首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Proximal objects provide affordances that activate the motor information involved in interacting with the objects. This effect has previously been shown for artifacts but not for natural objects, such as food. This study examined whether the sight of proximal food, compared to distant food activates eating-related information. In two experiments reaction times to verbal labels following the sight of proximal and distant objects (food and toys) were measured. Verbal labels included function words that were compatible with one object category (eating and playing) and observation words compatible with both object categories. The sight of food was expected to activate eating-related information when presented at proximity but not at distance, as reflected by faster reaction times to proximal than distant compatible eating words and no difference between reaction times to proximal and distant food for observation words (Experiment 1). Experiment 2 additionally compared the reaction times to wrapped and unwrapped food. The distance effect was expected to occur only for unwrapped food because only unwrapped food is readily edible. As expected, Experiment 1 and 2 revealed faster responses to compatible eating words at proximity than at distance. In Experiment 2 this distance effect occurred only for readily edible, unwrapped food but not for wrapped food. For observation words no difference in response times between the distances was found. These findings suggest that the sight of proximal food activates eating-related information, which could explain people’s differential behavioral responses to reachable versus distant food. The activation of eating-related information upon sight of accessible food could provide a cognition-based explanation for mindless eating.  相似文献   

6.
7.
Few studies have documented the activity patterns of both predators and their common prey over 24 h diel cycles. This study documents the temporal periodicity of two common resident predators of juvenile reef fishes, Cephalopholis cyanostigma (rockcod) and Pseudochromis fuscus (dottyback) and compares these to the activity and foraging pattern of a common prey species, juvenile Pomacentrus moluccensis (lemon damselfish). Detailed observations of activity in the field and using 24 h infrared video in the laboratory revealed that the two predators had very different activity patterns. C. cyanostigma was active over the whole 24 h period, with a peak in feeding strikes at dusk and increased activity at both dawn and dusk, while P. fuscus was not active at night and had its highest strike rates at midday. The activity and foraging pattern of P. moluccensis directly opposes that of C. cyanostigma with individuals reducing strike rate and intraspecific aggression at both dawn and dusk, and reducing distance from shelter and boldness at dusk only. Juveniles examined were just outside the size-selection window of P. fuscus. We suggest that the relatively predictable diel behaviour of coral reef predators results from physiological factors such as visual sensory abilities, circadian rhythmicity, variation in hunting profitability, and predation risk at different times of the day. Our study suggests that the diel periodicity of P. moluccensis behaviour may represent a response to increased predation risk at times when both the ability to efficiently capture food and visually detect predators is reduced.  相似文献   

8.
9.
10.
Abstract A marine, multicellular, filamentous flexibacterium, Saprospira grandis Gross, can not only live heterotrophically on dissolved organic substrata, but can subsist on other microbes and can even catch motile bacteria by their flagella before killing and digesting them. Received: 7 October 1996; Accepted: 2 January 1997  相似文献   

11.
Avoidance behaviour can play an important role in structuring ecosystems but can be difficult to uncover and quantify. Remote cameras have great but as yet unrealized potential to uncover patterns arising from predatory, competitive or other interactions that structure animal communities by detecting species that are active at the same sites and recording their behaviours and times of activity. Here, we use multi-season, two-species occupancy models to test for evidence of interactions between introduced (feral cat Felis catus) and native predator (Tasmanian devil Sarcophilus harrisii) and predator and small mammal (swamp rat Rattus lutreolus velutinus) combinations at baited camera sites in the cool temperate forests of southern Tasmania. In addition, we investigate the capture rates of swamp rats in traps scented with feral cat and devil faecal odours. We observed that one species could reduce the probability of detecting another at a camera site. In particular, feral cats were detected less frequently at camera sites occupied by devils, whereas patterns of swamp rat detection associated with devils or feral cats varied with study site. Captures of swamp rats were not associated with odours on traps, although fewer captures tended to occur in traps scented with the faecal odour of feral cats. The observation that a native carnivorous marsupial, the Tasmanian devil, can suppress the detectability of an introduced eutherian predator, the feral cat, is consistent with a dominant predator – mesopredator relationship. Such a relationship has important implications for the interaction between feral cats and the lower trophic guilds that form their prey, especially if cat activity increases in places where devil populations are declining. More generally, population estimates derived from devices such as remote cameras need to acknowledge the potential for one species to change the detectability of another, and incorporate this in assessments of numbers and survival.  相似文献   

