首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We present the first comprehensive DNA barcoding study of German reptiles and amphibians representing likewise the first on the European herpetofauna. A total of 248 barcodes for all native species and subspecies in the country and a few additional taxa were obtained in the framework of the projects ‘Barcoding Fauna Bavarica’ (BFB) and ‘German Barcode of Life’ (GBOL). In contrast to many invertebrate groups, the success rate of the identification of mitochondrial lineages representing species via DNA barcode was almost 100% because no cases of Barcode Index Number (BIN) sharing were detected within German native reptiles and amphibians. However, as expected, a reliable identification of the hybridogenetic species complex in the frog genus Pelophylax was not possible. Deep conspecific lineages resulting in the identification of more than one BIN were found in Lissotriton vulgaris, Natrix natrix and the hybridogenetic Pelophylax complex. A high variety of lineages with different BINs was also found in the barcodes of wall lizards (Podarcis muralis), confirming the existence of many introduced lineages and the frequent occurrence of multiple introductions. Besides the reliable species identification of all life stages and even of tissue remains, our study highlights other potential applications of DNA barcoding concerning German amphibians and reptiles, such as the detection of allochthonous lineages, monitoring of gene flow and also noninvasive sampling via environmental DNA. DNA barcoding based on COI has now proven to be a reliable and efficient tool for studying most amphibians and reptiles as it is already for many other organism groups in zoology.  相似文献   

2.
3.
The evolution rates of mtDNA in early metazoans hold important implications for DNA barcoding. Here, we present a comprehensive analysis of intra- and interspecific COI variabilities in Porifera and Cnidaria (separately as Anthozoa, Hydrozoa, and Scyphozoa) using a data set of 619 sequences from 224 species. We found variation within and between species to be much lower in Porifera and Anthozoa compared to Medusozoa (Hydrozoa and Scyphozoa), which has divergences similar to typical metazoans. Given that recent evidence has shown that fungi also exhibit limited COI divergence, slow-evolving mtDNA is likely to be plesiomorphic for the Metazoa. Higher rates of evolution could have originated independently in Medusozoa and Bilateria or been acquired in the Cnidaria + Bilateria clade and lost in the Anthozoa. Low identification success and substantial overlap between intra- and interspecific COI distances render the Anthozoa unsuitable for DNA barcoding. Caution is also advised for Porifera and Hydrozoa because of relatively low identification success rates as even threshold divergence that maximizes the “barcoding gap” does not improve identification success. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
DNA barcoding aims to develop an efficient tool for species identification based on short and standardized DNA sequences. In this study, the DNA barcode paradigm was tested among the genera of the tribe Sisyrinchieae (Iridoideae). Sisyrinchium, with more than 77% of the species richness in the tribe, is a taxonomically complex genus. A total of 185 samples belonging to 98 species of Sisyrinchium, Olsynium, Orthrosanthus and Solenomelus were tested using matK, trnHpsbA and internal transcribed spacer (ITS). Candidate DNA barcodes were analysed either as single markers or in combination. Detection of a barcoding gap, similarity‐based methods and tree‐based analyses were used to assess the discrimination efficiency of DNA barcodes. The levels of species identification obtained from plastid barcodes were low and ranged from 17.35% to 20.41% for matK and 5.11% to 7.14% for trnH‐psbA. The ITS provided better results with 30.61–38.78% of species identified. The analyses of the combined data sets did not result in a significant improvement in the discrimination rate. Among the tree‐based methods, the best taxonomic resolution was obtained with Bayesian inference, particularly when the three data sets were combined. The study illustrates the difficulties for DNA barcoding to identify species in evolutionary complex lineages. Plastid markers are not recommended for barcoding Sisyrinchium due to the low discrimination power observed. ITS gave better results and may be used as a starting point for species identification.  相似文献   

