首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As for other vascular plants, numerous adaptive strategies have been selected in epiphytic ferns in order to survive in a constraining and desiccating environment and thus to prevent dehydration and/or to access to water and nutrients. Here we present some of the specializations that allow ferns to survive in this particular habitat. Some of the most spectacular epiphytic specializations are observed in the Polypodiaceae family, involving humus-collectors which entrap humus in specialized organs, and ant-plant mutualism strategies. We then address the question of epiphytism in an evolutionary context. There is little fossil evidence of vascular epiphytes. Inferring the evolution of epiphytism in extant ferns shows that diversification of major living epiphytic groups mostly occurred in the Tertiary. Finally, we focus on the Hymenophyllaceae family which provides an original example of hygrophilous epiphytic strategy that is unique in vascular plants. To cite this article: J.-Y. Dubuisson et al., C. R. Biologies 332 (2009).  相似文献   

2.
Evolution of epiphytes in Davalliaceae and related ferns   总被引:3,自引:0,他引:3  
The evolution of epiphytes in Davalliaceae was investigated by field observations and molecular phylogenetic analyses. Field studies revealed that in Davalliaceae and related ferns, epiphytes in a broad sense are classified into climber, secondary hemi-epiphyte, and obligate epiphyte, based on combinations of the places (ground vs. tree) of inferred spore germination and sporophyte growth. Some species of Davalliaceae have multiple life forms, i.e. secondary hemi-epiphyte and obligate epiphyte, whereas others are obligate epiphytes. Phylogenetic trees obtained from rbcL and accD gene sequences supported that secondary hemi-epiphytic Oleandra is sister to the epiphytic Davalliaceae and polygrammoid ferns. Analyses of life form evolution based on the phylogenetic relationships suggested that obligate epiphytes of the Davalliaceae and polygrammoid ferns evolved from secondary hemi-epiphytes, or less likely from climbers. We hypothesized a scenario for the evolution of life forms in Davalliaceae and related groups that involves successive changes in rhizome habit, root function, and germination place. Rhizome dorsiventrality and scale morphology, shared by climbers, secondary hemi-epiphytes, and obligate epiphytes examined, may be other innovations for the ferns to have evolved into epiphytes.  © 2006 The Linnean Society of London, Botanical Journal of the Linnean Society , 2006, 151 , 495–510.  相似文献   

3.
? Shifts in sexual systems are among the most common and important transitions in plants and are correlated with a suite of life-history traits. The evolution of sexual systems and their relationships to gametophyte size, sexual and asexual reproduction, and epiphytism are examined here in the liverwort genus Radula. ? The sequence of trait acquisition and the phylogenetic correlations between those traits was investigated using comparative methods. ? Shifts in sexual systems recurrently occurred from dioecy to monoecy within facultative epiphyte lineages. Production of specialized asexual gemmae was correlated to neither dioecy nor strict epiphytism. ? The significant correlations among life-history traits related to sexual systems and habitat conditions suggest the existence of evolutionary trade-offs. Obligate epiphytes do not produce gemmae more frequently than facultative epiphytes and disperse by whole gametophyte fragments, presumably to avoid the sensitive protonemal stage in a habitat prone to rapid changes in moisture availability. As dispersal ranges correlate with diaspore size, this reinforces the notion that epiphytes experience strong dispersal limitations. Our results thus provide the evolutionary complement to metapopulation, metacommunity and experimental studies demonstrating trade-offs between dispersal distance, establishment ability, and life-history strategy, which may be central to the evolution of reproductive strategies in bryophytes.  相似文献   

4.
Intraspecific diversification of the wildcat (Felis silvestris), including the European wildcat (F. s. silvestris), the Asian wildcat (F. s. ornata) and the African wildcat (F. s. lybica), was examined based on 39 cranial morphology variables. The samples of free‐ranging cats originated from Britain, Europe, Central Asia and southern Africa, consisting of both nominal wildcat specimens (referred to henceforth as ‘wildcats’) and nominal non‐wildcat specimens (‘non‐wildcats’) based on museum labels. The skull morphology of ‘wildcats’ from Britain and Europe is clearly different from that of ‘wildcats’ of Central Asia and southern Africa. The latter are characterized especially by their proportionately larger cheek teeth. On the basis of principal component, discriminant function and canonical variate analyses, the skull morphology of British ‘non‐wildcats’ is less distinct than is that of British ‘wildcats’ from the skull morphologies of ‘wildcats’ of Central Asia and southern Africa. On the other hand, the skull morphology of southern African ‘non‐wildcats’ is as distinct from those of ‘wildcats’ of Britain and Europe as is that of southern African ‘wildcats’. We suggest that the evolution of the modern wildcat probably consisted of at least three different distribution expansions punctuated by two differentiation events: the exodus from Europe during the late Pleistocene, coinciding with the emergence of the steppe wildcat lineage (phenotype of Asian–African wildcat), followed by its rapid range expansion in the Old World. The second differentiation event was the emergence of the domestic cat followed by its subsequent colonization of the entire world with human assistance. Considering the recent evolutionary history of, and morphological divergence in, the wildcat, preventing hybridization between the European wildcat and the domestic cat is a high conservation priority. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 83 , 47–63.  相似文献   

