首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of three neuraminyl-oligosaccharides isolated from rat urine-have been studied by chromatographic and mass spectrometric analyses of different hydrolysis and methylation products. The structures of the oligosaccharides were identifies as O-α-N-acetyl(O-acetyl)neuraminyl-(2 → 3)-O-β-galactopyranosyl-(1 → 4)-glucopyranose, O-α-N-acetylneuraminyl-(2 → 3)-O-β-galactopyranosyl-(1 → 4)-glucopyranose and O-α-N-glycolylneuraminyl-(2 → 3)-O-β-galactopyranosyl-(1 → 4)-glucopyranose.  相似文献   

2.
From the roots of Angelica archangelica subsp. litoralis three new furocoumarin glycosides, tert. O-β-d-glucopyranosyl-(R)-byakangelicin, sec.-O-β-d-glucopyranosyl-(R)-byakangelicin and tert.-O-β-d-glucopyranosyl-(R)-isobyakangelicin were isolated and their structures established mainly by spectroscopic methods. Additionally, tert.-O-β-d-glucopyranosyl-(R)-heraclenol was obtained and characterized.  相似文献   

3.
Investigation of the acetolysis products of a partially desulphated sample of the polysaccharide isolated from Pachymenia carnosa led to the isolation and characterization of the following oligosaccharides: 3-O-α-D-galactopyranosyl-D-galactose (1), 4-O-β-D-galactopyranosyl-D-galactose (2), 3-O-(2-O-methyl-α-D-galactopyranosyl)-D-galactose (3), a 4-O-galactopyranosyl-2-O-methylgalactose (4), 3-O-α-D-galactopyranosyl-6-O-methyl-D-galactose (5), 4-O-β-D-galactopyranosyl-2-O-methyl-D-galactose (6), 2-O-methyl-4-O-(6-O-methyl-β-D-galactopyranosyl)-D-galactose (14), O-β-D-galactopyranosyl-(1→4)-O-α-D-galactopyranosyl-(1→3)-D-galactose (8), O-α-D-galactopyranosyl-(1→3)-O-β-D-galactopyranosyl-(1→4)-D-galactose (9), O-β-D-galactopyranosyl-(1→4)-O-α-(2-O-methyl-D-galactopyranosyl)-(1→3)-D-galactose (11), O-α-(2-O-methyl-D-galactopyranosyl)-(1→3)-O-β-D-galactopyranosyl-(1→4)-D-galactose (12), O-α-D-galactopyranosyl-(1→3)-O-β-D-galactopyranosyl-(1→4)-2-O-methyl-D-galactose (13), O-α-(2-O-methyl-D-galactopyranosyl)-(1→3)-O-β-D-galactopyranosyl-(1→4)-2-O-methyl-D-galactose (16), and O-β-D-galactopyranosyl-(1→4)-O-α-D-galactopyranosyl-(1→3)-O-β-D-galactopyranosyl-(1→4)-D-galactose (10). In addition, evidence was obtained for the presence of 4-O-(6-O-methyl-β-D-galactopyranosyl)-D-galactose (7) and O-β-D-galactopyranosyl-(1→4)-O-α-D-galactopyranosyl-(1→3)-6-O-methyl-D-galactose (15).  相似文献   

4.
Allyl 4-O-(4-O-acetyl-2-O-benzoyl-3,6-di-O-benzyl-β-d-galactopyranosyl)-2-O-benzoyl-3,6-di-O-benzyl-α-d- galactopyranoside was O-deallylated to give the 1-hydroxy derivative, and this was converted into the corresponding 1-O-(N-phenylcarbamoyl) derivative, treatment of which with dry HCl produced the α-d-galactopyranosyl chloride. This was converted into the corresponding 2,2,2-trifluoroethanesulfonate, which was coupled to allyl 2-O-benzoyl-3,6-di-O-benzyl-α-d-galactopyranoside, to give crystalline allyl 4-O-[4-O-(4-O-acetyl-2-O-benzoyl-3,6-di-O-benzyl-β-d-galactopyranosyl)-2-O-benzoyl-3,6-di- O-benzyl-β-d-galactopyranosyl]-2-O-benzoyl-3,6-di-O-benzyl-α-d-galactopyranoside (15) in 85% yield, no trace of the α anomer being found. The trisaccharide derivative 15 was de-esterified with 2% KCN in 95% ethanol, and the product O-debenzylated with H2-Pd, to give the unprotected trisaccharide. Alternative sequences are discussed.  相似文献   

