首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to identify quantitative trait loci (QTL) for osteochondrosis (OC) and palmar/plantar osseous fragments (POF) in fetlock joints in a whole-genome scan of 219 South German Coldblood horses. Symptoms of OC and POF were checked by radiography in 117 South German Coldblood horses at a mean age of 17 months. The radiographic examination comprised the fetlock and hock joints of all limbs. The genome scan included 157 polymorphic microsatellite markers. All microsatellite markers were equally spaced over the 31 autosomes and the X chromosome, with an average distance of 17.7 cM and a mean polymorphism information content (PIC) of 63%. Sixteen chromosomes harbouring putative QTL regions were further investigated by genotyping the animals with 93 additional markers. QTL that had chromosome-wide significance by non-parametric Z-means and LOD scores were found on 10 chromosomes. This included seven QTL for fetlock OC and one QTL on ECA18 associated with hock OC and fetlock OC. Significant QTL for POF in fetlock joints were located on equine chromosomes 1, 4, 8, 12 and 18. This genome scan is an important step towards the identification of genes responsible for OC in horses.  相似文献   

2.
Show-jumping is an economically important breeding goal in Hanoverian warmblood horses. The aim of this study was a genome-wide association study (GWAS) for quantitative trait loci (QTL) for show-jumping in Hanoverian warmblood horses, employing the Illumina equine SNP50 Beadchip. For our analyses, we genotyped 115 stallions of the National State stud of Lower Saxony. The show-jumping talent of a horse includes style and ability in free-jumping. To control spurious associations based on population stratification, two different mixed linear animal model (MLM) approaches were employed, besides linear models with fixed effects only and adaptive permutations for correcting multiple testing. Population stratification was explained best in the MLM considering Hanoverian, Thoroughbred, Trakehner and Holsteiner genes and the marker identity-by-state relationship matrix. We identified six QTL for show-jumping on horse chromosomes (ECA) 1, 8, 9 and 26 (-log(10) P-value >5) and further putative QTL with -log(10) P-values of 3-5 on ECA1, 3, 11, 17 and 21. Within six QTL regions, we identified human performance-related genes including PAPSS2 on ECA1, MYL2 on ECA8, TRHR on ECA9 and GABPA on ECA26 and within the putative QTL regions NRAP on ECA1, and TBX4 on ECA11. The results of our GWAS suggest that genes involved in muscle structure, development and metabolism are crucial for elite show-jumping performance. Further studies are required to validate these QTL in larger data sets and further horse populations.  相似文献   

3.
Chronic pastern dermatitis (CPD), also known as chronic progressive lymphedema (CPL), is a skin disease that affects draft horses. This disease causes painful lower-leg swelling, nodule formation, and skin ulceration, interfering with movement. The aim of this whole-genome scan was to identify quantitative trait loci (QTL) for CPD in German draft horses. We recorded clinical data for CPD in 917 German draft horses and collected blood samples from these horses. Of these 917 horses, 31 paternal half-sib families comprising 378 horses from the breeds Rhenish German, Schleswig, Saxon-Thuringian, and South German were chosen for genotyping. Each half-sib family was constituted by only one draft horse breed. Genotyping was done for 318 polymorphic microsatellites evenly distributed on all equine autosomes and the X chromosome with a mean distance of 7.5 Mb. An across-breed multipoint linkage analysis revealed chromosome-wide significant QTL on horse chromosomes (ECA) 1, 9, 16, and 17. Analyses by breed confirmed the QTL on ECA1 in South German and the QTL on ECA9, 16, and 17 in Saxon-Thuringian draft horses. For the Rhenish German and Schleswig draft horses, additional QTL on ECA4 and 10 and for the South German draft horses an additional QTL on ECA7 were found. This is the first whole-genome scan for CPD in draft horses and it is an important step toward the identification of candidate genes.  相似文献   