5.
Non‐biting midges (Diptera: Chironomidae) adapt to species‐specific environmental conditions and hence are promising bioindicators for aquatic and ecotoxicological monitoring. Although their utility for these purposes was historically limited by difficulties in their morphological identification, DNA barcoding offers a possible solution. Here, eight Japanese species of the genus Chironomus, which is characterized by its worldwide distribution and abundance among Chironomidae, were subjected to DNA barcoding using cytochromec oxidase subunit I (COI). To examine whether this DNA barcode is a useful indicator for Japanese species of Chironomus, we calculated genetic distances within and between the COI sequences of Chironomus species both from this study and worldwide and constructed phylogenetic trees. Based on 415 bp COI sequences and the Kimura two‐parameter model, the average genetic distances within 37 species and between 72 species were 2.6% and 17.2%, respectively. Although the ranges of genetic distances within and between species overlapped from 0.8% to 17.3%, 99.7% of average genetic distances between species were >3.0%. Some of this overlap is attributable to distances within species that were “too large” as well as those between species that were “too small”. Of eight Japanese species examined, two showed genetic distances between species that were below a 3.0% threshold, and four had distances within species that were greater than 3.0%. These results suggest a possible reclassification of these species and the need for further sampling to unveil biogeographic variations among different countries and regions.  相似文献   

6.
Biological invasions are regarded as threats to global biodiversity. Among invasive aliens, a number of plant species belonging to the genera Myriophyllum, Ludwigia and Cabomba, and to the Hydrocharitaceae family pose a particular ecological threat to water bodies. Therefore, one would try to prevent them from entering a country. However, many related species are commercially traded, and distinguishing invasive from non‐invasive species based on morphology alone is often difficult for plants in a vegetative stage. In this regard, DNA barcoding could become a good alternative. In this study, 242 samples belonging to 26 species from 10 genera of aquatic plants were assessed using the chloroplast loci trnHpsbA, matK and rbcL. Despite testing a large number of primer sets and several PCR protocols, the matK locus could not be amplified or sequenced reliably and therefore was left out of the analysis. Using the other two loci, eight invasive species could be distinguished from their respective related species, a ninth one failed to produce sequences of sufficient quality. Based on the criteria of universal application, high sequence divergence and level of species discrimination, the trnH‐psbA noncoding spacer was the best performing barcode in the aquatic plant species studied. Thus, DNA barcoding may be helpful with enforcing a ban on trade of such invasive species, such as is already in place in the Netherlands. This will become even more so once DNA barcoding would be turned into machinery routinely operable by a nonspecialist in botany and molecular genetics.  相似文献   

7.
The Microgastrinae are a hugely diverse subfamily of endoparasitoid wasps of lepidopteran caterpillars. They are important in agriculture as biological control agents and play a significant ecological role in the regulation of caterpillar populations. Whilst the group has been the focus of intensive rearing and DNA barcoding studies in the Northern Hemisphere, the Australian fauna has received little attention. In total, 99 species have been described from or have been introduced into Australia, but the real species diversity for the region is clearly much larger than this. In this study, museum ethanol samples and recent field collections were mined for hundreds of specimens of microgastrine wasps, which were then barcoded for the COI region, ITS2 ribosomal spacer and the wingless nuclear genes, using a pooled sequencing approach on an Illumina Miseq system. Full COI sequences were obtained for 525 individuals which, when combined with 162 publicly available sequences, represented 417 haplotypes, and a total of 236 species were delimited using a consensus approach. By more than doubling the number of known microgastrine wasp species in Australia, our study highlights the value of DNA barcoding in the context of employing high‐throughput sequencing methods of bulk ethanol museum collections for biodiversity assessment.  相似文献   