5.
Kiisortoqia soperi gen. et sp. nov. is an arthropod species from the Early Cambrian Sirius Passet Lagerstätte of North Greenland. A head, incorporating four appendiferous segments and biramous limbs, with an anteroposteriorly compressed basipod with a spine bearing median edge, support the euarthropod affinities of K. soperi gen. et sp. nov. Similarities with ‘short great appendage’ arthropods, or megacheirans, like the nine‐segmented endopod, and the flap‐ or paddle‐like exopod, may be symplesiomorphies. The antennula, however, resembles in composition and size the anteroventral raptorial appendage of anomalocaridids. Thus, the morphology of K. soperi gen. et sp. nov. provides additional support for the homologization of the anomalocaridid ‘great appendage’ with the appendage of the antennular or deutocerebral segment of extant Euarthropoda. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 158 , 477–500.  相似文献   

6.
Skulls of many living and extinct beaked whales (Ziphiidae) contain various bizarre bone and tooth structures. Many of them show sexual dimorphism in their skull anatomy: males have bizarre skull structures, whereas females do not. Opinions differ as to what the function of these structures might be. Some believe that these are weapons; others, that they are sound transmitters. This article argues that these structures are the means of visual display. Many of the bizarre bone structures of beaked whales are not exposed like ‘visuals’ of terrestrial tetrapods, but are located deep in soft tissues. Nevertheless, toothed whales recognize objects (including three‐dimensional bodies), using echolocation. So, along with visual means, they can ‘see’ and ‘show’ their internal bone structures with echoic imaging and use them as informational sources in social interactions and in individual or species recognition. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 510–515.  相似文献   

7.
8.
The skulls of 33 extant cat species were characterized through three‐dimensional geometric morphometrics using 20 landmarks. A principal component analysis (PCA) was performed with Procrustes fitted coordinates, and the PC‐scores were phylogenetically corrected by independent contrasts method. Three PCs allowed for the definition of five cat skull patterns. PC1: ‘snouted/massive‐headed cats’ (genus Panthera) opposing the ‘round‐headed small cats’ (genus Oncifelis, Prionailurus rubiginosus, Prionailurus bengalensis, among other small cats); PC2: ‘tapering‐headed cats’ (Neofelis nebulosa, Herpailurus yagouaroundi, Prionailurus planiceps) opposing the ‘stout‐headed cats’ (Acinonyx jubatus, Uncia uncia, Otocolobus manul, Felis margarita, and Felis nigripes); and PC3: ‘low profiled‐headed cats’ (mostly, Pr. planiceps). A sixth pattern, the ‘generalized skull’, observed in the Caracal lineage, genus Lynx, Leopardus pardalis, and Catopuma temminckii, indicates a morphological convergence among midsized‐cats. The morphological trends ‘snouted/massive’ and ‘round’ clearly denote a co‐evolution between size and shape. The other skull patterns evolved unrelatedly to the size (i.e. their allometric variations are not a size function). Nevertheless, each species comprises an amalgam of these patterns, so the influence of the size permeates, in some extent, the skull morphology along all cat lineages. The felid ecomorphological fit to hypercarnivory is obvious; however, different skull shapes in same‐sized species with similar habits, indicate that the variation in the skull morphology may result from phenotypic fluctuations, whose adaptive value (if indeed there is any) is still obscure. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 176–190.  相似文献   

