首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Among the few available morphological traits in the genus Salicornia L. (Amaranthaceae/Chenopodiaceae), most are extremely variable within species probably due to high levels of plasticity. In addition, identifying Salicornia taxa is further complicated by that these plants lose many of their diagnostic characters upon drying. Morphological studies of fresh (or liquid preserved) specimens is thus important in taxonomical studies. The objective of this study was a numerical morphological analyses of Salicornia populations in the Nordic countries and an adjacent Russian region with the aim to ascertain whether taxonomic division of this genus based on morphology is feasible. In all, 666 plants were collected for morphometric measurements from 31 localities and 52 populations or subpopulations of the North Sea coasts, Danish straits, Baltic Sea, the Norwegian Sea, Barents Sea, and the White Sea areas. For practical reasons, part of the samples was studied fresh, and part preserved in FAA pending measurements. Data were analyzed by principal component analysis (PCA) and hierarchical cluster analysis. The main taxonomical division was found between the diploid S. europaea s.l. and the tetraploid S. procumbens Sm., and was mainly based on fertile segment and flower morphology characteristics. Data also show ecological differences: diploids inhabit the upper part of salt marshes, whereas tetraploids grow in the hydrolittoral zone and are restricted to areas of regular tidal influence. It was not possible to make a morphological distinction between the two cryptic diploid species S. europaea s.s. and S. perennans Willd. in the present study. North Norwegian S. europaea clearly deviated from more southern populations, but taxonomical conclusions based only on morphology were avoided. In contrast, the division of S. procumbens into two geographical races/subspecies, the southern subsp. procumbens and the northern subsp. pojarkovae was supported.  相似文献   

2.
In most taxa, species boundaries are inferred based on differences in morphology or DNA sequences revealed by taxonomic or phylogenetic analyses. In crickets, acoustic mating signals or calling songs have species‐specific structures and provide a third data set to infer species boundaries. We examined the concordance in species boundaries obtained using acoustic, morphological, and molecular data sets in the field cricket genus Itaropsis. This genus is currently described by only one valid species, Itaropsis tenella, with a broad distribution in western peninsular India and Sri Lanka. Calling songs of males sampled from four sites in peninsular India exhibited significant differences in a number of call features, suggesting the existence of multiple species. Cluster analysis of the acoustic data, molecular phylogenetic analyses, and phylogenetic analyses combining all data sets suggested the existence of three clades. Whatever the differences in calling signals, no full congruence was obtained between all the data sets, even though the resultant lineages were largely concordant with the acoustic clusters. The genus Itaropsis could thus be represented by three morphologically cryptic incipient species in peninsular India; their distributions are congruent with usual patterns of endemism in the Western Ghats, India. Song evolution is analysed through the divergence in syllable period, syllable and call duration, and dominant frequency. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 164 , 285–303.  相似文献   

3.
The genus Ixchela Huber is composed of 20 species distributed from north‐eastern Mexico to Central America, including the five new species described here from Mexico: I xchela azteca sp. nov. , I xchela jalisco sp. nov. , I xchela mendozai sp. nov. , I xchela purepecha sp. nov. and I xchela tlayuda sp. nov. We test the monophyly and investigate the phylogenetic relationships among species of the genus Ixchela using morphological and molecular data. Parsimony (PA) analysis of 24 taxa and 40 morphological characters with equal and implied weights supported the monophyly of Ixchela with eight morphological synapomorphies. The PA analyses with equal and implied weights, and separate Bayesian inference (BI) analyses for the CO1 gene (506 characters), concatenated gene fragments CO1 + 16S (885 characters), morphology + CO1 (546 characters) and the combined evidence data set (morphology + CO1 + 16S) (925 characters) support the monophyly of Ixchela. Our preferred topology shows two large clades; clade 1 has a natural distribution in the Mesoamerican biotic component, whereas clade 2 predominates in the Mexican Montane biotic component. The genus Ixchela diverged in the late Miocene, and the divergence between the internal clades in the genus occurred in the late Pliocene; by contrast, most of the speciation events seem to have occurred mainly during the Pleistocene, where climatic changes brought on by repeated glaciations played an important role in the diversification of the genus. © 2015 The Linnean Society of London  相似文献   

