共查询到20条相似文献,搜索用时 15 毫秒
1.
Seed germination and seedling establishment patterns have been used to classify species as shade tolerant or intolerant. The main objective of this research was to investigate, under controlled conditions, seed germination of species from different successional positions as well as to follow seed germination and seedling survival under natural shade in the field. The species studied were Solarium granuloso‐leprosum, Trema micrantha, Cecropia pachystachya, Croton piptocalyx, Bauhinia forficata subsp. pruinosa. Senna macranthera, Schizolobium parahyba, Piptadenia gonoacantha, Chorisia speciosa, Pseudobombax grandiflorum, Ficus guaranitica, Esenbeckia leiocarpa, Pachystroma longifolium, Myroxylon peruiferum, and Hymenaea courbaril. Field trials were carried out at Santa Genebra Municipal Reserve, Campinas, SP, Brazil, at the forest edge and in the understory. No significant correlations were detected between successional status and seed size or seed water content. Light‐regulated germination was present only in small‐seeded species. In field experiments, most species, including the light‐sensitive ones, were able to germinate under the canopy, where a low red/far‐red ratio predominates. Most species, mainly those of early‐ and intermediate successional positions, presented low seedling survival rates under shade. Myroxylon peruiferum was the most shade tolerant species, while 5. granuloso‐leprosum, C. speciosa, P. gonoacantha, F. guaranitica, T. micrantha, and 5. parahyba were the most shade intolerant. These latter species showed little or no survival under the shade conditions. 相似文献
2.
The responses to shade of seedlings of very small-seeded tree and shrub species from tropical rain forest in Singapore 总被引:2,自引:0,他引:2
1. Newly germinated seedlings of six tree and shrub species with very small seeds (31–460 μg dry mass), one light-demanding and five shade-tolerant at the stage of establishment in the wild, were grown for 5 months in neutral shade houses with 0·5, 1, 3·5 and 7·5% daylight.
2. The ratio of yield in 7·5% to that in 1% was 8:1 for the light-demanding Melastoma malabathricum but only 2:1 for the confamilial shade-tolerator Pternandra echinata. The Pternandra, Urophyllum hirsutum, Ficus chartacea, Ficus grossularioides and Pellacalyx saccardianus showed a graded series of responses to irradiance, generally consistent with their apparent demands for light in the wild. In contrast, survival of very deep shade was not clearly related to light demand in nature.
3. The results support the conclusion drawn from observational studies that large seed size is not primarily adaptive in resisting shade but in resisting the associated risks of burial by litter, desiccation during dry spells, uprooting by birds and other kinds of damage by animals or falling debris. 相似文献
2. The ratio of yield in 7·5% to that in 1% was 8:1 for the light-demanding Melastoma malabathricum but only 2:1 for the confamilial shade-tolerator Pternandra echinata. The Pternandra, Urophyllum hirsutum, Ficus chartacea, Ficus grossularioides and Pellacalyx saccardianus showed a graded series of responses to irradiance, generally consistent with their apparent demands for light in the wild. In contrast, survival of very deep shade was not clearly related to light demand in nature.
3. The results support the conclusion drawn from observational studies that large seed size is not primarily adaptive in resisting shade but in resisting the associated risks of burial by litter, desiccation during dry spells, uprooting by birds and other kinds of damage by animals or falling debris. 相似文献
3.
Architecture and leaf display were compared in saplings of six rain forest tree species differing in shade tolerance. Saplings were selected along the whole light range encountered in a forest environment. Species differed largely in realized height and crown expansion per unit support biomass, but this could not be related to differences in shade tolerance. The results demonstrate that there exist various solutions to an effective expansion of plant height and crown area. It is argued that choice of the study species and the ontogenetic trajectory regarded determine to a large extent the outcome of interspecific comparisons. No evidence was found that pioneers were characterized by a multilayered and shade tolerants by a monolayered leaf distribution. Yet, sun plants had a similar crown area, a deeper crown, and a higher leaf area index compared to shade plants and their leaves were more evenly distributed along the stem. This suggests that differences in leaf layering are found between plants growing in different light environments, rather than between species differing in shade tolerance. 相似文献
4.
5.
6.