8.
DNA barcoding has greatly facilitated studies of taxonomy, biodiversity, biological conservation, and ecology. Here, we establish a reliable DNA barcoding library for Chinese snakes, unveiling hidden diversity with implications for taxonomy, and provide a standardized tool for conservation management. Our comprehensive study includes 1638 cytochrome c oxidase subunit I (COI) sequences from Chinese snakes that correspond to 17 families, 65 genera, 228 named species (80.6% of named species) and 36 candidate species. A barcode gap analysis reveals gaps, where all nearest neighbour distances exceed maximum intraspecific distances, in 217 named species and all candidate species. Three species-delimitation methods (ABGD, sGMYC, and sPTP) recover 320 operational taxonomic units (OTUs), of which 192 OTUs correspond to named and candidate species. Twenty-eight other named species share OTUs, such as Azemiops feae and A. kharini, Gloydius halys, G. shedaoensis, and G. intermedius, and Bungarus multicinctus and B. candidus, representing inconsistencies most probably caused by imperfect taxonomy, recent and rapid speciation, weak taxonomic signal, introgressive hybridization, and/or inadequate phylogenetic signal. In contrast, 43 species and candidate species assign to two or more OTUs due to having large intraspecific distances. If most OTUs detected in this study reflect valid species, including the 36 candidate species, then 30% more species would exist than are currently recognized. Several OTU divergences associate with known biogeographic barriers, such as the Taiwan Strait. In addition to facilitating future studies, this reliable and relatively comprehensive reference database will play an important role in the future monitoring, conservation, and management of Chinese snakes.  相似文献   

9.
DNA barcoding uses a standard DNA sequence to facilitate species identification. Although the COI gene has been adopted as the standard, COI alone is imperfect due to several shortcomings. The primary endosymbiont of aphids, Buchnera, has higher evolutionary rates and interspecies divergence than its co‐diverging aphid hosts, making it a potential tool for resolving the ambiguities in aphid taxonomy. We compared the effectiveness of employing two different DNA regions, gnd and COI, for the discrimination of over 100 species of aphids. The mean interspecific divergence of the gnd region was significantly higher than the mean intraspecific variation; there were nearly nonoverlapping distributions between the intra‐ and interspecific samples. In contrast, COI showed a lower interspecific divergence, which led to difficulties in identifying closely related species. Our results show that gnd can identify species in the Aphididae, which suggests that the gnd region of Buchnera is a potentially effective barcode for aphid species identification. We also recommend the 2‐locus combination of gnd + COI as the aphid barcode. This will provide a universal framework for the routine use of DNA sequence data to identify specimens and contribute toward the discovery of overlooked species of aphids.  相似文献   

10.
DNA barcode (mitochondrial COI) sequences have allowed for species identification of aphids. In this study, we newly found a DNA barcoding problem in a part of the DNA sequences for Sitobion avenae. Five S. avenae individuals showed differences of, on average, 32.60% in the DNA sequences from other conspecific individuals, and a BLAST search revealed that the five sequences are similar to those of aphid parasitoids such as Aphidius, Ephedrus and Praon spp. (Hymenoptera: Braconidae). Based on these results, we concluded that the universal primers used in aphid DNA barcodes can amplify barcode sequences from parasitoid species within host aphids.  相似文献   

11.
The mitochondrial gene cytochrome-c-oxidase subunit 1 (COI) is useful in many taxa for phylogenetics, population genetics, metabarcoding, and rapid species identifications. However, the phylum Ctenophora (comb jellies) has historically been difficult to study due to divergent mitochondrial sequences and the corresponding inability to amplify COI with degenerate and standard COI “barcoding” primers. As a result, there are very few COI sequences available for ctenophores, despite over 200 described species in the phylum. Here, we designed new primers and amplified the COI fragment from members of all major groups of ctenophores, including many undescribed species. Phylogenetic analyses of the resulting COI sequences revealed high diversity within many groups that was not evident from more conserved 18S rDNA sequences, in particular among the Lobata (Ctenophora; Tentaculata; Lobata). The COI phylogenetic results also revealed unexpected community structure within the genus Bolinopsis, suggested new species within the genus Bathocyroe, and supported the ecological and morphological differences of some species such as Lampocteis cruentiventer and similar undescribed lobates (Lampocteis sp. “V” stratified by depth, and “A” differentiated by colour). The newly designed primers reported herein provide important tools to enable researchers to illuminate the diversity of ctenophores worldwide via quick molecular identifications, improve the ability to analyse environmental DNA by improving reference libraries and amplifications, and enable a new breadth of population genetic studies.  相似文献   

