首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Signal plasticity is considered an important step in the evolution of animal communication. In acoustic communication, signal transmission is often constrained by background noise. One adaptation to evade acoustic signal masking is the Lombard effect, in which an animal increases its vocal amplitude in response to an increase in background noise. This form of signal plasticity has been found in mammals, including humans, and some birds, but not frogs. However, the evolution of the Lombard effect is still unclear. Here we demonstrate for the first time the Lombard effect in a phylogentically basal bird species, the tinamou Eudromia elegans. By doing so, we take a step towards reconstructing the evolutionary history of noise-dependent vocal plasticity in birds. Similar to humans, the tinamous also raised their vocal pitch in noise, irrespective of any release from signal masking. The occurrence of the Lombard effect in a basal bird group suggests that this form of vocal plasticity was present in the common ancestor of all living birds and thus evolved at least as early as 119 Ma.  相似文献   

2.
3.
4.
    
The Lombard effect-an increase in vocalization amplitude in response to an increase in background noise-is observed in a wide variety of animals. We investigated this basic form of vocal control in the cotton-top tamarin (Saguinus oedipus) by measuring the amplitude of a contact call, the combination long call (CLC), while simultaneously varying the background noise level. All subjects showed a significant increase in call amplitude and syllable duration in response to an increase in background noise amplitude. Together with prior results, this study shows that tamarins have greater vocal control in the context of auditory feedback perturbation than previously suspected.  相似文献   

5.
    
The study of non‐human animals, in particular primates, can provide essential insights into language evolution. A critical element of language is vocal production learning, i.e. learning how to produce calls. In contrast to other lineages such as songbirds, vocal production learning of completely new signals is strikingly rare in non‐human primates. An increasing body of research, however, suggests that various species of non‐human primates engage in vocal accommodation and adjust the structure of their calls in response to environmental noise or conspecific vocalizations. To date it is unclear what role vocal accommodation may have played in language evolution, in particular because it summarizes a variety of heterogeneous phenomena which are potentially achieved by different mechanisms. In contrast to non‐human primates, accommodation research in humans has a long tradition in psychology and linguistics. Based on theoretical models from these research traditions, we provide a new framework which allows comparing instances of accommodation across species, and studying them according to their underlying mechanism and ultimate biological function. We found that at the mechanistic level, many cases of accommodation can be explained with an automatic perception–production link, but some instances arguably require higher levels of vocal control. Functionally, both human and non‐human primates use social accommodation to signal social closeness or social distance to a partner or social group. Together, this indicates that not only some vocal control, but also the communicative function of vocal accommodation to signal social closeness and distance must have evolved prior to the emergence of language, rather than being the result of it. Vocal accommodation as found in other primates has thus endowed our ancestors with pre‐adaptations that may have paved the way for language evolution.  相似文献   

6.
7.
8.
9.
10.
Active-sensing systems such as echolocation provide animals with distinct advantages in dark environments. For social animals, however, like many bat species, active sensing can present problems as well: when many individuals emit bio-sonar calls simultaneously, detecting and recognizing the faint echoes generated by one''s own calls amid the general cacophony of the group becomes challenging. This problem is often termed ‘jamming’ and bats have been hypothesized to solve it by shifting the spectral content of their calls to decrease the overlap with the jamming signals. We tested bats’ response in situations of extreme interference, mimicking a high density of bats. We played-back bat echolocation calls from multiple speakers, to jam flying Pipistrellus kuhlii bats, simulating a naturally occurring situation of many bats flying in proximity. We examined behavioural and echolocation parameters during search phase and target approach. Under severe interference, bats emitted calls of higher intensity and longer duration, and called more often. Slight spectral shifts were observed but they did not decrease the spectral overlap with jamming signals. We also found that pre-existing inter-individual spectral differences could allow self-call recognition. Results suggest that the bats’ response aimed to increase the signal-to-noise ratio and not to avoid spectral overlap.  相似文献   

11.
12.
    