4.
The molecular analysis of genes influencing human height has been notoriously difficult. Genome-wide association studies (GWAS) for height in humans based on tens of thousands to hundreds of thousands of samples so far revealed ~200 loci for human height explaining only 20% of the heritability. In domestic animals isolated populations with a greatly reduced genetic heterogeneity facilitate a more efficient analysis of complex traits. We performed a genome-wide association study on 1,077 Franches-Montagnes (FM) horses using ~40,000 SNPs. Our study revealed two QTL for height at withers on chromosomes 3 and 9. The association signal on chromosome 3 is close to the LCORL/NCAPG genes. The association signal on chromosome 9 is close to the ZFAT gene. Both loci have already been shown to influence height in humans. Interestingly, there are very large intergenic regions at the association signals. The two detected QTL together explain ~18.2% of the heritable variation of height in horses. However, another large fraction of the variance for height in horses results from ECA 1 (11.0%), although the association analysis did not reveal significantly associated SNPs on this chromosome. The QTL region on ECA 3 associated with height at withers was also significantly associated with wither height, conformation of legs, ventral border of mandible, correctness of gaits, and expression of the head. The region on ECA 9 associated with height at withers was also associated with wither height, length of croup and length of back. In addition to these two QTL regions on ECA 3 and ECA 9 we detected another QTL on ECA 6 for correctness of gaits. Our study highlights the value of domestic animal populations for the genetic analysis of complex traits.  相似文献   

5.
Osteochondrosis (OC) is an inherited developmental disease in young horses most frequently observed in thoroughbreds, trotters, warmblood and coldblood horses. Quantitative trait loci (QTL) for equine OC have been identified in Hanoverian warmblood horses employing a whole genome scan with microsatellites. A QTL on ECA16 reached the genome-wide significance level for hock osteochondrosis dissecans (OCD). The aim of this study was to refine this QTL on ECA16 using an extended marker set of 34 newly developed microsatellites and 15 single nucleotide polymorphisms (SNPs). We used the same 14 paternal half-sib groups as in the above-mentioned whole genome scan. The QTL for OCD in hock joints on ECA16 could be delimited at an interval between 17.60 and 45.18 Mb using multipoint non-parametric linkage analyses. In addition, six microsatellites and one SNP were significantly associated with hock OCD in the QTL region between 24.26 and 42.41 Mb. Furthermore, our analysis revealed a second QTL for fetlock OC between 6.55 and 24.26 Mb on ECA16. This report is a further step towards unravelling the genes underlying QTL for equine OC and towards the development of a marker test for OC in Hanoverian warmblood horses.  相似文献   

6.
Equine guttural pouch tympany (GPT) is a hereditary disease in foals of several breeds, including thoroughbreds, Arabian, Quarter and warmblood horses. We performed a whole-genome scan for GPT in 143 horses from five Arabian and five German warmblood families and genotyped 257 microsatellites. Chromosome-wide significant linkage was detected on ECA2 and ECA15 using multipoint non-parametric linkage analyses. Analyses stratified by sex revealed chromosome-wide significant linkage on ECA2 for fillies and chromosome-wide significant linkage on ECA15 for colts. For Arabian colts, the quantitative trait locus (QTL) on ECA15 was genome-wide significant. Haplotypes including two to four microsatellites within the QTL on ECA2 and 15 in fillies and colts, respectively, were significantly associated with GPT for both breeds. Thus, our analysis indicated sex-specific QTL, a fact which is in agreement with a two- to fourfold higher incidence of GPT in females. This is the first report of QTL for equine GPT and a first step towards identifying genes responsible for GPT.  相似文献   

7.
ObjectiveFew data are available on the potential role of inflammatory mediators and T lymphocytes in persistent organ failure (POF) in acute pancreatitis (AP). We conducted a retrospective study to characterize their role in the progression of POF in AP.MethodsA total of 69 AP patients presented within 24 hours from symptom onset developing organ failure (OF) on admission were included in our study. There were 39 patients suffering from POF and 30 from transient OF (TOF). On the 1st, 3rd and 7th days after admission, blood samples were collected for biochemical concentration monitoring including serum IL-1β, IL-6, TNF-α and high-sensitivity C-reactive protein (hs-CRP). The proportions of peripheral CD4+ and CD8+ T lymphocytes were assessed based on flow cytometry simultaneously.ResultsPatients with POF showed a significantly higher value of IL-1β and hs-CRP on day 7 compared with the group of TOF (P < 0.05). Proportions of CD4+ T cells on days 1, 3, 7 and CD4+ / CD8+ ratio on day 1 were statistically lower in the group of POF patients (P < 0.05). A CD4+ T cell proportion of 30.34% on day 1 predicted POF with an area under the curve (AUC) of 0.798, a sensitivity with 61.54% and specificity with 90.00%, respectively.ConclusionsThe reduction of peripheral blood CD4+ T lymphocytes is associated with POF in AP, and may act as a potential predictor.  相似文献   

