首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the interactive effects of elevated concentrations of CO2 and O3 on radial growth and wood properties of four trembling aspen (Populus tremuloides Michx.) clones and paper birch (Betula papyrifera Marsh.) saplings. The material for the study was collected from the Aspen FACE (free‐air CO2 enrichment) experiment in Rhinelander (WI, USA). Trees had been exposed to four treatments [control, elevated CO2 (560 ppm), elevated O3 (1.5 times ambient) and combined CO2 + O3] during growing seasons 1998–2008. Most treatment responses were observed in the early phase of experiment. Our results show that the CO2‐ and O3‐exposed aspen trees displayed a differential balance between efficiency and safety of water transport. Under elevated CO2, radial growth was enhanced and the trees had fewer but hydraulically more efficient larger diameter vessels. In contrast, elevated O3 decreased radial growth and the diameters of vessels and fibres. Clone‐specific decrease in wood density and cell wall thickness was observed under elevated CO2. In birch, the treatments had no major impacts on wood anatomy or wood density. Our study indicates that short‐term impact studies conducted with young seedlings may not give a realistic view of long‐term ecosystem responses.  相似文献   

2.
Quantitative wood anatomy (QWA) is a growing field of dendrochronology that allows obtaining a large number of parameters as the number, size and spatial arrangement of cellular elements, elements that highlight the adjustments of trees to their environment. In this work, we presented the free/libre open-source software AutoCellRow (ACR), a ready-to-use tool for automatic QWA in conifers. The ACR analyzes radial files of cells on cross-sections views of tree rings and provides automatic measurements of different cell parameters (e.g., lumen radial diameter, double cell wall thickness and cell radial diameter) for each cell along the selected radial file. The ACR measurements are based on high performed image analysis of xylem cells. The accuracy of the software measurements was tested in cross-sections of five conifer species from a semi-arid area of southern Siberia, and compared with measurements obtained by a semiautomatic tool. Our results suggested high accuracy in the ACR cell traits measurements, facilitating and speeding the analysis of quantitative wood anatomy in conifers over radial files of cells.  相似文献   

3.
Progress in quantitative wood anatomy has resulted in a growing number of increasingly understood proxies from the tree-ring archive. Much of this work has been based on tree species in the Northern Hemisphere. Here, we present and examine a relatively dense network of wood property chronologies (wood density, tracheid radial diameter, cell wall thickness and ring width) from several species in Tasmania, southern Australia. We ask how the relationships amongst the different types of chronologies differ within and amongst species. We also consider how each chronology responds to monthly climate. In general terms, and similar to findings in the Northern Hemisphere, relationships between the various wood properties and climate are stronger than those between climate and ring width chronologies. An important exception to this is the highest elevation Lagarostrobos franklinii site. Additionally, strongest response to climate for the wood properties generally occurs for the concurrent growing season compared to the prior growing season for ring width. Relationships amongst the various chronology types differ for the various species, with L. franklinii also showing some variation in these relationships by site (possibly associated with elevation). Results suggest there is considerable value in further exploring the potential for developing anatomical wood chronologies for climate reconstruction from other species for which ring widths do not exhibit a strong climate signal.  相似文献   

4.
Water released from wood during transpiration (capacitance) can meaningfully affect daily water use and drought response. To provide context for better understanding of capacitance mechanisms, we investigated links between capacitance and wood anatomy. On twigs of 30 temperate angiosperm tree species, we measured day capacitance (between predawn and midday), water content, wood density, and anatomical traits, that is, vessel dimensions, tissue fractions, and vessel–tissue contact fractions (fraction of vessel circumference in contact with other tissues). Across all species, wood density (WD) and predawn lumen volumetric water content (VWCL-pd) together were the strongest predictors of day capacitance (r2adj = .44). Vessel–tissue contact fractions explained an additional ~10% of the variation in day capacitance. Regression models were not improved by including tissue lumen fractions. Among diffuse-porous species, VWCL-pd and vessel–ray contact fraction together were the best predictors of day capacitance, whereas among semi/ring-porous species, VWCL-pd, WD and vessel–fibre contact fraction were the best predictors. At predawn, wood was less than fully saturated for all species (lumen relative water content = 0.52 ± 0.17). Our findings imply that day capacitance depends on the amount of stored water, tissue connectivity and the bulk wood properties arising from WD (e.g., elasticity), rather than the fraction of any particular tissue.  相似文献   