4.
The small size and apparent external morphological similarity of the minute salamanders of the genus Thorius have long hindered evolutionary studies of the group. We estimate gene and species trees within the genus using mitochondrial and nuclear DNA from nearly all named and many candidate species and find three main clades. We use this phylogenetic hypothesis to examine patterns of morphological evolution and species coexistence across central and southern Mexico and to test alternative hypotheses of lineage divergence with and without ecomorphological divergence. Sympatric species differ in body size more than expected after accounting for phylogenetic relationship, and morphological traits show no significant phylogenetic signal. Sympatric species tend to differ in a combination of body size, presence or absence of maxillary teeth, and relative limb or tail length, even when they are close relatives. Sister species of Thorius tend to occupy climatically similar environments, which suggests that divergence across climatic gradients does not drive species formation in the genus. Rather than being an example of cryptic species formation, Thorius more closely resembles an adaptive radiation, with ecomorphological divergence that is bounded by organism‐level constraints. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 622–643.  相似文献   

5.
Extreme habitats are characterized by the presence of physio‐chemical stressors, but also differ in aspects of the biotic environment, such as resource availability or the presence of competitors. The present study quantifies variation in trophic ecology of a small livebearing fish (Poecilia mexicana, Poeciliidae) across four different habitats that included nonsulphidic and sulphidic surface waters, as well as a nonsulphidic and a sulphidic cave. Resource use in different habitat types was investigated using gut content analysis. Populations diverged in resource use from a diet dominated by algae and detritus in nonsulfidic surface habitats to a diet including invertebrate food items in the other habitats. Poecilia mexicana in cave habitats further exhibited a higher dietary niche width than conspecifics from surface habitats. The condition of P. mexicana was analysed using storage lipid extractions. Fish from sulphidic and cave habitats exhibited a very poor condition, suggesting resource limitation and/or high costs of coping with extreme conditions. Finally, divergence in resource use was correlated with variation in viscerocranial morphology. A common garden experiment indicated both a genetic and plastic basis to the morphological variation observed among field populations. It is suggested that the morphological diversification is an adaptation to the differential use of resources among populations. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 517–528.  相似文献   

6.
The family Galatheidae is among the most diverse families of anomuran decapod crustaceans, and the South‐West Pacific is a biodiversity hot spot for these squat lobsters. Attempts to clarify the taxonomic and evolutionary relationships of the Galatheidae on the basis of morphological and molecular data have revealed the existence of several cryptic species, differentiated only by subtle morphological characters. Despite these efforts, however, relationships among genera are poorly understood, and the family is in need of a detailed systematic review. In this study, we assess material collected in different surveys conducted in the Solomon Islands, as well as comparative material from the Fiji Islands, by examining both the morphology of the specimens and two mitochondrial markers (cytochrome oxidase subunit I, COI, and 16S rRNA). These two sources of data revealed the existence of eight new species of squat lobster, four of which were ascribed to the genus Munida, two to the genus Paramunida, one to the genus Plesionida, and the last species was ascribed to the genus Agononida. These eight species are described along with phylogenetic relationships at the genus level. Our findings support the taxonomic status of the new species, yet the phylogenetic relationships are not yet fully resolved. Further molecular analysis of a larger data set of species, and more conserved genes, will help clarify the systematics of this group. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 156 , 465–493.  相似文献   

7.
Habitat‐associated trait divergence may vary across ontogeny if there are strong size‐related shifts in selection pressures. We quantified patterns of phenotypic divergence in Nile perch (Lates niloticus) from ecologically distinct wetland edge and forest edge habitats in Lake Nabugabo, Uganda, and we compared patterns of divergence across three size classes to determine whether trends are consistent through Nile perch ontogeny. We predicted that inter‐habitat variation in biotic (e.g. vegetation structure) and abiotic (e.g. dissolved oxygen concentration) variables may create divergent selective regimes. We compared body morphology using geometric morphometrics and found substantial differences between habitats, although not all trends were consistent across size classes. The most striking aspects of divergence in small Nile perch were in mouth orientation, head size, and development of the caudal region. Medium‐sized Nile perch also showed differences in mouth orientation. Differences in large individuals were related to eye size and orientation, as well as caudal length. The observed patterns of divergence are consistent with functional morphological predictions for fish across divergent trophic regimes, high and low predation environments, and complex and simple habitats. Although this suggests adaptive divergence, the source of phenotypic variation is unknown and may reflect phenotypic plasticity and/or genetic differences. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 449–465.  相似文献   