9.
The worldwide distributed house mouse, Mus musculus, is subdivided into at least three lineages, Mus musculus musculus, Mus musculus domesticus, and Mus musculus castaneus. The subspecies occur parapatrically in a region considered to be the cradle of the species in Southern Asia (‘central region’), as well as in the rest of the world (‘peripheral region’). The morphological evolution of this species in a phylogeographical context is studied using a landmark‐based approach on mandible morphology of different populations of the three lineages. The morphological variation increases from central to peripheral regions at the population and subspecific levels, confirming a centrifugal sub‐speciation within this species. Furthermore, the outgroup comparison with sister species suggests that M. musculus musculus and populations of all subspecies inhabiting the Iranian plateau have retained a more ancestral mandible morphology, suggesting that this region may represent one of the relevant places of the origin of the species. Mus musculus castaneus, both from central and peripheral regions, is morphologically the most variable and divergent subspecies. Finally, the results obtained in the present study suggest that the independent evolution to commensalism in the three lineages is not accompanied by a convergence detectable on jaw morphology. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 635–647.  相似文献   

10.
Sessile organisms are influenced considerably by their substrate conditions, and their adaptive strategies are key to understanding their morphologic evolution and traits of life history. The family Flabellidae (Cnidaria: Scleractinia) is composed of the representative azooxanthellate solitary corals that live on both soft and hard substrates using various adaptive strategies. We reconstructed the phylogenetic tree and ancestral character states of this family from the mitochondrial 16S and nuclear 28S ribosomal DNA sequences of ten flabellids aiming to infer the evolution of their adaptive strategies. The Javania lineage branched off first and adapted to hard substrates by using a tectura‐reinforced base. The extant free‐living flabellids, including Flabellum and Truncatoflabellum, invaded soft substrates and acquired the flabellate corallum morphology of their common ancestor, followed by a remarkable radiation with the exploitation of adaptive strategies, such as external soft tissue [e.g. Flabellum (Ulocyathus)], thecal edge spine, and transverse division (e.g. Placotrochus and Truncatoflabellum). Subsequently, the free‐living ancestors of two genera (Rhizotrochus and Monomyces) invaded hard substrates independently by exploiting distinct attachment apparatuses such as tube‐like and massive rootlets, respectively. In conclusion, flabellids developed various morphology and life‐history traits according to the differences in substrate conditions during the course of their evolution. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 184–192.  相似文献   

11.
New comparative data are presented on the reproductive morphology and anatomy of two genera closely related to grasses, Flagellaria and Joinvillea, in which the flowers are superficially similar, especially in stamen morphology. This investigation demonstrates some anatomical differences between the two genera. For example, both genera depart from the ‘typical’ condition of tepal vasculature (three‐traced outer tepals and one‐traced inner tepals): in Flagellaria, each tepal receives a single vascular bundle and, in Joinvillea, each tepal is supplied by three vascular bundles. Joinvillea possesses supernumerary carpel bundles, as also found in the related family Ecdeiocoleaceae, but not in Flagellaria or grasses. In the anther, the tapetum degenerates early in Flagellaria, and is relatively persistent in Joinvillea, in which the pollen grains remain closely associated with the tapetum inside the anther locule, indicating a correlation between peripheral pollen (a feature that is common in grasses) and a persistent tapetum. This study highlights the presence of a pollen‐tube transmitting tissue (PTTT) or solid style in the gynoecium of Flagellaria, as also in many Poaceae, but not in Joinvillea or Ecdeiocoleaceae. We speculate that the presence of a PTTT could represent one of the factors that facilitated the subsequent evolution of the intimately connected gynoecia that characterize grasses. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 170 , 393–404.  相似文献   

12.
Trilobites are particularly common Cambrian fossils, but their trophic impact on the rapidly evolving marine ecosystems of that time is difficult to assess, due to uncertainties on how diverse their feeding habits truly were. Gut anatomy might help to constrain inferences on trilobite feeding ecology, but preservation of digestive organs is exceedingly rare. Muscle scars on the glabella, known as ‘frontal auxiliary impressions’ (FAIs), have been interpreted as evidence of the evolution of a pouch‐like organ with powerful extrinsic muscles (i.e. a crop) in some trilobites. Here we describe FAIs in Mesolenellus hyperboreus from Cambrian Stage 4 strata of North Greenland, which represents the oldest example of such structures and their first report in the Suborder Olenellina. Mesolenellus FAIs suggest that the crop in trilobites was clearly differentiated from the rest of the digestive tract, and essentially located under a hypertrophied glabellar frontal lobe. Reviews of the digestive anatomy of trilobite sister‐taxa and the glabellar morphology of the oldest‐known trilobites suggest that the gut of the trilobite ancestor was an essentially simple tract (i.e. no well‐differentiated crop) flanked laterally by numerous midgut glands. A crop first evolved in the Cambrian in groups like olenelloids and (later) paradoxidoids. Using ichnological evidence, we hypothesize that the emergence of olenelloids yields evidence for the evolution of predatory inclinations in a group of arthropods originally dominated by surface‐deposit‐feeders. By allowing the exploitation of a rapidly developing food source, infaunal animals, the diversification of feeding strategies in trilobites might partially explain their unparalleled evolutionary success.  相似文献   