5.
Nine C-glycosyldeoxyanthocyanidins, 6-C-β-glucopyranosyl-7-O-methylapigeninidin, 6-C-β-glucopyranosyl-7-O-methylluteolinidin, 6-C-β-(2″-O-β-glucopyranosylglucopyranosyl)-7-O-methylapigeninidin, 6-C-β-(2″-O-β-glucopyranosylglucopyranosyl)-7,4′-di-O-methylapigeninidin, 8-C-β-glucopyranosylapigeninidin, 8-C-β-(2″-O-α-rhamnopyranosylglucopyranosyl)apigeninidin, 8-C-β-(2″-O-α-(4″′-O-acetylrhamnopyranosyl)glucopyranosyl)apigeninidin, 6,8-di-C-β-glucopyranosylapigeninidin (8), 6,8-di-C-β-glucopyranosyl-4′-O-methylluteolinidin (9), have been synthesized from their respective C-glycosylflavones (yields between 14% and 32%) by the Clemmensen reduction reaction using zinc-amalgam. The various precursors (C-glycosylflavones) of the C-glycosylanthocyanidins were isolated from either flowers of Iris sibirica L., leaves of Hawthorn ‘Crataegi Folium Cum Flore’, or lemons and oranges. This is the first time C-glycosylanthocyanidins have been synthesized. The structures of all flavonoids including the flavone rotamers were elucidated by 2D NMR techniques and high-resolution electrospray MS. The distribution of the various structural forms of 8 and 9 are different at pH 1.1, 4.5, and 7.0, however, the two pigments undergoes similar structural transformations at the various pH values. Pigments 8 and 9 with C-C linkages between the sugar moieties and the aglycone, were found to be far more stable towards acid hydrolysis than pelargonidin 3-O-glucoside, which has the typical anthocyanidin C-O linkage between the sugar and aglycone. This stability may extend the present use of anthocyanins as nutraceuticals, pharmaceuticals or colorants.  相似文献   

6.
Oxidation of 1,3,4,6-tetra-O-benzoyl-α- and β-D-glucopyranose gave the tetra-O-benzoyl-α- and -β-D-arabino-hexopyranosuloses ( and β), from which benzoic acid was readily eliminated to give the anomeric tri-O-benzoyl-4-deoxy-D-glycero-hex-3-enopyranosuloses ( and β). The anomeric 1-O-acetyl-tri-O-benzoyl-D-arabino-hexopyranosuloses ( and β) were obtained as very unstable syrups which readily lost benzoic acid. Treatment of tetra-O-benzoyl-2-O-benzyl-D-glucopyranose (1) with hydrogen bromide gave 3,4,6-tri-O-benzoyl-α-D-glucopyranosyl bromide (5) in one step.  相似文献   

7.
O-Acetyl-L-serine sulphydrylase (OASS), the enzyme which produces L-cysteine from O-acetyl-L-serine (OAS) and sulphide, is  相似文献   

8.
1,2,4,6-Tetra-O-acetyl-3-O-benzyl-α-D-mannopyranose (7) was obtained in good yield from 3,4,6-tri-O-benzyl-1,2-O-(1-methoxyethylidene)-β-D-mannopyranose (1) by acetolysis. Hydrogenolysis of 7 afforded 1,2,4,6-tetra-O-acetyl-α-D-mannopyranose which is a versatile intermediate for the preparation of other 3-O-substituted D-mannoses, such as 3-O-methyl-D-mannose and 3-O-α-D-mannopyranosyl-D-mannose. 3,4-Di-O-methyl-D-mannose was readily prepared from 1,2,6-tri-O-acetyl-3,4-di-O-benzyl-α-D-mannopyranose, which was also obtained from 1 by controlled acetolysis.  相似文献   