12.
Enzymatic amplification of homologous regions of DNA using ‘universal’ polymerase chain reaction primers has provided insight into insect systematics, phylogeography, molecular evolution and species identification. One of the more commonly amplified and sequenced regions is a short region of the cytochrome c oxidase subunit I gene (COI), commonly called the barcoding region. COI is one of three mitochondrial‐encoded subunits of complex IV (Cox) of the electron transport chain. In addition to the mitochondrial subunits there are nine nuclear‐encoded subunits of the complex in Drosophila. Whereas a number of phylogenetic biases associated with this region have been examined and the quaternary structure of Cox has been modelled, the influence of protein–protein interactions on the observed patterns of evolution in this barcoding region of insects has never been examined critically. Using a well‐resolved independently derived phylogeny of 38 Diptera species, we examined the homogeneity of the substitution processes within the barcoding region. We show that, within Diptera, amino acid residues interacting with nuclear‐encoded subunits of Cox are evolving at elevated rates across the phylogeny. Furthermore, we show that codon position two is biased by protein–protein interactions. In contrast, third codon positions provide a less biased estimate of genetic variation in the region. This study highlights the need to examine the potential for systematic bias in DNA barcoding regions as part of the critical assessment of evidence in systematics and in biodiversity assessments.  相似文献   

13.
The use of genetic distances to identify species within the framework of DNA barcoding has to some extent improved the development of biodiversity studies. However, using a fixed empirical threshold to delimit species may lead to overestimating species diversity. In this study, we use a new data set of COI sequences for 366 specimens within the genus of Cletus as well as conduct an analysis on the same genetic data for collected morphologically defined species from previous phylogeographical studies, to test whether high intraspecific genetic divergences are common with the premises of comprehensive sampling. The results indicate C. graminis Hsiao & Cheng 1964 , is the same species with C. punctiger (Dallas, 1852) and should be synonymized and that the distributional record of C. pugnator (Fabricius, 1787) in China is correct. High intraspecific genetic differentiations (0%–4.35%) were found in C. punctiger. Furthermore, as to the mined data, the maximum intraspecific K2P distances of 186 species (48.44% of 384) exceed 3%, and 101 species (26.30%) can be divided into two or more clusters with a threshold of 3% in cluster analysis. If genetic distance is used to delimit species boundaries, the minimum interspecific K2P distance of the congeneric species should be considered rather than only using the fixed empirical value; otherwise, the species richness may be overestimated in some cases.  相似文献   

14.
We present the findings of a DNA barcoding study of the UK tree flora, implemented as part of an innovative, research‐based science education programme called ‘Tree School’. The UK tree flora comprises native and introduced species, and is a taxonomically diverse study group for the exploration of the potential and limitations of DNA barcoding. The children participating in the project collected voucher specimens and generated DNA barcode sequences from trees and shrubs found in the grounds and surrounding woodlands of a residential field centre in Dorset, UK. We assessed the potential of rbcL and matK markers for amplification and DNA sequencing success and for species discrimination among the 67 tree and shrub species included in this study. Although we achieved 100% PCR amplification and sequencing success for rbcL and matK, mononucleotide repeats affected sequence quality in matK for some taxonomic groups (e.g. Rosaceae). Species discrimination success ranged from 65% to 71% using tree‐based methods to 86% using BLASTN. The occurrence of known hybrids (diploid and polyploid) and their progenitors on the study site reduced the overall species discrimination success for both loci. This study demonstrates that, even in a floristic context, rbcL and matK alone are insufficient for the discrimination of UK tree species, especially where taxonomically complex groups are present. From a science education perspective, DNA barcoding represents a compelling and accessible platform for the engagement of non‐experts in ongoing research, providing an opportunity for them to contribute authentic scientific data to an international research campaign.  相似文献   