13.
We investigated sperm cells and spermatophores of four species of Old World freshwater crabs belonging to three different genera of the subfamily Potaminae (family Potamidae). Characters previously believed to be apomorphic for the potamid subfamily Potamiscinae were also found to occur in the Potaminae. To infer the morphological ancestral character state combination of the Potamidae, ancestral character state analysis of four different sperm traits was performed, based on a 16S rDNA phylogeny of the investigated species. Comparing molecular phylogeny and character state distribution, several cases of convergent evolution could be identified. The densely packed, coenospermic spermatophores and the occurrence of a ‘tongue‐and‐groove’ connection between operculum and acrosomal zones are probably apomorphies for the whole Potamidae. The spermatozoa of Socotrapotamon socotrense show several unique characters. We also analysed the evolution of acrosome size. The sperm cells of the Potamidae and their sister‐group Gecarcinucidae only slightly overlap in acrosome size. Within the investigated species, the ‘East Asia’ subclade (subfamily Potamiscinae) developed significantly larger acrosomes than the subfamily Potaminae. Our results suggest that the use of brachyuran acrosome morphology for phylogenetic inference at the family level is strongly affected by small sample size, and by convergent character evolution. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010.  相似文献   

14.
The fossil echinoderm Palaeocucumaria, from the early Devonian Hunsrück Slate of southwestern Germany, has been studied using both traditional techniques and X‐ray microtomography, and its anatomy clarified. Phylogenetic analysis shows that it is a stem‐group holothurian with a combination of characters that help understand how the modern (crown‐group) holothurian body plan developed. Echinoids and holothurians have evolved along different paths, by differential growth of the larval‐ and rudment‐derived body regions. Palaeocucumaria shows that late stem‐group holothurians had a water vascular organization with a single external madreporite and calcified stone canal leading to the aboral end of the peripharyngeal coelom, and five primary radial water vessels that gave rise to tentacle‐like tube‐feet. This fossil data, in combination with a molecular phylogeny based on 18 s‐like rRNA gene sequence data, is used to order evolutionary steps in the making of the crown‐group holothurian body plan. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 670–681.  相似文献   

15.
Meadows of Halodule wrightii (Cymodoceaceae) underwent a decline in a tidal flat located at Paranaguá Bay (Parana, SE Brazil). This decline appeared to be related to an overgrowth of the epiphytic macroalga Hincksia mitchelliae (Harv.) P. C. Silva (Phaeophyceae). In order to characterize the type of epiphytism between the alga and its plant host, we compared two samples from the beginning and end of the algal overgrowth via electron and optical microscopes. The investigation revealed that at both sampling periods, there was an epiphytism of type II, which is due to an infection of epiphytes strongly attached to the surface of the host but not associated to any apparent direct host‐tissue damage. The presence of plasmodesmata between the cells of Hincksia only in the late stage of the host–epiphyte interaction indicated a change in the vegetative organization of Hincksia in relation to its host to improve nutrient absorption and distribution through the epiphyte cells. This is the first report on plasmodesmata in H. mitchelliae. The proposed mechanisms with which the algal epiphytes lead seagrasses to death are shadowing by adhesion on Halodule surface and disruption of its osmoregulatory system. Our findings have implications for the conservation and management strategies of seagrass ecosystems.  相似文献   

16.
Vascular epiphyte species exclusively, or at least primarily, germinate and grow on other plants without contact with the soil and, in contrast to mistletoes, without parasitizing their hosts. The last review of the systematic distribution of this diverse group of plants dates back more than two decades. The present study pursues three major goals: (1) it critically discusses conceptual problems arising from the distinction of epiphytes from non‐epiphytes; (2) it presents a compilation of epiphytic diversity derived from a vast number of sources; and (3) it arranges epiphyte diversity in an up‐to‐date taxonomic framework. The resulting compilation, which identifies 27 614 species of vascular epiphytes (including primary hemiepiphytes) representing 913 genera in 73 families, or approximately 9% of extant vascular plant diversity, is meant to be an important tool for studies on the ecology and evolution of epiphytes, but also for comparative studies with a focus on other life forms. © 2013 The Linnean Society of London  相似文献   

