticity which results in fitness homeostasis or improvement in changing environments) is unclear and has been poorly explored in seaweeds. In this study, we explored this relationship in the clonal red seaweed, Gracilaria chilensis by conducting three growth rate plasticity experiments under contrasting salinity conditions and by measuring heterozygosity with five microsatellite DNA markers. Firstly, we compared growth rate plasticity between the haploid and diploid phases. Secondly, we compared growth rate plasticity between diploids with different numbers of heterozygous loci. Finally, we compared growth rate plasticity between diploid plants from two populations that are expected to exhibit significant differences in heterozygosity. We found that, (i) diploids displayed a higher growth rate and lower growth rate plasticity than haploids, (ii) diploids with a higher number of heterozygous loci displayed lower growth rate plasticity than those exhibiting less heterozygosity, and (iii) diploid sporophytes from the population with higher heterozygosity displayed lower growth rate plasticity than those with lower heterozygosity. Accordingly, this study suggests that heterozygosity is inversely related to growth rate plasticity in G. chilensis. However, better genetic tools in seaweeds are required for a more definitive conclusion on the relationship between heterozygosity and phenotypic plasticity.  相似文献   

9.
Fluctuating asymmetry (FA) is widely used to quantify developmental instability (DI) in ecological and evolutionary studies. It has long been recognized that FA may not exclusively originate from DI for sessile organisms such as plants, because phenotypic plasticity in response to heterogeneities in the environment might also produce FA. This study provides the first empirical evidence for this hypothesis. We reasoned that solar irradiance, which is greater on the southern side than on the northern side of plants growing in the temperate zone of the Northern Hemisphere, would cause systematic morphological differences and asymmetry associated with the orientation of plant parts. We used geometric morphometrics to characterize the size and shape of flower parts in Iris pumila grown in a common garden. The size of floral organs was not significantly affected by orientation. Shape and particularly its asymmetric component differed significantly according to orientation for three different floral parts. Orientation accounted for 10.4% of the total shape asymmetry within flowers in the falls, for 11.4% in the standards and for 2.2% in the style branches. This indicates that phenotypic plasticity in response to a directed environmental factor, most likely solar irradiance, contributes to FA of flowers under natural conditions. That FA partly results from phenotypic plasticity and not just from DI needs to be considered by studies of FA in plants and other sessile organisms.  相似文献   

10.
11.
Phenotypic integration can be defined as the network of multivariate relationships among behavioural, physiological and morphological traits that describe the organism. Phenotypic integration plasticity refers to the change in patterns of phenotypic integration across environments or ontogeny. Because studies of phenotypic plasticity have predominantly focussed on single traits, a G × E interaction is typically perceived as differences in the magnitude of trait expression across two or more environments. However, many plastic responses involve coordinated responses in multiple traits, raising the possibility that relative differences in trait expression in different environments are an important, but often overlooked, source of G × E interaction. Here, we use phenotypic change vectors to statistically compare the multivariate life‐history plasticity of six Daphnia magna clones collected from four disparate European populations. Differences in the magnitude of plastic responses were statistically distinguishable for two of the six clones studied. However, differences in phenotypic integration plasticity were statistically distinguishable for all six of the clones studied, suggesting that phenotypic integration plasticity is an important component of G × E interactions that may be missed unless appropriate multivariate analyses are used.  相似文献   

12.
Both traits and the plasticity of these traits are subject to evolutionary change and therefore affect the long‐term persistence of populations and their role in local communities. We subjected clones from 12 different populations of Alnus glutinosa, located along a latitudinal gradient, to two different temperature treatments, to disentangle the distribution of genetic variation in timing of bud burst and bud burst plasticity within and among genotypes, populations, and regions. We calculated heritability and evolvability estimates for bud burst and bud burst plasticity and assessed the influence of divergent selection relative to neutral drift. We observed higher levels of heritability and evolvability for bud burst than for its plasticity, whereas the total phenological heritability and evolvability (i.e. combining timing of bud burst and bud burst plasticity) suggest substantial evolutionary potential with respect to phenology. Earlier bud burst was observed for the low‐latitudinal populations than for the populations from higher latitudes, whereas the high‐latitudinal populations did not show the expected delayed bud burst. This countergradient variation can be due to evolution towards increased phenological plasticity at higher latitudes. However, because we found little evidence for adaptive differences in phenological plasticity across the latitudinal gradient, we suggest differential frost tolerance as the most likely explanation for the observed phenological patterns in A. glutinosa.  相似文献   