9.
Starting from myo-inositol, 1,2-O-isopropylidene-3,4,5,6-tetra-O-(methylsulfonyl)-, 1,4,5,6-tetra-O-(methylsulfonyl)-, and 2,3-di-O-acetyl-1,4,5,6-tetra-O-(methylsulfonyl)-myo-inositol (3) were synthesized. Compound 3 was treated with sodium azide to give 3-azido-3-deoxy-1,5,6-tri-O-(methylsulfonyl)-muco-inositol, reduction of whose diacetate led to a mixture of 3-amino-3-deoxy- and 3-acetamido-2-O-acetyl-3-deoxy-1,5,6-tri-O-(methylsulfonyl)-muco-inositol. The configurations and conformations of these compounds were ascertained by n.m.r. spectroscopy. 3-Acetamido-3-deoxy-1,5,6-tri-O-(methylsulfonyl)-muco-inositol and its 2,4-diacetate are also described.  相似文献   

10.
The 2,3,4- (9) and 2,4,6-tribenzyl (19) ethers of 1-thio-β-d-galactopyranose were prepared from the corresponding O-benzylated normal (1-hydroxyl) sugars 4 and 15 via the sequence: normal sugar → diacetate → O-acetylglycosyl bromide → O-acetyl-glycosyl ethylxanthate → 1-thio sugar. 2,3,4-Tri-O-benzyl-α-d-galactopyranose (4) is most advantageously made from allyl 6-O-allyl-α-d-galactopyranoside (2) by a published synthesis. An improved synthesis of 2,4,6-tri-O-benzyl-d-galactopyranose (15) was devised; it involves the selective 3-O-benzoylation of allyl 2,6-di-O-benzyl-α-d-galactopyranoside (10).  相似文献   

11.
Extraction with dimethyl sulfoxide of wood-meal of the stem of bracatinga (Mimosa scabrella), a south Brazilian hardwood, that was defatted and delignified by treatment with aqueous chlorine at 0–5° followed by extraction with cold ethanol, gave a soluble O-acetylated 4-O-methyl-d-glucurono-d-xylan having (1→4)-linked β-d-xylopyranosyl residues that were unsubstituted (65%) and 2-O-(14%), 3-O- (16%), and 2,3-di-O-acetylated (5%), as determined by methylation analysis. Another preparation obtained by use of refluxing ethanol in the delignification process showed neither removal nor migration of acetyl groups. By comparison with synthetic, partly O-acetylated d-xylans of known composition, 13C-n.m.r. spectroscopy indicated that O-acetyl group migration does not occur during treatment with cold aqueous chlorine, refluxing ethanol, or water at 70°. Methyl 2-O-acetyl-4-O-methyl-β-d-xylopyranoside (6) was also unaffected by aqueous chlorine. O-Acetyl group migration took place more readily in aqueous and dimethyl sulfoxide solutions of 6 than of O-acetyl-d-xylans. The lowest temperatures at which migration was observed in monosaccharides was at 50 and 70° for solutions in D2O and (CD3)2SO, respectively.  相似文献   

12.
Condensation of benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-α-D-glucopyranoside with 2,3,4,6-tetra-O-benzyl-1-O-(N-methyl)acetimidoyl-β-D-glucopyranose gave benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-4-O-(2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl)-α-D-glucopyranoside which was catalytically hydrogenolysed to crystalline 2-acetamido-2-deoxy-4-O-α-D-glucopyranosyl-α-D-glucopyranose (N-acetylmaltosamine). In an alternative route, the aforementioned imidate was condensed with 2-acetamido-3-O-acetyl-1,6-anhydro-2-deoxy-β-D-glucopyranose, and the resulting disaccharide was catalytically hydrogenolysed, acetylated, and acetolysed to give 2-acetamido-1,3,6-tri-O-acetyl-2-deoxy-4-O-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl)-α-D-glucopyranose Deacetylation gave N-acetylmaltosamine. The synthesis of 2-acetamido-2-deoxy-4-O-β-D-glucopyranosyl-α-D-glucopyranose involved condensation of benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-α-D-glucopyranoside with 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide in the presence of mercuric bromide, followed by deacetylation and catalytic hydrogenolysis of the condensation product.  相似文献   