8.
The frequent occurrence of parallel phenotypic divergence in similar habitats is often evoked when emphasizing the role of ecology in adaptive radiation and speciation. However, because phenotypic plasticity can contribute to the observed pattern of divergence, confirmation of divergence at loci underlying phenotypic traits is important for confirming adaptive divergence. In the present study, we examine parallel morphological, neutral, and potentially adaptive genetic divergence of threespine stickleback inhabiting different habitats within a lake. Three genetic clusters best explained the neutral genetic structure within the lake; however, morphological differences were only weakly connected to genetic clusters and there was considerable phenotypic variation within clusters. Among the factors that could contribute to the observed pattern of morphological and genetic divergence are phenotypic plasticity, selective mortality of hybrids, and habitat choice based on morphology. Several loci are identified as outliers indicating divergent selection between the morphs and some parallels in morphological and adaptive genetic divergence are found in stickleback spawning at two lava sites. However, neutral genetic structure indicates considerable genetic connectivity among the two lava sites, and the parallels in morphology may therefore represent selective distribution of phenotypes rather than parallel divergence. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98 , 803–813.  相似文献   

9.
 To solve problems concerning the status of the taxa described in the genus Sarcocapnos, we have conducted a study using morphological, pollen morphology (light microscopy), cytogenetic and molecular techniques. Focusing on the last technique, we have sequenced ITS-1 and ITS-2 of nuclear rDNA. The species differ basically according to 5 morphological traits (leaf shape, flower spur, corolla colour, corolla size, and crest of the stigmatic surface). The cytogenetic analyses indicated n=16 to be the standard chromosome number. The ITS analyses showed that the genus is monophyletic, defining two main well-supported clades, one containing S. saetabensis and S. enneaphylla, and one containing the rest of the species. In this second clade, S. speciosa, S. pulcherrima, and S. baetica subsp. ardalii are related, as are S. integrifolia, S. crassifolia subsp. crassifolia, and S. crassifolia subsp. atlantis; S. baetica subsp. baetica forms a trichotomy with the foregoing groups. S. speciosa is shown to be a species separate from S. crassifolia subsp. crassifolia, as in the case of S. baetica with respect to S. integrifolia. Palynologically, the parameters used enabled us to establish clear differences between the taxa, often corroborating the macromorphological and genetic data. The flower spur has been reduced several times in different groups of the genus, for which the classifications established on the basis of this trait are paraphyletic. Received July 16, 2002; accepted December 11, 2002 Published online: March 31, 2003  相似文献   

10.
11.
Myrtaceae are one of the most species‐rich families of flowering plants in the Neotropics. They include several complex genera and species; Hexachlamys is one of the complex genera. It has not been recognized as a distinct genus and has been included in Eugenia, based on morphological grounds. Therefore, molecular systematic studies may be useful to understand and to help to solve these relationships. Here, we performed a molecular phylogenetic analysis using plastid and nuclear data in order to check the inclusion of Hexachlamys in Eugenia. Plastid (accD, rpoB, rpoC1, trnH‐psbA) and nuclear (ITS2) sequence data were analysed using Bayesian and maximum parsimony methods. The trees constructed using ITS2 and trnH‐psbA were the best able to resolve the relationships between species and genera, revealing the non‐monophyly of Hexachlamys. The molecular phylogenetic analyses were in agreement with previous morphological revisions that have included Hexachlamys in Eugenia. These results reinforce the importance of uniting knowledge and strategies to understand better issues of delimitation of genera and species in groups of plants with taxonomic problems. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 172 , 532–543.  相似文献   