13.
Flood response is a crucial component of the life strategy of many plants, but it is seldom studied in non-flooded tolerant species, even though they may be subjected to stressful environmental conditions. Phenotypic plasticity in reaction to environmental stress affects the whole plant phenotype and can alter the character correlations that constitute the phenotypic architecture of the individual, yet few studies have investigated the lability of phenotypic integration to water regime. Moreover, little has been done to date to quantify the sort of selective pressures that different components of a plant's phenotype may be experiencing under contrasting water regimes. Genetic differentiation and phenotypic plasticity at the single-trait and multivariate levels were investigated in 47 accessions of the weedy plant Arabidopsis thaliana, and the relationship of plastic characters to reproductive fitness was quantified. Results indicate that these plants tend to be highly genetically differentiated for all traits, in agreement with predictions made on the basis of environmental variation and mating system. Varied patterns of apparent selection under flooded and non-flooded conditions were also uncovered, suggesting trade-offs in allocation between roots and above-ground biomass, as well as between leaves and reproductive structures. While the major components of the plants' multivariate phenotypic architecture were not significantly affected by environmental changes, many of the details were different under flooded and non-flooded conditions.  相似文献   

14.
Understanding the capacity for different species to reduce their susceptibility to climate change via phenotypic plasticity is essential for accurately predicting species extinction risk. The climatic variability hypothesis suggests that spatial and temporal variation in climatic variables should select for more plastic phenotypes. However, empirical support for this hypothesis is limited. Here, we examine the capacity for ten Drosophila species to increase their critical thermal maxima (CTMAX) through developmental acclimation and/or adult heat hardening. Using four fluctuating developmental temperature regimes, ranging from 13 to 33 °C, we find that most species can increase their CTMAX via developmental acclimation and adult hardening, but found no relationship between climatic variables and absolute measures of plasticity. However, when plasticity was dissected across developmental temperatures, a positive association between plasticity and one measure of climatic variability (temperature seasonality) was found when development took place between 26 and 28 °C, whereas a negative relationship was found when development took place between 20 and 23 °C. In addition, a decline in CTMAX and egg‐to‐adult viability, a proxy for fitness, was observed in tropical species at the warmer developmental temperatures (26–28 °C); this suggests that tropical species may be at even greater risk from climate change than currently predicted. The combined effects of developmental acclimation and adult hardening on CTMAX were small, contributing to a <0.60 °C shift in CTMAX. Although small shifts in CTMAX may increase population persistence in the shorter term, the degree to which they can contribute to meaningful responses in the long term is unclear.  相似文献   

15.
Experiments were conducted to measure the suction volume of silver carp and bighead carp of age 1 + with respiratory chamber, and to calculate the suction volume and the filtering efficiency with respect to changes in concentrations of food particles. Suction volume (B. ml/mouth) and filtering efficiency (E. %) were calculated using the following formula: C 1=C0(1-BE/v)n where C0 and C1 were the concentrations of specific food particles at the beginning and at the end of experiment, respectively, V was the volume (ml) of experimental water, and n was the total number of observation of suction made during the experimental period. The relationships between suction volume (ml/mouth) of age I+ silver carp (Bh) and bighead carp (Ba) and their standard lengths (L, cm) were: B h=0.561L-8.94, Ba= 0.627L-7.48 while those of the fingerlings were: B h= O.l70L-0.837, Ba= 0.157L-0.418. The suction volume of the fingerlings was mainly affected by fish size, the function of temperature between 15 and 25° C being negligible. However, temperature affected filtering rate (filtered volume per unit time) through its effect on filtering frequency. The filtering efficiency of the fishes for rotifers (Brachionus caliciflorus) was 100 per cent. The relationships between filtering efficiency and sizes of food particles smaller than or equal to that of a rotifer were: E h=25.1 ln e.s.d. -13.6, Ea=22.2 In e.s.d. -33.1 where Eh and Ea were filtering efficiency of silver carp and bighead carp, respectively, and e.s.d. was the equivalent spherical diameter (μm) of food particles.  相似文献   

16.
Phenotypic plasticity can be viewed as the first level of defense of organism homeostasis against environmental stress and therefore represents the potential to deal with rapid environmental changes. Transitions between low complexity, artificial environments and complex, natural habitats can promote phenotypic plasticity. Here, we conducted an experimental introduction with juvenile brown trout to evaluate the plasticity of shape in response to a transition between contrasting environments. We released 202 juvenile trout reared under hatchery conditions in a natural stream and analyzed changes in shape and morphological variability after 5 months. A geometric morphometrics approach based on 14 landmarks was used to compare changes in body shape for 37 fish recaptured at the end of the experiment. A similar number of hatchery and wild fish caught at the receptor stream were used as controls for shape in the two environments. After 5‐months, fish showed significant change in shape, shifting from elongated to robust shapes, and affecting to the relative position of the caudal peduncle. These new shapes were closer to wild than to the hatchery shapes, suggesting a process of rapid phenotype change. Moreover, these changes were concomitant with a marked increase in morphological variability. Our results support the hypothesis that phenotypic plasticity is a major potential for adjustment to environmental change but not the idea that shape can be constrained by initial shapes. We confirmed the “increased” variance hypothesis and phenotype convergence with wild morphs. This has important implications because stresses the role of phenotypic plasticity as a buffer that allows organisms to cope with important environmental discontinuities at time scales that preclude the onset of adaptive adjustments. We suggest that environmental conditioning and shape plasticity can overcome both reduced morphological diversity and phenotype uncoupling with habitat characteristics resulting from initial rearing in low complexity artificial environments.  相似文献   