Acoustic noise from automobile traffic impedes communication between signaling animals. To overcome the acoustic interference imposed by anthropogenic noise, species across taxa adjust their signaling behavior to increase signal saliency. As most of the spectral energy of anthropogenic noise is concentrated at low acoustic frequencies, species with lower frequency signals are expected to be more affected. Thus, species with low-frequency signals are under stronger pressure to adjust their signaling behaviors to avoid auditory masking than species with higher frequency signals. Similarly, for a species with multiple types of signals that differ in spectral characteristics, different signal types are expected to be differentially masked. We investigate how the different call types of a Japanese stream breeding treefrog (Buergeria japonica) are affected by automobile traffic noise. Male B. japonica produce two call types that differ in their spectral elements, a Type I call with lower dominant frequency and a Type II call with higher dominant frequency. In response to acoustic playbacks of traffic noise, B. japonica reduced the duration of their Type I calls, but not Type II calls. In addition, B. japonica increased the call effort of their Type I calls and decreased the call effort of their Type II calls. This result contrasts with prior studies in other taxa, which suggest that signalers may switch to higher frequency signal types in response to traffic noise. Furthermore, the increase in Type I call effort was only a short-term response to noise, while reduced Type II call effort persisted after the playbacks had ended. Overall, such differential effects on signal types suggest that some social functions will be disrupted more than others. By considering the effects of anthropogenic noise across multiple signal types, these results provide a more in-depth understanding of the behavioral impacts of anthropogenic noise within a species.  相似文献   

13.
Individual acoustic monitoring of the European Eagle Owl Bubo bubo   总被引:1,自引:0,他引:1  
The Eagle Owl Bubo bubo is cited in Annex I of the Birds Directive of the European Union. Europe's biggest owl is extremely sensitive to human presence and needs special conservation measures. The present paper aims to show that monitoring of individuals by bioacoustic methods can be relevant to understanding population dynamics. Our study investigates the possibility of identifying a vocal signature in the wild-recorded calls of male and female Eagle Owls, and assesses the potential use of these signatures for long-term monitoring of individuals in the field. We show that both males and females of a given population can be identified individually on the basis of their calls. Our results also show that, regardless of the sex, most of the individuals recorded in the first year of the investigation may be identical to those recorded in the same places the year after. This bioacoustic approach could thus be used in studies of site fidelity.  相似文献   

14.
Formants are important phonetic elements of human speech that are also used by humans and non-human mammals to assess the body size of potential mates and rivals. As a consequence, it has been suggested that formant perception, which is crucial for speech perception, may have evolved through sexual selection. Somewhat surprisingly, though, no previous studies have examined whether sexes differ in their ability to use formants for size evaluation. Here, we investigated whether men and women differ in their ability to use the formant frequency spacing of synthetic vocal stimuli to make auditory size judgements over a wide range of fundamental frequencies (the main determinant of vocal pitch). Our results reveal that men are significantly better than women at comparing the apparent size of stimuli, and that lower pitch improves the ability of both men and women to perform these acoustic size judgements. These findings constitute the first demonstration of a sex difference in formant perception, and lend support to the idea that acoustic size normalization, a crucial prerequisite for speech perception, may have been sexually selected through male competition. We also provide the first evidence that vocalizations with relatively low pitch improve the perception of size-related formant information.  相似文献   

15.
    
In animal communication systems, matching mating signals and preferences enable species identification and successful reproduction. In some species, the environment introduces substantial variation in signals and/or preferences. Only a few studies have tested how the match between signals and preferences is maintained despite phenotypic variation. Signal–preference coupling in the context of phenotypic plasticity is the focus of this study. The bivoltine cricket Gryllus rubens displays seasonal differences in the pulse rate of its mating songs. The seasonal effect on other fine‐temporal characters of the songs besides pulse rate, such as pulse and interval duration, duty cycle, as well as the dominant frequency, is not known and is described in the first part of the study for a Kentucky population. In the second part of the study, we tested preferences of spring and fall females to determine whether they match the seasonal plasticity of male songs using single‐speaker phonotaxis experiments. We found that fall songs had a faster pulse rate, shorter pulse and interval durations, and a higher dominant frequency than spring songs. Female preferences shifted in parallel with male song plasticity, that is, spring females preferred the spring song and fall females the fall song. In addition, female responsiveness to male song was plastic as well, that is, fall females were significantly more responsive than spring females. The parallel plasticity of male songs and female preferences facilitates successful communication despite the environmentally induced variation. The potential origin and function of behavioral plasticity in G. rubens are discussed.  相似文献   

16.
    