8.
J. Ma  W. Qi  D. Ren  Y. Duan  R. Qiao  Y. Guo  Z. Yang  L. Li  D. Milan  J. Ren  L. Huang 《Animal genetics》2009,40(4):463-467
Chinese Erhualian pigs have larger and floppier ears compared with White Duroc pigs (small, half- or fully-pricked ears). To identify quantitative trait loci (QTL) for ear weight and area as well as erectness, a genome-wide scan with 194 microsatellites was performed in a White Duroc × Chinese Erhualian resource population (>1000 F2 animals). Twenty-three genome-wide significant QTL and 12 suggestive QTL were identified. All QTL for ear erectness and size detected in two previous studies, bar two on SSC6 and 9, were confirmed here. The 1% genome-wide significant QTL at 70 cM on SSC5 and at 58 cM on SSC7 have profound and pleiotropic effects on the three ear traits, with Erhualian alleles increasing weight and area but decreasing erectness. Notably, the 95% confidence interval of the QTL for weight and area on SSC7 spanned only 3 cM. New QTL reaching 1% genome-wide significance were found on SSC8 (at 37 cM) for all three ear traits, on SSC4 and 16 for weight and area, and on SSCX for area. Unexpectedly, Erhualian alleles at these loci were associated with lighter and smaller or erect ear. Some new suggestive QTL were also found on other chromosome regions. Almost all the QTL for weight and area had essentially additive effects, while the QTL for erectness on SSC2, 5 and 7 showed not only additive effects but also partial dominance effects of Erhualian alleles. The two most significant QTL on SSC7 and SSC5 could be promising targets for fine mapping and identification of the causative mutations.  相似文献   

9.
Carcass and meat quality traits are economically important in pigs. In this study, 17 carcass composition traits and 23 meat quality traits were recorded in 1028 F2 animals from a White Duroc × Erhualian resource population. All pigs in this experimental population were genotyped for 194 informative markers covering the entire porcine genome. Seventy-seven genome-wide significant quantitative trait loci (QTL) for carcass traits and 68 for meat quality were mapped to 34 genomic regions. These results not only confirmed many previously reported QTL but also revealed novel regions associated with the measured traits. For carcass traits, the most prominent QTL was identified for carcass length and head weight at 57 cM on SSC7, which explained up to 50% of the phenotypic variance and had a 95% confidence interval of only 3 cM. Moreover, QTL for kidney and spleen weight and lengths of cervical vertebrae were reported for the first time in pigs. For meat quality traits, two significant QTL on SSC5 and X were identified for both intramuscular fat content and marbling score in the longissimus muscle, while three significant QTL on SSC1 and SSC9 were found exclusively for IMF. Both LM and the semimembranous muscle showed common QTL for colour score on SSC4, 5, 7, 8, 13 and X and discordant QTL on other chromosomes. White Duroc alleles at a majority of QTL detected were favourable for carcass composition, while favourable QTL alleles for meat quality originated from both White Duroc and Erhualian.  相似文献   

10.
Equine recurrent airway obstruction (RAO) is a chronic lower airway disease of the horse caused by hypersensitivity reactions to inhaled stable dust, including mould spores such as Aspergillus fumigatus. The goals of this study were to investigate whether total serum IgE levels and allergen-specific IgE and IgG subclasses are influenced by genetic factors and/or RAO and whether quantitative trait loci (QTL) could be identified for these parameters. The offspring of two RAO-affected sires (S1: n=56 and S2: n=65) were grouped by stallion and disease status, and total serum IgE levels and specific IgE, IgGa, IgGb and IgG(T) levels against recombinant Aspergillus fumigatus 7 (rAspf7) were measured by ELISA. A panel of 315 microsatellite markers covering the 31 equine autosomes were used to genotype the stallions and their offspring. A whole-genome scan using half-sib regression interval mapping was performed for each of the IgG and IgE subclasses. There was no significant effect of disease status or sire on total IgE levels, but there was a significant effect of gender and age. rAspf7-specific IgGa levels were significantly higher in RAO-affected than in healthy horses. The offspring of S1 had significantly higher rAspf7-specific IgGa and IgE levels than those of S2. Five QTLs were significant chromosome-wide (P<0.01). QTLs for rAspf7-specific IgGa and IgE were identified on ECA 1, for rAspf7-specific IgGa and IgGb on ECA 24 and for rAspf7 IgGa on ECA 26. These results provide evidence for effects of disease status and genetics on allergen-specific IgGa and IgE.  相似文献   