5.
The objective of the study was to investigate the interactive effects of elevated atmospheric carbon dioxide concentration, [CO2], and temperature on the wood properties of mature field-grown Norway spruce ( Picea abies (L.) Karst.) trees. Material for the study was obtained from an experiment in Flakaliden, northern Sweden, where trees were grown for 3 years in whole-tree chambers at ambient (365 μmol mol−1) or elevated [CO2] (700 μmol mol−1) and ambient or elevated air temperature (ambient +5.6 °C in winter and ambient +2.8 °C in summer). Elevated temperature affected both wood chemical composition and structure, but had no effect on stem radial growth. Elevated temperature decreased the concentrations of acetone-soluble extractives and soluble sugars, while mean and earlywood (EW) cell wall thickness and wood density were increased. Elevated [CO2] had no effect on stem wood chemistry or radial growth. In wood structure, elevated [CO2] decreased EW cell wall thickness and increased tracheid radial diameter in latewood (LW). Some significant interactions between elevated [CO2] and temperature were found in the anatomical and physical properties of stem wood (e.g. microfibril angle, and LW cell wall thickness and density). Our results show that the wood material properties of mature Norway spruce were altered under exposure to elevated [CO2] and temperature, although stem radial growth was not affected by the treatments.  相似文献   

6.
Conifer trees possess a typical anatomical tree‐ring structure characterized by a transition from large and thin‐walled earlywood tracheids to narrow and thick‐walled latewood tracheids. However, little is known on how this characteristic structure is maintained across contrasting environmental conditions, due to its crucial role to ensure sap ascent and mechanical support. In this study, we monitored weekly wood cell formation for up to 7 years in two temperate conifer species (i.e., Picea abies (L.) Karst and Larix decidua Mill.) across an 8°C thermal gradient from 800 to 2,200 m a.s.l. in central Europe to investigate the impact of air temperature on rate and duration of wood cell formation. Results indicated that towards colder sites, forming tracheids compensate a decreased rate of differentiation (cell enlarging and wall thickening) by an extended duration, except for the last cells of the latewood in the wall‐thickening phase. This compensation allows conifer trees to mitigate the influence of air temperature on the final tree‐ring structure, with important implications for the functioning and resilience of the xylem to varying environmental conditions. The disappearing compensation in the thickening latewood cells might also explain the higher climatic sensitivity usually found in maximum latewood density.  相似文献   

7.
Nitrogen, phosphorus, potassium, calcium, and magnesium concentrations in woody tissue are poorly documented, but are necessary for understanding whole-tree nutrient use and storage. Here, we report how wood macronutrient concentrations vary radially and along the length of a tree for 10 tropical tree species in Sabah, Malaysia. Bark nutrient concentrations were consistently high: 2.9–13.7 times greater than heartwood depending on the nutrient. In contrast, within the wood both the radial (sapwood vs. heartwood) and vertical (trunk bottom vs. trunk middle) variation was modest. Higher concentrations in sapwood relative to heartwood provide empirical support for wood nutrient resorption during sapwood senescence. Dipterocarp species showed resorption rates of 25.3 ± 7.1% (nitrogen), 62.7 ± 11.9% (phosphorus), and 56.2 ± 12.5% (potassium), respectively, while non-dipterocarp species showed no evidence of nutrient resorption in wood. This suggests that while dipterocarps have lower wood nutrient concentrations, this family is able to compensate for this by using wood nutrient resorption as an efficient nutrient conservation mechanism. In contrast to other nutrients, calcium and magnesium tended to accumulate in heartwood. Wood density (WD) showed little vertical variation along the trunk. Across the species (WD range of 0.33 to 0.94 mg/cm3), WD was negatively correlated with wood P and K concentration and positively correlated with wood Ca concentration. As our study showed exceptionally high nutrient concentrations in the bark, debarking and leaving the bark of the harvested trees on site during logging operations could substantially contribute to maintaining nutrients within forest ecosystems.  相似文献   