15.
DNA barcoding was used in the identification of 89 commercially important freshwater and marine fish species found in Turkish ichthyofauna. A total of 1765 DNA barcodes using a 654‐bp‐long fragment of the mitochondrial cytochrome c oxidase subunit I gene were generated for 89 commercially important freshwater and marine fish species found in Turkish ichthyofauna. These species belong to 70 genera, 40 families and 19 orders from class Actinopterygii, and all were associated with a distinct DNA barcode. Nine and 12 of the COI barcode clusters represent the first species records submitted to the BOLD and GenBank databases, respectively. All COI barcodes (except sequences of first species records) were matched with reference sequences of expected species, according to morphological identification. Average nucleotide frequencies of the data set were calculated as T = 29.7%, C = 28.2%, A = 23.6% and G = 18.6%. Average pairwise genetic distance among individuals were estimated as 0.32%, 9.62%, 17,90% and 22.40% for conspecific, congeneric, confamilial and within order, respectively. Kimura 2‐parameter genetic distance values were found to increase with taxonomic level. For most of the species analysed in our data set, there is a barcoding gap, and an overlap in the barcoding gap exists for only two genera. Neighbour‐joining trees were drawn based on DNA barcodes and all the specimens clustered in agreement with their taxonomic classification at species level. Results of this study supported DNA barcoding as an efficient molecular tool for a better monitoring, conservation and management of fisheries.  相似文献   

16.

Background

The mitochondrial gene COI has been widely used by taxonomists as a standard DNA barcode sequence for the identification of many animal species. However, the COI region is of limited use for identifying certain species and is not efficiently amplified by PCR in all animal taxa. To evaluate the utility of COI as a DNA barcode and to identify other barcode genes, we chose the aphid subfamily Lachninae (Hemiptera: Aphididae) as the focus of our study. We compared the results obtained using COI with two other mitochondrial genes, COII and Cytb. In addition, we propose a new method to improve the efficiency of species identification using DNA barcoding.

Methodology/Principal Findings

Three mitochondrial genes (COI, COII and Cytb) were sequenced and were used in the identification of over 80 species of Lachninae. The COI and COII genes demonstrated a greater PCR amplification efficiency than Cytb. Species identification using COII sequences had a higher frequency of success (96.9% in “best match” and 90.8% in “best close match”) and yielded lower intra- and higher interspecific genetic divergence values than the other two markers. The use of “tag barcodes” is a new approach that involves attaching a species-specific tag to the standard DNA barcode. With this method, the “barcoding overlap” can be nearly eliminated. As a result, we were able to increase the identification success rate from 83.9% to 95.2% by using COI and the “best close match” technique.

Conclusions/Significance

A COII-based identification system should be more effective in identifying lachnine species than COI or Cytb. However, the Cytb gene is an effective marker for the study of aphid population genetics due to its high sequence diversity. Furthermore, the use of “tag barcodes” can improve the accuracy of DNA barcoding identification by reducing or removing the overlap between intra- and inter-specific genetic divergence values.  相似文献   

17.
Pakistan is bestowed by a diversified array of wild bird species including collared doves of which the taxonomy has been least studied and reported. DNA barcoding is a geno-taxonomic tool that has been used for characterization of bird species using mitochondrial cytochrome c oxidase I gene (COI). This study aimed to identify taxonomic order of Pakistani collared dove using DNA barcoding. Purposely herein, we present a phylogenetic analysis of Pakistani collared dove based on 650 base pairs of COI gene sequences. Analysis of phylogenetic tree revealed that Pakistani collared dove shared a common clade with Eurasian collared dove (Streptopelia decaocto) and African collared dove (Streptopelia roseogrisea) which indicated a super-species group in Streptopelia genus. This is the first report of molecular classification of Pakistani collared dove using DNA barcoding.  相似文献   