11.
Navicular disease is characterized by a progressive degenerative alteration of the equine podotrochlea. In this study, we refined a previously identified quantitative trait locus (QTL) on horse chromosome 10 for the abnormal development of canales sesamoidales (DCS) of the navicular bone in Hanoverian warmblood horses. Genotyping was done in 192 Hanoverian warmblood horses from 17 paternal half-sib groups. The whole marker set comprised 45 markers including seven newly developed microsatellites and 13 single nucleotide polymorphisms (SNPs) within positional candidate genes. Chromosome-wide significant QTL were confirmed and refined for DCS on horse chromosome (ECA) 10 at 0.16-2.70 Mb and at 14.45-36.37 Mb. Nine microsatellites and three SNP markers reached the highest multipoint Zmeans and LOD scores at 19.34-20.38 Mb and at 23.17-30.73 Mb with genome-wide error probabilities of P<0.05. In addition, a significant association of a SNP within VSTM1 and a significant haplotype-trait association within IRF3 could be shown. These results support a possible role of the candidate genes VSTM1 and IRF3 within the QTL on ECA10 for DCS. This study is a further step towards the identification of the genes responsible for navicular disease in Hanoverian warmblood horses.  相似文献   

12.
A high-resolution (1 marker/700 kb) physically ordered radiation hybrid (RH) and comparative map of 122 loci on equine homologs of human Chromosome 19 (HSA19) shows a variant evolution of these segments in equids/Perissodactyls compared with other mammals. The segments include parts of both the long and the short arm of horse Chromosome 7 (ECA7), the proximal part of ECA21, and the entire short arm of ECA10. The map includes 93 new markers, of which 89 (64 gene-specific and 25 microsatellite) were genotyped on a 5000-rad horse × hamster RH panel, and 4 were mapped exclusively by FISH. The orientation and alignment of the map was strengthened by 21 new FISH localizations, of which 15 represent genes. The approximately sevenfold-improved map resolution attained in this study will prove extremely useful for candidate gene discovery in the targeted equine chromosomal regions. The highlight of the comparative map is the fine definition of homology between the four equine chromosomal segments and corresponding HSA19 regions specified by physical coordinates (bp) in the human genome sequence. Of particular interest are the regions on ECA7 and ECA21 that correspond to the short arm of HSA19—a genomic rearrangement discovered to date only in equids/Perissodactyls as evidenced through comparative Zoo-FISH analysis of the evolution ofancestral HSA19 segments in eight mammalian orders involving about 50 species.  相似文献   

13.
Navicular disease or podotrochlosis is one of the main causes of progressive forelimb lameness in warmblood horses. The objective of this study was to refine a quantitative trait locus on horse chromosome 2 for radiological alterations in the contour of the navicular bone (RAC) in Hanoverian warmblood horses. Genotyping was performed in 192 Hanoverian warmblood horses from 17 paternal half-sib groups. The marker set was extended to 58 informative microsatellites including nine newly developed microsatellites. QTL for RAC could be delineated at 32.50–43.13 Mb and a further new QTL for RAC could be identified at 59.08–65.14 Mb. The markers ABGe342 and ABGe343 reached the highest multipoint Z mean and LOD scores at 34.42 and 35.23 Mb with genome-wide error probabilities of P  = 0.013 and P  = 0.064. In addition, significant associations of markers and haplotypes within the QTL could be shown. The results support the location of the QTL on ECA2 associated with RAC. This work is a further step towards the development of a marker test for navicular disease in Hanoverian warmblood horses.  相似文献   