8.
Intra-annual radial growth rates and durations in trees are reported to differ greatly in relation to species, site and environmental conditions. However, very similar dynamics of cambial activity and wood formation are observed in temperate and boreal zones. Here, we compared weekly xylem cell production and variation in stem circumference in the main northern hemisphere conifer species (genera Picea, Pinus, Abies and Larix) from 1996 to 2003. Dynamics of radial growth were modeled with a Gompertz function, defining the upper asymptote (A), x-axis placement (beta) and rate of change (kappa). A strong linear relationship was found between the constants beta and kappa for both types of analysis. The slope of the linear regression, which corresponds to the time at which maximum growth rate occurred, appeared to converge towards the summer solstice. The maximum growth rate occurred around the time of maximum day length, and not during the warmest period of the year as previously suggested. The achievements of photoperiod could act as a growth constraint or a limit after which the rate of tree-ring formation tends to decrease, thus allowing plants to safely complete secondary cell wall lignification before winter.  相似文献   

9.
Poorter L 《Annals of botany》2008,102(3):367-375

Background and Aims

The volume of tree stems is made up of three components: solid wood, gas and water. These components have important consequences for the construction costs, strength and stability of trees. Here, the importance of stem components for sapling growth and survival in the field was investigated, and then these stem components were related to two important life history axes of variation: the light requirements for regeneration and the adult stature of the species.

Methods

Stem fractions of wood, gas and water were determined for saplings and adults of respectively 30 and 58 Bolivian tropical moist-forest species. Sapling height growth and survival were monitored for 2 years in the field as indicators of sapling performance.

Key Results

Sapling stems consisted of 26 % wood (range 7–36 % for species), 59 % water (range 49–88 %), and 15 % gas (range 0–38 %) per unit volume. The wood fraction was the only determinant of sapling performance and was correlated with increased survival and decreased growth rate across species. The wood fraction decreased with light requirements of the species, probably because a high wood fraction protects shade-tolerant species against pathogens and falling debris. The gas fraction increased with the light requirements and adult stature of the species; probably as an aid in realizing a rapid height growth and accessing the canopy in the case of light-demanding species, and for rapidly attaining stability and a large reproductive size in the case of tall species. The water fraction was not correlated with the life history variation of tree species, probably because it leads to increased stem loading and decreased stability.

Conclusions

The wood fraction might partially explain the growth–survival trade-off that has been found across tropical tree species. The wood and gas fractions are closely related to the regeneration light requirements of the species. Tall species have a high gas fraction, probably not only because gas is a cheap filler, but also because it might lead to an increased stability of these tall trees.Key words: Adult stature, biomechanics, Bolivia, shade tolerance, second moment of area, tropical rain forest, wood density, wood specific gravity  相似文献   

10.
Wood properties were measured for trees in lowland dipterocarp forests in West Kalimantan. In 1993 and 1994, 353 samples of 286 species were collected from trunk base of trees of approximately 5 cm in diameter, and the specific gravities (SG: oven dry weight/fresh volume) and water contents of wood including bark were measured. The SG of each species ranged from 0.21 to 0.84, and the mean ± SD was 0.53 ± 0.13. The wide range of SG suggests that the forest had a high diversity in wood properties. The most dominant and diversified genus in this area was Shorea, and the SG of 15 species varied from 0.21 to 0.71. The range covered SG of pioneer (six Macaranga, 0.29–0.43) and small trees in primary forests (nine Eugenia and 10 Xanthophyllum, 0.55–0.77). The SG average for tree species of secondary forests of 2–6 years old was 0.31. It was significantly smaller than that of primary forests (0.58). In a primary dipterocarp forest plot, light-wood species grew faster in diameter than heavy-wood species. Water content ranged from 0.26 to 0.76. Heavy wood had low water content. Among light-wood species, some (Shorea, Artocarpus) had low water contents and others (Ficus) had high water contents. Some riverine trees also had high water contents. These wood properties appear strongly related to the life history of trees and successional stage.  相似文献   