17.
Metalasia is a genus in tribe Gnaphalieae (Asteraceae), endemic to South Africa and with its main distribution in the Cape Floristic Region. The genus comprises 57 species and, with a number of closely related genera, it constitutes the ‘Metalasia clade’. A species‐level phylogenetic analysis is presented, based on DNA sequences from two nuclear (internal and external transcribed spacer: ITS, ETS) and two plastid (psbA‐trnH, trnL‐trnF) regions together with morphological data. Analyses combining molecular and morphological data attempt not only to resolve species interrelationships, but also to detect patterns in character evolution. Phylogenetic analyses corroborate our earlier study and demonstrate that Metalasia is formed of two equally sized, well‐supported sister groups, one of which is characterized by papillose cypselas. The results differ greatly from earlier hypotheses based on morphology alone, as few morphological characters support the phylogenetic patterns obtained. The two clades of Metalasia do, however, appear to differ in distribution, corresponding to the different rainfall regimes of South Africa. Analyses show a few taxa to be problematic; one example is the widely distributed M. densa which appears to be an intricate species complex. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 174 , 173–198.  相似文献   

18.
19.
Definitions of character states in woods are softer than generally assumed, and more complex for workers to interpret. Only by a constant effort to transcend the limitations of glossaries can a more than partial understanding of wood anatomy and its evolution be achieved. The need for such an effort is most evident in a major group with sufficient wood diversity to demonstrate numerous problems in wood anatomical features. Caryophyllales s.l., with approximately 12 000 species, are such a group. Paradoxically, Caryophyllales offer many more interpretive problems than other ‘typically woody’ eudicot clades of comparable size: a wider range of wood structural patterns is represented in the order. An account of character expression diversity is presented for major wood characters of Caryophyllales. These characters include successive cambia (more extensively represented in Caryophyllales than elsewhere in angiosperms); vessel element perforation plates (non‐bordered and bordered, with and without constrictions); lateral wall pitting of vessels (notably pseudoscalariform patterns); vesturing and sculpturing on vessel walls; grouping of vessels; nature of tracheids and fibre‐tracheids, storying in libriform fibres, types of axial parenchyma, ray anatomy and shifts in ray ontogeny; juvenilism in rays; raylessness; occurrence of idioblasts; occurrence of a new cell type (ancistrocladan cells); correlations of raylessness with scattered bundle occurrence and other anatomical discoveries newly described and/or understood through the use of scanning electron microscopy and light microscopy. This study goes beyond summarizing or reportage and attempts interpretations in terms of shifts in degrees of juvenilism, diversification in habit, ecological occupancy strategies (with special attention to succulence) and phylogenetic change. Phylogenetic change in wood anatomy is held to be best interpreted when accompanied by an understanding of wood ontogeny, species ecology, species habit and taxonomic context. Wood anatomy of Caryophyllales demonstrates problems inherent in binary character definitions, mapping of morphological characters onto DNA‐based trees and attempts to analyse wood structure without taking into account ecological and habital features. The difficulties of bridging wood anatomy with physiology and ecology are briefly reviewed. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 164 , 342–393.  相似文献   

20.
Species of the large family Orchidaceae display a spectacular array of adaptations and rapid speciations that are linked to several innovative features, including specialized pollination syndromes, colonization of epiphytic habitats, and the presence of Crassulacean acid metabolism (CAM), a water-conserving photosynthetic pathway. To better understand the role of CAM and epiphytism in the evolutionary expansion of tropical orchids, we sampled leaf carbon isotopic composition of 1,103 species native to Panama and Costa Rica, performed character state reconstruction and phylogenetic trait analysis of CAM and epiphytism, and related strong CAM, present in 10% of species surveyed, to climatic variables and the evolution of epiphytism in tropical regions. Altitude was the most important predictor of photosynthetic pathway when all environmental variables were taken into account, with CAM being most prevalent at low altitudes. By creating integrated orchid trees to reconstruct ancestral character states, we found that C3 photosynthesis is the ancestral state and that CAM has evolved at least 10 independent times with several reversals. A large CAM radiation event within the Epidendroideae, the most species-rich epiphytic clade of any known plant group, is linked to a Tertiary species radiation that originated 65 million years ago. Our study shows that parallel evolution of CAM is present among subfamilies of orchids, and correlated divergence between photosynthetic pathways and epiphytism can be explained by the prevalence of CAM in low-elevation epiphytes and rapid speciation of high-elevation epiphytes in the Neotropics, contributing to the astounding diversity in the Orchidaceae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号