17.
18.
19.
《植物生态学报》2017,41(3):359
Aims Adaptation mechanisms of plants to environment can be classified as genetic differentiation and phenotypic plasticity (environmental modification). The strategy and mechanism of plant adaptation is a hot topic in the field of evolutionary ecology. Leymus chinensis is one of constructive species in the Nei Mongol grassland. Particularly, Leymus chinensis is a rhizomatous and clonally reproductive grass, a genotype that can play an important role in the community. In this study, we aimed to (1) investigate the phenotypic plasticity of L. chinensis under different conditions, and (2) test the genetic differentiation and reaction norms (the relationship between the environment and the phenotype of an individual or a group of individuals) under four environmental conditions among different genotypes of L. chinensis. Methods Ten genotypes of L. chinensis were randomly selected. Under the control condition, we studied the effects of genotype, defoliation, drought and their interactions on 11 quantitative traits of growth (8 traits including photochemical efficiency of photosystem II, maximum net photosynthetic rate, transpiration rate, specific leaf area, relative growth rate, the number of tillers increased, aboveground and underground biomass growth), defense (total phenol concentration of leaf) and tolerance (non-structural carbohydrate content of root, root/shoot ratio) of L. chinensis. We studied the phenotypic plasticity, genetic differentiation and reaction norms mainly through tested the effect of environment and genotype on these traits. Important findings First, all 11 traits showed obvious phenotypic plasticity (i.e., significant effect of drought, defoliation and their interactions). The expression of 10 genotypes of L. chinensis was divergent under different environmental conditions. Interactions of genotype and environment significantly affected the maximum net photosynthetic rate, transpiration rate, specific leaf area, relative growth rate, total phenolic concentration of leaf, and total non-structural carbohydrate content of root. This indicated that the phenotypic plasticity of these five traits exhibited genetic differentiation. Second, the increase of number of tillers, belowground biomass and non-structural carbohydrate content of root did not show genetic differentiation under the same condition. The other eight traits showed significantly genetic differentiation, and the heritabilities (H2) of six traits related to growth were higher than 0.5. The leaf total phenol concentration and root/shoot ratio showed genetically differentiation only under the drought and defoliation condition, with the heritabilities being 0.145 and 0.201, respectively. These results explained why L. chinensis widely distributed in the Nei Mongol grassland, and provided genetic and environmental basis for related application and species conservation in this grassland ecosystem.  相似文献   

20.
Crucian carp Carassius carassius show great phenotypic plasticity in individual morphology and physiology, and strong variation in population density in different fish communities. Small fish with shallow bodies and large heads are typical in overcrowded monospecific fish communities in small ponds, whereas deep-bodied, large fish are found in larger, multispecies lakes. Crucian carp are especially vulnerable to predation by piscivorous fish and their greater relative body depth in multispecies fish communities has been proposed to be an induced defence against size-limited predation, and hence to be an adaptive feature. Data are presented here on the two divergent body forms in field populations in eastern Finland, together with results of laboratory experiments on predator effects on morphology and physiology (growth, respiration, heart rate). The deep body can be achieved in a few months by introducing a low population density of shallow-bodied fish into a food-rich environment with no piscivores. In the laboratory, both the presence of piscivores (chemical cues) and enhanced food availability increased the relative depth of crucian carp, but only to a modest extent when compared to natural variation. It is concluded that the deep-body form of crucian carp in the low density populations of multispecies fish communities is the normal condition. Reproduction in monospecific ponds results in high intraspecific competition, low growth rate and a stunted morphology. According to pilot tests, the mechanism behind the predator effect in the laboratory might be a behavioural reaction to chemical cues (alarm substances/predator odour) causing changes in energy allocation: predator-exposed crucian carp adopt a 'hiding' mode with decreased activity (less swimming, lower respiration and heart rate) and with higher overall growth. Whether, and to what extent, this predator-induced mechanism works in nature is unclear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号