11.
Aims A better understanding of wood litter decomposition is essential for predicting responses of forest ecosystems to global climate change. Recent studies suggest that chemical properties of wood litters, rather than physical ones such as wood density, are more important for interspecific differences in wood decomposition rates. However, empirical data are still limited, especially for tropical trees. In addition, decomposition rate of wood litter often varies with time, which makes interspecific comparison difficult. We studied the wood decomposition of 32 rainforest trees to elucidate (i) the degree of interspecific variation in wood decomposition rate of a given size and configuration and (ii) if initial wood density and water permeability are consistent predictors of the overall decomposition rate and its pattern over time.Methods A common garden decomposition experiment was conducted in a tropical rainforest in Malaysian Borneo for 32 native tree species. Small wood sticks were set on the forest floor and the weight loss was monitored monthly for 2.7 years.Important findings We found large variation in the wood decomposition rate (a 49-fold range), suggesting that we need to consider this variation when calculating community-level carbon dynamics of tropical rain forests. The physical traits of wood, i.e. wood density and water permeability, were related to wood decomposition rate and its pattern over time. Decomposition half-time related positively and negatively to initial wood density and water permeability, respectively. The time-dependent-rate model fitted better for 18 species (56% of the study species) that had higher water permeabilities than the others, suggesting that micelle porosity in wood relates to temporal changes in decomposition rate.  相似文献   

12.
Wood density plays a key role in ecological strategies and life history variation in woody plants, but little is known about its anatomical basis in shrubs. We quantified the relationships between wood density, anatomy, and climate in 61 shrub species from eight field sites along latitudinal belts between 31° and 35° in North and South America. Measurements included cell dimensions, transverse areas of each xylem cell type and percentage contact between different cell types and vessels. Wood density was more significantly correlated with precipitation and aridity than with temperature. High wood density was achieved through reductions in cell size and increases in the proportion of wall relative to lumen. Wood density was independent of vessel traits, suggesting that this trait does not impose conduction limitations in shrubs. The proportion of fibers in direct contact with vessels decreased with and was independent of wood density, indicating that the number of fiber-vessel contacts does not explain the previously observed correlation between wood density and implosion resistance. Axial and radial parenchyma each had a significant but opposite association with wood density. Fiber size and wall thickness link wood density, life history, and ecological strategies by controlling the proportion of carbon invested per unit stem volume.  相似文献   

13.
Annual rings are generally not anatomically distinct in trees growing in the humid tropics. The possibility to use radial variation in stable isotopes (δ18O and δ13C) for the identification of annual rings in these trees was investigated in two species growing in the tropical rainforest of Central Guyana, Carapa guianensis and Goupia glabra. The climate is characterised by an annual precipitation of 2,700 mm that is distributed over two rainy and two dry seasons. Cores were taken from trees of measured diameter increment rates. High-resolution tangential sections in radial direction were dissected from these cores and isotopic ratios were measured on whole wood. Variation in δ13C was about 1‰ at an annual scale, whereas δ18O showed two to four times larger annual excursions. The minima in δ18O were selected as primary indicators of annual boundaries at the main wet season when also δ18O of precipitation water has its minimum. The minima in δ13C coincided often with these. The simultaneous occurrence is consistent with increased discrimination against 13C at high water availability. They were used as secondary criteria. Annual rings could thus be identified with reasonable certainty in both species from radial variation in isotopic ratios as verified with measured diameter increment rates. The short sequence covered in the analysis did not show clear correlation with the available precipitation data for the area. The method supplemented with other dating methods may prove to be practically useful for identifying annual rings and applying classical dendrochronology when more cost effective automatic sampling devices become available.  相似文献   