12.
Freshwater Copepods and Rotifers: Predators and their Prey   总被引:1,自引:0,他引:1  
Three main groups of planktonic animals inhabit the limnetic zone of inland waters and compete for common food resources: rotifers, cladocerans and copepods. In addition to competition, their mutual relationships are strongly influenced by the variable, herbivorous and carnivorous feeding modes of the copepods. Most copepod species, at least in their later developmental stages, are efficient predators. They exhibit various hunting and feeding techniques, which enable them to prey on a wide range of planktonic animals from protozoans to small cladocerans. The rotifers are often the most preferred prey. The scope of this paper is limited to predation of freshwater copepods on rotifer prey. Both cyclopoid and calanoid copepods (genera Cyclops, Acanthocyclops, Mesocyclops, Diacyclops, Tropocyclops, Diaptomus, Eudiaptomus, Boeckella, Epischura and others) as predators and several rotifer species (genera Synchaeta, Polyarthra, Filinia, Conochilus, Conochiloides, Brachionus, Keratella, Asplanchna and others) as prey are reported in various studies on the feeding relationships in limnetic communities. Generally, soft-bodied species are more vulnerable to predation than species possessing spines or external structures or loricate species. However, not only morphological but also behavioural characteristics, e.g., movements and escape reactions, and temporal and spatial distribution of rotifer species are important in regulating the impact of copepod predation. The reported predation rates are high enough to produce top-down control and often achieve or even exceed the reproductive rates of the rotifer populations. These findings are discussed and related to the differences between the life history strategies of limnetic rotifer species, with their ability to quickly utilize seasonally changing food resources, and adjust to the more complicated life strategies of copepods.  相似文献   

13.
14.
15.
Most animals have well established diel activity patterns (e.g., diurnal, crepuscular, or nocturnal), and changes in behavior from diurnal to nocturnal are rare in single species. We radio tracked 50 keelback snakes in a single population, locating them up to four times a day, over five periods of the year in the Australian dry tropics to describe temporal variation in diel movement patterns. Snake body temperatures were also recorded to determine the relationship between activity patterns and body temperatures. Season influenced diel activity patterns significantly. Keelbacks were more likely to move, and moved further in the daytime in the mid‐dry (June–July), and late dry (Aug–Sep) seasons. In the mid‐dry season, 87 percent of movements were diurnal, whereas in the mid‐wet (Feb–March) season, although snakes were much more likely to move, only 43 percent of movements were diurnal. In the late dry season, snakes were slightly more likely to move at night than at any other time of day, and so at this time of the year, snakes could be classified as nocturnal. Thus, overall increased movements in the mid‐wet season (austral summer) were associated with more crepuscular and nocturnal movement. There was a significant relationship between individual snake body temperatures and movement rates in all seasons. Changes in movement patterns may be related to body temperature, and this diurnal species becomes cathemeral in the tropics in summer, when it is possible to maintain high body temperatures both day and night.  相似文献   

16.
The outcome of predator-prey encounters is determined by a number of factors related to the locomotor and sensory performance of the animals. Escape responses can be triggered visually, i.e. by the magnifying retinal image of an approaching object (i.e. a predator), called the looming effect, and calculated as the rate of change of the angle subtended by the predator frontal profile as seen by the prey. A threshold of looming angle (ALT, the Apparent Looming Threshold) determines the reaction distance of a startled fish, which is proportional to the attack speed of the predator and its apparent frontal profile. Optimal tactics for predator attacks as well as consideration on their functional morphology are discussed in relation to ALT. Predator optimal attack speeds depend on predator morphology as well as the prey ALT. Predictions on the scaling of ALT suggest that ALT may increase (i.e. implying a decrease in reaction distance) with prey size in cases in which predator attack speeds are high (i.e. > 4 L/s in a 1-m long predator), while it may be relatively independent of prey size when predators attack at lower speeds. The issue of scaling of ALT is discussed using examples from field and laboratory studies. While the timing of the escape is a crucial issue for avoiding being preyed upon, the direction of escape manoeuvres may also determine the success of the escape. A simple theoretical framework for optimal escape trajectories is presented here and compared with existing data on escape trajectories of fish reacting to startling stimuli.  相似文献   

17.
Chemical cues from piscivorous fish and prey alarm substances often cause rapid fright responses in prey. However little is known of how piscivore-related chemical cues affect prey behaviour over periods longer than a few hours. Here we have investigated how chemical cues from piscivorous northern pike, Esox lucius, affect habitat choice and diel activity of crucian carp, Carassius carassius, over an extended period 11 days. At the beginning of the experiment control fish were nocturnal while fish in the pike cue treatment were aperiodic. After 11 days, control fish had become more strongly nocturnal and displayed two activity peaks during early and late night whereas fish in the pike cue treatment were still aperiodic with no activity peaks. Habitat choice was aperiodic in both treatments throughout the experiment. In both treatments, more fish were found in the vegetation zone than in the open habitat. This was most pronounced when pike cues were present. These results demonstrate that short-term anti-predator responses to chemical cues from predators can translate into long-term adjustments of diel periodicity. Further, the results did not support the idea that crucian carp should switch to nocturnal activity in response to visually hunting predators. Control fish were nocturnal and chemical cues from pike did not make this pattern more pronounced.  相似文献   