12.
Metalasia is a genus in tribe Gnaphalieae (Asteraceae), endemic to South Africa and with its main distribution in the Cape Floristic Region. The genus comprises 57 species and, with a number of closely related genera, it constitutes the ‘Metalasia clade’. A species‐level phylogenetic analysis is presented, based on DNA sequences from two nuclear (internal and external transcribed spacer: ITS, ETS) and two plastid (psbA‐trnH, trnL‐trnF) regions together with morphological data. Analyses combining molecular and morphological data attempt not only to resolve species interrelationships, but also to detect patterns in character evolution. Phylogenetic analyses corroborate our earlier study and demonstrate that Metalasia is formed of two equally sized, well‐supported sister groups, one of which is characterized by papillose cypselas. The results differ greatly from earlier hypotheses based on morphology alone, as few morphological characters support the phylogenetic patterns obtained. The two clades of Metalasia do, however, appear to differ in distribution, corresponding to the different rainfall regimes of South Africa. Analyses show a few taxa to be problematic; one example is the widely distributed M. densa which appears to be an intricate species complex. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 174 , 173–198.  相似文献   

13.
14.
15.
Taxa missing large amounts of data pose challenges that may hinder the recovery of a well‐resolved, accurate phylogeny and leave questions surrounding their phylogenetic position. Systematists commonly have to contend with one or two species in a group for which there is little or no material available suitable for recovering molecular data. It is unclear whether these taxa can be better placed using analyses based on morphological data only, or should be included in broader analyses based on both morphological and molecular data. The extinct madtom catfish Noturus trautmani is known from few specimens for which molecular data are unavailable. We included this taxon in parsimony and Bayesian analyses of relationships of madtom catfishes based on a combination of morphological and molecular data. Results indicate that using a combination of morphological and molecular data does a better job at providing a phylogenetic placement for N. trautmani than morphology alone, even though it is missing all of its molecular characters. We provide a novel hypothesis of relationships among Noturus species and recommendations for classification within the group. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 155 , 60–75.  相似文献   

16.
Tidal marshes present profound adaptive challenges to terrestrial vertebrates. For example, North American sparrows have relatively longer and thinner bills and darker dorsal plumage in coastal saltmarshes than in interior marshes. Bay‐capped wren‐spinetail (Furnariidae; Spartonoica maluroides) show a strong association with South American saltmarshes. We hypothesized that bay‐capped wren‐spinetail have similar morphological adaptations to North American sparrows to the saltmarsh environment, which would be indicative of the generality of selection on these traits in the coastal saltmarsh ecosystem. We captured individuals of S. maluroides from coastal saltmarshes and interior marshes. Populations were compared based on morphology and molecular markers. We found significant phenotypic differences in bill shape and plumage coloration (melanism) between S. maluroides populations from coastal and inland marshes. The low levels of genetic variation, weak geographical structure and shallow divergences, based on mitochondrial DNA and microsatellite data, suggest that coastal populations had a recent demographic expansion. Our results are consistent with the pattern of morphological divergence found between North American Emberizids. The possibility of convergent evolutionary adaptations between saltmarsh North American Emberizids and South American Furnariids suggests that there are strong selective pressures associated with saltmarsh environments on the beak, leading to adaptations for food acquisition, and on plumage coloration for better camouflage for predator avoidance (melanism). © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 78–91.  相似文献   

17.
The taxonomic problem of the cyprinid species of genus Spinibarbus, occurring in southern China and northern Vietnam, was resolved on the basis of molecular and morphological analyses. Spinibarbus caldwelli and Spinibarbus hollandi have a smooth posterior edge of the last unbranched dorsal fin ray among species in the genus. Spinibarbus caldwelli is currently regarded as a junior synonym of S. hollandi because of ambiguities in diagnostic characters. In this article, 11 mtDNA cytochrome b sequences of Spinibarbus specimens were analyzed together with Barbodes gonionotus and Puntius conchonius as outgroups. Our results showed that specimens identified as S. hollandi from Taiwan were different from those from the Asian mainland at a high level of genetic divergence (0.097–0.112), which is higher than that between the two valid species, S. sinensis and S. yunnanensis (0.089), and suggested that Taiwan specimens should be considered as a different species from the Asian mainland one. In a molecular phylogenetic analysis, the sister-group relationship between Taiwan specimens and the Asian mainland specimens was supported strongly by a high confidence level (100% in bootstrap value). Further analysis of morphological characters showed that overlap of diagnostic characters is much weaker than previously suggested. Taiwan specimens had 8 branched rays in the dorsal fin, whereas those from the mainland had almost 9–10. The molecular and morphological differences suggest S. caldwelli to be valid. The molecular divergence shows the genetic speciation of S. hollandi and S. caldwelli might have occurred 5.6–4.9 million years ago; the former could be a relict species in Taiwan, and the latter dispersed in the Asian mainland.  相似文献   