14.
Daily dynamics of radial cell expansion during wood formation within the stems of 25-year-old Scots pine trees (Pinus sylvestris L.), growing in field conditions, were studied. The samples of forming wood layers were extracted 4 times per day for 3 days. Possible variations in the growth on different sides of the stem, duration of cell development in radial cell expansion phase and dynamics of cell growth in this phase were taken into account. The perimeters of tracheid cross-sections as a reflection of primary cell wall growth were the criterion of growth in a radial direction. For the evaluation of growing cell perimeters a special system for digital processing and image analysis of tracheid cross-sections of the forming wood was used. Growth rate for certain time intervals was estimated by the change in the relation of the perimeter of each observed cell in each of ten tracheid rows in each of 12 trees to the perimeter of the xylem cell of the same row before the expansion. Temporal differences in average values of the relations were estimated by Analyses of Variance. The existence of daily dynamics of Scots pine xylem cell radial growth has been proved. Intensive growth of pine tracheids has been shown to occur at any time of the day and to depend on the temperature regime of the day and the night as well as water supply of stem tissues. Moreover, reliable differences (P = 0.95) in the increment of cell walls during tracheid radial expansion have been found. Pulsing changes of the water potentials both of the cell and the apoplast, as the reason for the fluctuations of radial cell growth rate, were discussed.  相似文献   

15.
Functional and ecological xylem anatomy   总被引:17,自引:0,他引:17  
Cohesion-tension transport of water is an energetically efficient way to carry large amounts of water from the roots up to the leaves. However, the cohesion-tension mechanism places the xylem water under negative hydrostatic pressure (Px), rendering it susceptible to cavitation. There are conflicts among the structural requirements for minimizing cavitation on the one hand vs maximizing efficiency of transport and construction on the other. Cavitation by freeze-thaw events is triggered by in situ air bubble formation and is much more likely to occur as conduit diameter increases, creating a direct conflict between conducting efficiency and sensitivity to freezing induced xylem failure. Temperate ring-porous trees and vines with wide diameter conduits tend to have a shorter growing season than conifers and diffuse-porous trees with narrow conduits. Cavitation by water stress occurs by air seeding at interconduit pit membranes. Pit membrane structure is at least partially uncoupled from conduit size, leading to a much less pronounced trade-off between conducting efficiency and cavitation by drought than by freezing. Although wider conduits are generally more susceptible to drought-induced cavitation within an organ, across organs or species this trend is very weak. Different trade-offs become apparent at the level of the pit membranes that interconnect neighbouring conduits. Increasing porosity of pit membranes should enhance conductance but also make conduits more susceptible to air seeding. Increasing the size or number of pit membranes would also enhance conductance, but may weaken the strength of the conduit wall against implosion. The need to avoid conduit collapse under negative pressure creates a significant trade-off between cavitation resistance and xylem construction cost, as revealed by relationships between conduit wall strength, wood density and cavitation pressure. Trade-offs involving cavitation resistance may explain the correlations between wood anatomy, cavitation resistance, and the physiological range of negative pressure experienced by species in their native habitats.  相似文献   

16.
17.
The effects of fragmentation and edge effects on the floristic composition, richness, diversity and abundance of epixylic bryophytes (growing on decaying wood) were investigated in ten fragments of Atlantic Forest remnants in the Northeast of Brazil. In each fragment, four perpendicular 100 m transects were demarcated. Along these transects, samples of bryophytes growing on decaying wood were collected. The forest fragments were grouped in three size classes (small: <100 ha; medium: 100–500 ha; large: >500 ha). Correlation and multivariate analysis were undertaken between bryophyte flora and fragment metrics (size, form, isolation, altitude variation, nuclear area and secondary vegetation percentage and distance from the edge). A total of 99 species of bryophytes, 52 liverworts and 47 mosses were registered. The statistical results confirming fragment size is an important factor in epixylic community structure. Therefore, composition, richness, diversity and abundance can be better explained by a junction of all studied landscape factors. Bryophyte richness, the percentage of samples with the greatest coverage of decaying wood and shade-tolerant species’ distribution, were not correlated to distance from the forest edge. This suggests that edge effects are not linear or can be detected beyond 100 m from the edge, which is very important for inclusion in future studies.  相似文献   