14.
Pre-harvest sprouting (PHS) and seed longevity (SL) are complex biological processes of major importance for agricultural production. In the present study, a recombinant inbred line (RIL) population derived from a cross between the German winter wheat (Triticum aestivum L.) cultivars History and Rubens was used to identify genetic factors controlling these two physiological seed traits. A falling number (FN) test was employed to evaluate PHS, while SL was measured using a germination test (and the speed of germination) after controlled deterioration. FN of the population was assessed in four environments; SL traits were measured in one environment. Four major quantitative trait loci (QTL) for FN were detected on chromosomes 4D, 5A, 5D, and 7B, whereas for SL traits, a major QTL was found on chromosome 1A. The FN QTL on chromosome 4D that coincided with the position of the dwarfing gene Rht-D1b only had effects in environments that were free of PHS. The remaining three QTL for FN were mostly pronounced under conditions conducive to PHS. The QTL on the long arm of chromosome 7B corresponded to the major gene locus controlling late maturity α-amylase (LMA) in wheat. The severity of the LMA phenotype became truly apparent under sprouting conditions. The position on the long arm of chromosome 1A of the QTL for SL points to a new QTL for this important regenerative seed trait.  相似文献   

15.
T. Guo  J. Ren  K. Yang  J. Ma  Z. Zhang  L. Huang 《Animal genetics》2009,40(2):185-191
A whole-genome scan was performed on 660 F2 animals including 250 barrows and 410 gilts in a White Duroc × Erhualian intercross population to detect quantitative trait loci (QTL) for fatty acid composition in the longissimus dorsi muscle and abdominal fat. A total of 153 QTL including 63 genome-wide significant QTL and 90 suggestive effects were identified for the traits measured. Significant effects were mainly evident on pig chromosomes (SSC) 4, 7, 8 and X. No association was detected on SSC3 and 11. In general, the QTL detected in this study showed distinct effects on fatty acid composition in the longissimus muscle and abdominal fat. The QTL for fatty acid composition in abdominal fat did not correspond to those identified previously in backfat and the majority of QTL for the muscle fatty acid composition were mapped to chromosomal regions different from previous studies. Two regions on SSC4 and SSC7 showed significant pleiotropic effects on monounsaturated (MUFA) and polyunsaturated fatty acid (PUFA) in both longissimus muscle and abdominal fat. Another two QTL with significant multi-faceted effects on MUFA and PUFA in the longissimus muscle were found each on SSC8 and SSCX. Chinese Erhualian alleles were associated with increased ratios of MUFA to saturated fatty acid at most of the QTL detected, showing beneficial effect in terms of human health.  相似文献   

16.
Recurrent airway obstruction (RAO), or ‘heaves’, is a common performance‐limiting allergic respiratory disease of mature horses. It is related to sensitization and exposure to mouldy hay and has a familial basis with a complex mode of inheritance. In a previous study, we detected a QTL for RAO on ECA 13 in a half‐sib family of European Warmblood horses. In this study, we genotyped additional markers in the family and narrowed the QTL down to about 1.5 Mb (23.7–25.2 Mb). We detected the strongest association with SNP BIEC2‐224511 (24 309 405 bp). We also obtained SNP genotypes in an independent cohort of 646 unrelated Warmblood horses. There was no genome‐wide significant association with RAO in these unrelated horses. However, we performed a genotypic association study of the SNPs on ECA 13 in these unrelated horses, and the SNP BIEC2‐224511 also showed the strongest association with RAO in the unrelated horses (praw = 0.00037). The T allele at this SNP was associated with RAO both in the family and the unrelated horses. Thus, the association study in the unrelated animals provides independent support for the previously detected QTL. The association study allows further narrowing of the QTL interval to about 0.5 Mb (24.0–24.5 Mb). We sequenced the coding regions of the genes in the critical region but did not find any associated coding variants. Therefore, the causative variant underlying this QTL is likely to be a regulatory mutation.  相似文献   

17.
Test weight is an important trait in maize breeding. Understanding the genetic mechanism of test weight is important for effective selection of maize test weight improvement. In this study, quantitative trait loci (QTL) for maize test weight were identified. In the years 2007 and 2008, a F2:3 population along with the parents Chang7-2 and Zheng58 were planted in Zhengzhou, People’s Republic of China. Significant genotypic variation for maize test weight was observed in both years. Based on the genetic map containing 180 polymorphic SSR markers with an average linkage distance of 11.0 cM, QTL for maize test weight were analysed by mixed-model composite interval mapping. Five QTL, including four QTL with only additive effects, were identified on chromosomes 1, 2, 3, 4 and 5, and together explained 25.2% of the phenotypic variation. Seven pairs of epistatic interactions were also detected, involving 11 loci distributed on chromosomes 1, 2, 3, 4, 5 and 7, respectively, which totally contributed 18.2% of the phenotypic variation. However, no significant QTL × environment (Q×E) interaction and epistasis × environment interaction effects were detected. The results showed that besides the additive QTL, epistatic interactions also formed an important genetic basis for test weight in maize.  相似文献   