18.
Understanding how prey capture rates are influenced by feeding ecology and environmental conditions is fundamental to assessing anthropogenic impacts on marine higher predators. We compared how prey capture rates varied in relation to prey size, prey patch distribution and prey density for two species of alcid, common guillemot (Uria aalge) and razorbill (Alca torda) during the chick-rearing period. We developed a Monte Carlo approach parameterised with foraging behaviour from bird-borne data loggers, observations of prey fed to chicks, and adult diet from water-offloading, to construct a bio-energetics model. Our primary goal was to estimate prey capture rates, and a secondary aim was to test responses to a set of biologically plausible environmental scenarios. Estimated prey capture rates were 1.5±0.8 items per dive (0.8±0.4 and 1.1±0.6 items per minute foraging and underwater, respectively) for guillemots and 3.7±2.4 items per dive (4.9±3.1 and 7.3±4.0 items per minute foraging and underwater, respectively) for razorbills. Based on species'' ecology, diet and flight costs, we predicted that razorbills would be more sensitive to decreases in 0-group sandeel (Ammodytes marinus) length (prediction 1), but guillemots would be more sensitive to prey patches that were more widely spaced (prediction 2), and lower in prey density (prediction 3). Estimated prey capture rates increased non-linearly as 0-group sandeel length declined, with the slope being steeper in razorbills, supporting prediction 1. When prey patches were more dispersed, estimated daily energy expenditure increased by a factor of 3.0 for guillemots and 2.3 for razorbills, suggesting guillemots were more sensitive to patchier prey, supporting prediction 2. However, both species responded similarly to reduced prey density (guillemot expenditure increased by 1.7; razorbill by 1.6), thus not supporting prediction 3. This bio-energetics approach complements other foraging models in predicting likely impacts of environmental change on marine higher predators dependent on species-specific foraging ecologies.  相似文献   

19.

Background

Theory predicts that prey facing a combination of predators with different feeding modes have two options: to express a response against the feeding mode of the most dangerous predator, or to express an intermediate response. Intermediate phenotypes protect equally well against several feeding modes, rather than providing specific protection against a single predator. Anti-predator traits that protect against a common feeding mode displayed by all predators should be expressed regardless of predator combination, as there is no need for trade-offs.

Principal Findings

We studied phenotypic anti-predator responses of zebra mussels to predation threat from a handling-time-limited (crayfish) and a gape-size-limited (roach) predator. Both predators dislodge mussels from the substrate but diverge in their further feeding modes. Mussels increased expression of a non-specific defense trait (attachment strength) against all combinations of predators relative to a control. In response to roach alone, mussels showed a tendency to develop a weaker and more elongated shell. In response to crayfish, mussels developed a harder and rounder shell. When exposed to either a combination of predators or no predator, mussels developed an intermediate phenotype. Mussel growth rate was positively correlated with an elongated weaker shell and negatively correlated with a round strong shell, indicating a trade-off between anti-predator responses. Field observations of prey phenotypes revealed the presence of both anti-predator phenotypes and the trade-off with growth, but intra-specific population density and bottom substrate had a greater influence than predator density.

Conclusions

Our results show that two different predators can exert both functionally equivalent and inverse selection pressures on a single prey. Our field study suggests that abiotic factors and prey population density should be considered when attempting to explain phenotypic diversity in the wild.  相似文献   

20.
Indirect trophic effects play important roles in ecosystem dynamics and can at times oppose and dominate the action of direct feeding linkages. Each predator directly exerts a negative effect upon its prey, but predators may also provide indirect benefits to their prey. In ecosystems, such benefits are effected via indirect trophic pathways that can provide a more than compensating positive influence. The ecosystem of the Big Cypress National Preserve (southwest Florida) appears to contain an unusually high number of such predators—most notably, the American alligator, Alligator mississippiensis. The trophic exchanges of carbon among the 68 principal taxa comprising the cypress wetland ecosystem have been quantified during both wet and dry seasons. The network analysis program IMPACTS identified predators that potentially have a positive influence on some of their prey. A total of 64 of these instances were recorded for the wet season and 44 for the dry. Taxa that, on balance, have positive effects upon their prey include fishes, turtles, snakes, birds, and, most significantly, alligators. The feeding habits of alligators benefit a conspicuous number (11) of their prey (invertebrates, frogs, mice, and rats). Further trophic analysis reveals that the predation by alligators on snakes and turtles accounts for most of the trophic benefits bestowed. The actions of alligators in modifying their physical environment has been cited elsewhere as contributing to the maintenance of biotic diversity. It appears that the trophic influence of this species adds further evidence to the important role it plays in the functional ecology of the cypress wetland. Received 4 March 1998; accepted 21 October 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号