18.
A study was conducted on the variation in growth, biomass, juvenile wood anatomy, and needle morphology of Pinus halepensis Mill. from three Spanish regions of provenance characterized by environmental differences, without the influence of the site factor. Seeds collected from two progenies in each region were planted in a single plot, and the trees were felled at the age of 7 years. The results showed significant differences between provenances, as well as the genetic or environmental influence on the traits analyzed. Trees adapted to moderate summer drought conditions (Inland Catalonia region) are primarily characterized by higher average values for height, diameter, biomass, cell wall thickness, inter-tracheid wall strength, pit membrane diameter, torus diameter, bordered pit aperture diameter, and ray tracheid abundance in comparison with trees adapted to severe summer drought conditions (Southern region and Balearic Islands region). The greater structural requirements of trees from the Inland Catalonia region, subjected to higher weight and wind loads, resulted in thick cell walls. Moreover, the large pits and more abundant ray tracheids in trees from this provenance would allow more efficient water transport and greater water storage capacity, respectively. The differences found between provenances suggest the adaptive nature of the anatomy of this species, which demonstrates the importance of the region of provenance when choosing reproduction material for reforestation.  相似文献   

19.
Tropical forests contain an important proportion of the carbon stored in terrestrial vegetation, but estimated aboveground biomass (AGB) in tropical forests varies two‐fold, with little consensus on the relative importance of climate, soil and forest structure in explaining spatial patterns. Here, we present analyses from a plot network designed to examine differences among contrasting forest habitats (terra firme, seasonally flooded, and white‐sand forests) that span the gradient of climate and soil conditions of the Amazon basin. We installed 0.5‐ha plots in 74 sites representing the three lowland forest habitats in both Loreto, Peru and French Guiana, and we integrated data describing climate, soil physical and chemical characteristics and stand variables, including local measures of wood specific gravity (WSG). We use a hierarchical model to separate the contributions of stand variables from climate and soil variables in explaining spatial variation in AGB. AGB differed among both habitats and regions, varying from 78 Mg ha?1 in white‐sand forest in Peru to 605 Mg ha?1 in terra firme clay forest of French Guiana. Stand variables including tree size and basal area, and to a lesser extent WSG, were strong predictors of spatial variation in AGB. In contrast, soil and climate variables explained little overall variation in AGB, though they did co‐vary to a limited extent with stand parameters that explained AGB. Our results suggest that positive feedbacks in forest structure and turnover control AGB in Amazonian forests, with richer soils (Peruvian terra firme and all seasonally flooded habitats) supporting smaller trees with lower wood density and moderate soils (French Guianan terra firme) supporting many larger trees with high wood density. The weak direct relationships we observed between soil and climate variables and AGB suggest that the most appropriate approaches to landscape scale modeling of AGB in the Amazon would be based on remote sensing methods to map stand structure.  相似文献   

20.
Long-term climate reconstructions are frequently based on tree-ring high-resolution proxies extracted from subfossil peatland trees. Peatlands are peculiar ecosystems characterized by high moisture in the upper soil part which creates a harsh living environment for trees. The climate mostly indirectly influences tree growth determining seasonal variations in the water table level. Within this framework, the aim of this study was to investigate climate responses of trees (Pinus sylvestris L.) growing inside and outside a Southern Alpine peat bog, by using tree-ring and wood anatomical traits (e.g. tracheid number and dimension, cell-wall thickness). Our results showed differences in the xylem structure and climate signal recorded by peatland and mineral soil trees. Peatland trees were characterized by narrow rings and tracheids with thinner cell wall. Summer temperature and precipitation were the major drivers of xylem formation in peatland trees. At intra-annual level wood anatomical traits revealed a complex within-ring signal during the growing season. The multi-parameters approach together with the high-resolution gained by using tree-ring sectors allowed us to obtain new detailed information on the xylem development of peatland trees and climate drivers that influenced it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号