Loud and frequent vocalizations play an important role in courtship behavior in Cervus species. European red deer (Cervus elaphus) produce low‐pitched calls, whereas North American elk (Cervus canadensis) produce high‐pitched calls, which is remarkable for one of the biggest land mammals. Both species engage their vocal organs in elaborate maneuvers but the precise mechanism is unknown. Vocal organs were compared by macroscopic and microscopic dissection. The larynx is sexually dimorphic in red deer but not in elk. The laryngeal lumen is more constricted in elk, and narrows further during ontogeny. Several elements of the hyoid skeleton and two of four vocal tract segments are longer in red deer than in elk allowing greater vocal tract expansion and elongation. We conclude that elk submit the larynx and vocal tract to much higher tension than red deer, whereby, enormously stressed vocal folds of reduced effective length create a high resistance glottal source. The narrow, high impedance laryngeal vestibulum matches glottal and vocal tract impedance allowing maximum power transfer. In red deer longer and relaxed vocal folds create a less resistant glottal source and a wider vestibulum matches the low glottal impedance to the vocal tract, thereby also ensuring maximum power transfer. J. Morphol., 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
18.
    
Although female mammal vocal behaviour is known to advertise fertility, to date, no non-human mammal study has shown that the acoustic structure of female calls varies significantly around their fertile period. Here, we used a combination of hormone measurements and acoustic analyses to determine whether female giant panda chirps have the potential to signal the caller''s precise oestrous stage (fertile versus pre-fertile). We then used playback experiments to examine the response of male giant pandas to female chirps produced during fertile versus pre-fertile phases of the caller''s reproductive cycle. Our results show that the acoustic structure of female giant panda chirps differs between fertile and pre-fertile callers and that male giant pandas can perceive differences in female chirps that allow them to determine the exact timing of the female''s fertile phase. These findings indicate that male giant pandas could use vocal cues to preferentially associate and copulate with females at the optimum time for insemination and reveal the likely importance of female vocal signals for coordinating reproductive efforts in this critically endangered species.  相似文献   

19.
High background noise is an important obstacle in successful signal detection and perception of an intended acoustic signal. To overcome this problem, many animals modify their acoustic signal by increasing the repetition rate, duration, amplitude or frequency range of the signal. An alternative method to ensure successful signal reception, yet to be tested in animals, involves the use of two different types of signal, where one signal type may enhance the other in periods of high background noise. Humpback whale communication signals comprise two different types: vocal signals, and surface-generated signals such as ‘breaching’ or ‘pectoral slapping’. We found that humpback whales gradually switched from primarily vocal to primarily surface-generated communication in increasing wind speeds and background noise levels, though kept both signal types in their repertoire. Vocal signals have the advantage of having higher information content but may have the disadvantage of loosing this information in a noisy environment. Surface-generated sounds have energy distributed over a greater frequency range and may be less likely to become confused in periods of high wind-generated noise but have less information content when compared with vocal sounds. Therefore, surface-generated sounds may improve detection or enhance the perception of vocal signals in a noisy environment.  相似文献   

20.
Ambient noise interferes with the propagation of acoustic signals through the environment from sender to receiver. Over the past few centuries, urbanization and the development of busy transport networks have led to dramatic increases in the levels of ambient noise with which animal acoustic communications must compete. Here we show that urban European robins Erithacus rubecula, highly territorial birds reliant on vocal communication, reduce acoustic interference by singing during the night in areas that are noisy during the day. The effect of ambient light pollution, to which nocturnal singing in urban birds is frequently attributed, is much weaker than that of daytime noise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号