18.
Obesity is proving to be a serious health concern in the developed world as well as an unwanted component of growth in livestock production. While recent advances in genetics have identified a number of monogenic causes of obesity, these are responsible for only a small proportion of human cases of obesity. By divergent selection for high and low fat content over 60 generations, we have created Fat (F) and Lean (L) lines of mice that represent a model of polygenic obesity similar to the situation in human populations. From previous crosses of these lines, four body fat quantitative trait loci (QTL) were identified. We have created congenic lines (Fchr15L), by recurrent marker-assisted backcrossing, to introgress the QTL region with the highest LOD score, Fob3 on Chr 15, from the L-Iine into the F-line background. We have further mapped this QTL by progeny testing of recombinants, produced from crosses between the F-line and congenic Fchrl5L mice, showing that the Fob3 QTL region is a composite of at least two smaller effect QTL—the proximal QTL Fob3a is a late-onset obesity QTL, whereas the distal Fob3b is an early-onset obesity QTL.  相似文献   

19.
A genome‐wide association scan for loci affecting withers height was conducted in 782 German Warmblood stallions, which were genotyped using the Illumina EquineSNP50 Bead Chip. A principal components approach was applied to correct for population structure. The analysis revealed a single major QTL on ECA3 explaining ~18 per cent of the phenotypic variance, which is in concordance with recent reports from other horse populations. The LCORL/NCAPG locus represents a strong candidate gene for this QTL. This locus is among a small number that have consistently been identified to influence human height in several large meta‐analyses. Furthermore, a mutation within the NCAPG gene was found to affect growth and body frame size in cattle. Together with the results of this study in German Warmbloods, these findings strongly indicate LCORL/NCAPG as a candidate locus for withers height in horses. Further studies are, however, needed to confirm this.  相似文献   

20.
Spot blotch, caused by Cochliobolus sativus, is an economically important disease of barley. To identify genetic loci conferring resistance to three different pathotypes of C. sativus, a worldwide barley core collection (BCC) consisting of 1480 accessions from the USDA National Small Grains Collection were genotyped with the barley 9k Illumina Infinium iSELECT assay and phenotyped at the seedling stage with three C. sativus isolates ND85F (pathotype 1), ND90Pr (pathotype 2), and ND4008 (pathotype 7). Association mapping analysis was performed with the Whole_Panel containing 1480 barley accessions, as well as Two-rowed_Panel and Six-rowed_Panel consisting of 621 two-rowed and 857 six-rowed barley accessions, respectively. For resistance to isolate ND4008, one quantitative trait locus (QTL, QRcs-6H-P7) was detected in all three panels. Three other QTL (QRcs-1H-P7, QRcs-2H-P7, and QRcs-3H-P7) were detected in Whole_Panel, Six-rowed_Panel, and Two-rowed_Panel, respectively. For resistance to isolate ND90Pr, one QTL (QRcs-1H-P2) was identified in the Whole_Panel and the Two-rowed_Panel, and the other QTL (QRcs-6H-P2) was only identified in the Six-rowed_Panel. For resistance to isolate ND85F, three QTL (QRcs-1H-P1, QRcs-3H-P1, QRcs-7H-2-P1) were detected in all three panels, and one QTL (QRcs-7H-1-P1) was only detected in the Two-rowed_Panel. Among the ten QTL detected, four (QRcs-1H-P1, QRcs-3H-P1, QRcs-7H-2-P1, and QRcs-1H-P2) were mapped to chromosome regions containing previously identified QTL for spot blotch resistance, while six (QRcs-1H-P7, QRcs-2H-P7, QRcs-3H-P7, QRcs-6H-P7, QRcs-6H-P2, and QRcs-7H-1-P1) were novel. The SNP markers associated with the QTL identified in this study will be useful for breeding barley cultivars with resistance to multiple pathotypes of C. sativus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号