Reproductive traits of tropical tree species vary predictably in relation to successional stage, but this variation may be due to the species' phylogenetic histories rather than selective pressures imposed by regeneration requirements. Reproductive phenology, tree size at the onset of reproduction, and fecundity of 11 sympatric, closely related Macaranga species were studied to investigate within-species variation in reproductive traits in relation to resource availability, and among-species variation in relation to other life-history traits (shade tolerance, seed size and maximum tree size, H(max)) and consequently the requirements for forest-gap colonization. Nine species reproduced in synchronous episodes, and two species reproduced continuously over 32 mo. Episodic reproduction was most intense in 1992 following a severe drought. For several species, reproductive trees had greater light availability, lower fecundity in lower light levels, and lower growth rates than nonreproductive trees, reflecting resource-limited reproduction. Among species, H(max) was negatively correlated with shade tolerance and seed size. Tree size at the onset of reproduction and fecundity was strongly linked to this axis of life-history variation, but phenological pattern was not. Absolute tree size at the onset of reproduction was positively correlated with H(max) and negatively correlated with shade tolerance. Relative size at reproductive onset was not correlated with shade tolerance or H(max). Fecundity ranged four orders of magnitude among species and was correlated positively with H(max) and negatively with seed size and shade tolerance. The interrelationships among these reproductive and other life-history traits are strongly correlated with the species' requirements for gap colonization. 相似文献
7.
Tropical forest management often focuses on a few high‐value timber species because they are thought to be the most vulnerable in logged forests. However, other tree species may be vulnerable to secondary effects of logging, like loss of vertebrate dispersers. We examined vulnerability of tree species to loss of vertebrate dispersers in Mabira, a heavily disturbed tropical rainforest in Uganda. Fruit characteristics and shade tolerance regimes of 269 tree species were compiled. Stem densities of tree species producing fruits of various sizes and having different shade tolerance regimes were computed for Mabira and compared with densities of conspecifics in Budongo, a less disturbed forest with similar floral composition. Seventy per cent of tree species in Mabira are animal‐dispersed, of which 10% are large‐fruited light demanders. These species are the most vulnerable because they rarely recruit beneath adult conspecifics and are exclusively dispersed by large vertebrates, also vulnerable in heavily disturbed forests. Comparison of densities between Mabira and Budongo showed that large‐fruited light demanders had a lower density in Mabira. Other categories of tree species had similar densities in both forests. It is plausible that the low density of large‐fruited light demanders is due to limited recruitment caused by dispersal limitations. 相似文献
8.
耐荫性是植物在低光环境下的生存和生长能力,对森林植物群落演替起重要作用,植物对遮荫的适应机制已成为生态学的研究热点.本文综述了森林植物的耐荫性及其在形态和生理方面的适应性,分析了森林植物在生长性状、生物量分配、树冠结构、叶片形态生理、叶片解剖结构、光合参数、碳水化合物分配、水分和养分的利用等方面对遮荫产生的可塑性响应,最后对目前研究存在的问题进行了分析,展望了未来的研究内容和方向. 相似文献
9.
Light-dependent changes in biomass allocation and their importance for growth of rain forest tree species 总被引:19,自引:0,他引:19
L. Poorter 《Functional ecology》2001,15(1):113-123
10.
11.
12.
Growth responses of 15 rain-forest tree species to a light gradient: the relative importance of morphological and physiological traits 总被引:25,自引:1,他引:25
L. Poorter 《Functional ecology》1999,13(3):396-410
1. Growth of seedlings of 15 rain-forest tree species was compared under controlled conditions, at six different light levels (3, 6, 12, 25, 50 and 100% daylight).
2. Most plant variables showed strong ontogenetic changes; they were highly dependent on the biomass of the plant.
3. Growth rate was highest at intermediate light levels (25–50%) above which it declined. Most plant variables showed a curvilinear response to irradiance, with the largest changes at the lowest light levels.
4. There was a consistent ranking in growth between species; species that were fast growing in a low-light environment were also fast growing in a high-light environment.
5. At low light, interspecific variation in relative growth rate was determined mainly by differences in a morphological trait, the leaf area ratio (LAR), whereas at high light it was determined mainly by differences in a physiological trait, the net assimilation rate (NAR).
6. NAR became a stronger determinant of growth than LAR in more than 10–15% daylight. As light availability in the forest is generally much lower than this threshold level, it follows that interspecific variation in growth in a forest environment is mainly owing to variation in morphology. 相似文献
2. Most plant variables showed strong ontogenetic changes; they were highly dependent on the biomass of the plant.
3. Growth rate was highest at intermediate light levels (25–50%) above which it declined. Most plant variables showed a curvilinear response to irradiance, with the largest changes at the lowest light levels.
4. There was a consistent ranking in growth between species; species that were fast growing in a low-light environment were also fast growing in a high-light environment.
5. At low light, interspecific variation in relative growth rate was determined mainly by differences in a morphological trait, the leaf area ratio (LAR), whereas at high light it was determined mainly by differences in a physiological trait, the net assimilation rate (NAR).
6. NAR became a stronger determinant of growth than LAR in more than 10–15% daylight. As light availability in the forest is generally much lower than this threshold level, it follows that interspecific variation in growth in a forest environment is mainly owing to variation in morphology. 相似文献
13.