18.
Since its introduction in 2003, DNA barcoding has proven to be a promising method for the identification of many taxa, including mosquitoes (Diptera: Culicidae). Many mosquito species are potential vectors of pathogens, and correct identification in all life stages is essential for effective mosquito monitoring and control. To use DNA barcoding for species identification, a reliable and comprehensive reference database of verified DNA sequences is required. Hence, DNA sequence diversity of mosquitoes in Belgium was assessed using a 658 bp fragment of the mitochondrial cytochrome oxidase I (COI) gene, and a reference data set was established. Most species appeared as well‐supported clusters. Intraspecific Kimura 2‐parameter (K2P) distances averaged 0.7%, and the maximum observed K2P distance was 6.2% for Aedes koreicus. A small overlap between intra‐ and interspecific K2P distances for congeneric sequences was observed. Overall, the identification success using best match and the best close match criteria were high, that is above 98%. No clear genetic division was found between the closely related species Aedes annulipes and Aedes cantans, which can be confused using morphological identification only. The members of the Anopheles maculipennis complex, that is Anopheles maculipennis s.s. and An. messeae, were weakly supported as monophyletic taxa. This study showed that DNA barcoding offers a reliable framework for mosquito species identification in Belgium except for some closely related species.  相似文献   

19.
Abstract Identification of aphid species is always difficult due to the shortage of easily distinguishable morphological characters. Aphid genus Toxoptera consists of species with similar morphology and similar to Aphis in most morphological characters except the stridulatory apparatus. DNA barcodes with 1 145 bp sequences of partial mitochondrial cytochrome‐coxidase I (COI) genes were used for accurate identification of Toxoptera. Results indicated mean intraspecific sequence divergences were 1.33%, whereas mean interspecific divergences were greater at 8.29% (0.13% and 7.79% if T. aurantii 3 and T. aurantii 4 are cryptic species). Sixteen samples were distinguished to four species correctly by COI barcodes, which implied that DNA barcoding was successful in discrimination of aphid species with similar morphology. Phylogenetic relationships among species of this genus were tested based on this portion of COI sequences. Four species of Toxoptera assembled a clade with low support in maximum‐parsimony (MP) analysis, maximum‐likelihood (ML) analysis and Bayesian phylogenetic trees, the genus Toxoptera was not monophyletic, and there were two sister groups, such as T. citricidus and T. victoriae, and two clades of T. aurantii which probably presented cryptic species in the genus.  相似文献   

20.
Genotyping of 2 well‐known weevil species from the genus Ceutorhynchus (Coleoptera: Curculionidae) distributed in west Palearctic, C. erysimi and C. contractus, revealed phenotype versus genotype inconsistencies in a set of 56 specimens (25 C. erysimi and 31 C. contractus) collected from 25 locations in Serbia and Montenegro. An analysis of the mitochondrial cytochrome oxidase subunit I gene (COI), widely used as a barcoding region, and a nuclear gene, elongation factor‐1α (EF‐1α), revealed stable genetic divergence among these species. The average uncorrected pairwise distances for the COI and EF‐1α genes were 3.8%, and 1.3%, respectively, indicating 2 genetically well‐segregated species. However, the genetic data were not congruent with the phenotypic characteristics of the studied specimens. In the first place, C. erysimi genotypes were attached to specimens with phenotypic characteristics of C. contractus. Species‐specific PCR‐RFLP assays for the barcoding gene COI were applied for the molecular identification of 101 additional specimens of both morphospecies (33 C. erysimi and 68 C. contractus) and were found to confirm this incongruity. The discrepancy between the genetic and morphological data raises the question of the accuracy of using a barcoding approach, as it may result in misleading conclusions about the taxonomic position of the studied organism. Additionally, the typological species concept shows considerable weakness when genetic data are not supported with phenotypic characteristics as in case of asymmetric introgression, which may cause certain problems, especially in applied studies such as biological control programs in which the biological properties of the studied organisms are the main focus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号