18.
A combined morphological and genetic study of the coral genus Stylophora investigated species boundaries in the Gulf of Aden, Yemen. Two mitochondrial regions, including the hypervariable IGS9 spacer and the control region, and a fragment of rDNA were used for phylogenetic analysis. Results were compared by multivariate analysis on the basis of branch morphology and corallite morphometry. Two species were clearly discriminated by both approaches. The first species was characterised by small corallites and a low morphological variability and was ascribed to a new geographical record of Stylophora madagascarensis on the basis of its phylogenetic distinction and its morphological similarity to the type material. The second species was characterised by larger corallite size and greater morphological variability and was ascribed to Stylophora pistillata. The analysis was extended to the intrageneric level for other S. pistillata populations from the Red Sea and the Pacific Ocean. Strong internal divergence was evident in the genus Stylophora. S. pistillata populations were split into two highly divergent Red Sea/Gulf of Aden and western Pacific lineages with significant morphological overlap, which suggests they represent two distinct cryptic species. The combined use of morphological and molecular approaches, so far proved to be a powerful tool for the re-delineation of species boundaries in corals, provided novel evidence of cryptic divergence in this group of marine metazoans.  相似文献   

19.
The taxonomy of the Old World bat genus Otomops (Chiroptera: Molossidae) has been the subject of considerable debate. The failure of classical morphological studies to provide consistent patterns regarding interspecific relationships within Otomops has limited any understanding of the evolutionary history of the genus. We used traditional and geometric morphometric approaches to establish the species limits of taxa from sub‐Saharan Africa, the Arabian Peninsula, and Madagascar. Morphometric data supported the recent recognition of three distinct Afrotropical taxa: Otomops madagascariensis from Madagascar; Otomops martiensseni s.s. from southern, eastern, central, and western Africa; and an undescribed taxon from north‐east Africa and the Arabian Peninsula. Analyses of craniodental measurements and landmark‐based data showed significant cranial size and shape divergence between the three taxa. Cranial size and shape variation within Afro‐Arabian Otomops were strongly influenced by altitude, seasonality of precipitation, and precipitation in the driest month. Based on morphometric patterns and molecular divergence estimates, we suggest that morphological evolution within Afro‐Arabian Otomops occurred in response to the fluctuating climate during the Pleistocene on the one hand, and the increasing aridity and seasonality over north‐eastern Africa on the other. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, •• , ••–••.  相似文献   

20.
The worm‐like snakes (Scolecophidia; approximately 400 nominal extant species) have a conservative morphology and are among the most poorly‐known terrestrial vertebrates. Although molecular evidence has helped determine their higher‐level relationships, such data have rarely been used to discriminate among species. We generated a molecular data set for the continental Australian blindsnakes (genus Ramphotyphlops) to determine the concordance of molecular and morphological information in the taxonomic recognition of species. Our dataset included 741 specimens morphologically attributed to 27 nominal Ramphotyphlops species. We proposed species hypotheses (SHs) after analysis of sequences from a variable mitochondrial gene (cytochrome b) and examined these SHs with additional evidence from a nuclear gene (prolactin receptor) and geographical data. Although the nuclear marker was not as fast‐evolving and discriminating as the mitochondrial marker, there was congruence among the mitochondrial, nuclear, and geographical data, suggesting that the actual number of species is at least two times the current number of recognized, nominal species. Several biogeographical barriers and complex phytogeographical and geological patterns appeared to be involved in the division of some burrowing snake populations and, by consequence, in their diversification and speciation through isolation. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 427–441.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号