14.
15.
Tropical forests are seriously threatened by fragmentation and habitat loss. The impact of fragment size and forest configuration on the composition of seed rain is insufficiently studied. For the present study, seed rain composition of small and large forest fragments (8–388 ha) was assessed in order to identify variations in seed abundance, species richness, seed size and dispersal mode. Seed rain was documented during a 1‐year period in three large and four small Atlantic Forest fragments that are isolated by a sugarcane matrix. Total seed rain included 20,518 seeds of 149 species of trees, shrubs, palms, lianas and herbs. Most species and seeds were animal‐dispersed. A significant difference in the proportion of seeds and species within different categories of seed size was found between small and large fragments. Small fragments received significantly more very small‐sized seeds (<0.3 cm) and less large‐seeded species (>1.5 cm) that were generally very rare, with only one species in small and eight in large fragments. We found a negative correlation between the inflow of small‐sized seeds and the percentage of forest cover. Species richness was lower in small than in large fragments, but the difference was not very pronounced. Given our results, we propose changing plant species pools through logging, tree mortality and a high inflow of pioneer species and lianas, especially in small forest fragments and areas with low forest cover. Connecting forest fragments through corridors and reforestation with local large‐seeded tree species may facilitate the maintenance of species diversity. 相似文献
16.
Aim To explore: (1) the relative influences of site conditions, especially moisture relations, on pathways and rates of monsoon rain forest seedling and sapling regeneration, especially of canopy dominants, in northern Australia; and (2) contrasts between regeneration syndromes of dominant woody taxa in savannas and monsoon rain forest. Location Four monsoon rain forest sites, representative of regional major habitat and vegetation types, in Kakadu National Park, northern Australia. Methods A decadal study involved: (1) initial assessment over 2.5 years to explore within‐year variability in seed rain, dormant seed banks and seedling (< 50 cm height) dynamics; and (2) thereafter, monitoring of seedling and sapling (50 cm height to 5 cm d.b.h.) dynamics undertaken annually in the late dry season. On the basis of observations from this and other studies, regeneration syndromes of dominant monsoon rain forest taxa are contrasted with comparable information for dominant woody savanna taxa, Eucalyptus and Corymbia especially. Results Key observations from the monsoon rain forest regeneration dynamics study component are that: (1) peak seed rain inputs of rain forest taxa were observed in the wet season at perennially moist sites, whereas inputs at seasonally dry sites extended into, or peaked in, the dry season; (2) dormant soil seed banks of woody rain forest taxa were dominated by pioneer taxa, especially figs; (3) longevity of dormant seed banks of woody monsoon rain forest taxa, including figs, was expended within 3 years; (4) seedling recruitment of monsoon rain forest woody taxa was derived mostly from wet season seed rain with limited inputs from soil seed banks; (5) at all sites rain forest seedling mortality occurred mostly in the dry season; (6) rain forest seedling and sapling densities were consistently greater at moist sites; (7) recruitment from clonal reproduction was negligible, even following unplanned low intensity fires. Main conclusions By comparison with dominant savanna eucalypts, dominant monsoon rain forest taxa recruit substantially greater stocks of seedlings, but exhibit slower aerial growth and development of resprouting capacity in early years, lack lignotubers in mesic species, and lack capacity for clonal reproduction. The reliance on sexual as opposed to vegetative reproduction places monsoon rain forest taxa at significant disadvantage, especially slower growing species on seasonally dry sites, given annual–biennial fires in many north Australian savannas. 相似文献
17.
We evaluated leaf characteristics and herbivory intensities for saplings of fifteen tropical tree species differing in their successional position. Eight leaf traits were selected, related to the costs of leaf display (specific leaf area [SLA], water content), photosynthesis (N and P concentration per unit mass), and herbivory defence (lignin concentration, C:N ratio). We hypothesised that species traits are shaped by variation in abiotic and biotic (herbivory) selection pressures along the successional gradient. All leaf traits varied with the successional position of the species. The SLA, water content and nutrient concentration decreased, and lignin concentration increased with the successional position. Herbivory damage (defined as the percentage of damage found at one moment in time) varied from 0.9-8.5% among the species, but was not related to their successional position. Herbivory damage appeared to be a poor estimator of the herbivory rate experienced by species, due to the confounding effect of leaf lifespan. Herbivory rate (defined as percentage leaf area removal per unit time) declined with the successional position of the species. Herbivory rate was only positively correlated to water content, and negatively correlated to lignin concentration, suggesting that herbivores select leaves based upon their digestibility rather than upon their nutritive value. Surprisingly, most species traits change linearly with succession, while resource availability (light, nutrients) declines exponentially with succession. 相似文献
18.
19.