13.
Youg R. Thaker  Yin H. Yau 《FEBS letters》2009,583(7):1090-1095
Owing to the complex nature of V1VO ATPases, identification of neighboring subunits is essential for mechanistic understanding of this enzyme. Here, we describe the links between the V1 headpiece and the VO-domain of the yeast V1VO ATPase via subunit A and d as well as the VO subunits a and d using surface plasmon resonance and fluorescence correlation spectroscopy. Binding constants of about 60 and 200 nM have been determined for the a-d and d-A assembly, respectively. The data are discussed in light of subunit a and d forming a peripheral stalk, connecting the catalytic A3B3 hexamer with VO.

Structured summary

MINT-7012054: d (uniprotkb:P32366) binds (MI:0407) to A (uniprotkb:P17255) by fluorescence correlation spectroscopy (MI:0052)MINT-7012041: d (uniprotkb:P32366) binds (MI:0407) to A (uniprotkb:P17255) by surface plasmon resonance (MI:0107)MINT-7012028: d (uniprotkb:P32366) binds (MI:0407) to a (uniprotkb:P32563) by surface plasmon resonance (MI:0107)  相似文献   

14.
Four anthocyanins, cyanidin 3-O-(2″-(5?-(E-p-coumaroyl)-β-apiofuranosyl)-β-xylopyranoside)-5-O-β-glucopyranoside, cyanidin 3-O-(2″-(5?-(E-p-coumaroyl)-β-apiofuranosyl)-β-xylopyranoside), cyanidin 3-O-(2″-(5?-(E-caffeoyl)-β-apiofuranosyl)-β-xylopyranoside) and cyanidin 3-O-(2″-(5?-(E-feroyl)-β-apiofuranosyl)-β-xylopyranoside) were isolated from leaves of African milk bush, (Synadeniumgrantii Hook, Euphorbiaceae) together with the known cyanidin 3-O-β-xylopyranoside-5-O-β-glucopyranoside and cyanidin 3-O-β-xyloside. The four former pigments are the first reported anthocyanins containing the monosaccharide apiose, and the three 5?-cinnamoyl derivative-2″-(β-apiosyl)-β-xyloside subunits have previously not been reported for any compound.  相似文献   

15.
N-Acetylepidaunosamine (3-acetamido-2,3,6-trideoxy-d-ribo-hexopyranose) was converted into the diethyl dithioacetal and this was cyclized with HgCi2, HgO, and MeOH, to give methyl 3-acetamido-2,3,6-trideoxy-α- and -β-d-ribo-hexofuranoside (4 and 5). These anomers were acetylated or (p-nitrobenzoyl)ated, and the esters were subjected to acetolysis, to afford 3-acetamido-1,5-di-O-acetyl-2,3,6-trideoxy-d-ribo-hexofuranose and 3-acetamido-1-O-acetyl-2,3,6-trideoxy-5-O-(p-nitrobenzoyl)-d-ribo-hexofuranose, respectively. Alternatively, compounds 4 and 5 were hydrolyzed to the free bases with barium hydroxide, and these were converted into the trifluoroacetamido derivatives which, on (p-nitrobenzoyl)ation and acetolysis, afforded 1-O-acetyl-2,3,6-trideoxy-5-O-(p-nitrobenzoyl)-3-(trifluoroacetamido)-d-ribo-hexofuranose. To prepare the corresponding daunosamine derivative, 2,3,6-trideoxy-3-(trifluoroacetamido)-l-lyxo-hexopyranose was converted into the diethyl dithioacetal, and this was cyclized in the same way, to afford methyl 2,3,6-trideoxy-3-(trifluoroacetamido)-α- and -β-l-lyxo-hexofuranoside. On (p-nitrobenzoyl)ation and acetolysis, both afforded 1-O-acetyl-2,3,6-trideoxy-5-O-(p-nitrobenzoyl)-3-(trifluoroacetamido)-l-lyxo-hexofuranose.  相似文献   

16.
Condensation of 6-O-benzyl-7,8-dideoxy-1,2:3,4-di-O-isopropylidene-d-glycero-α-d-galacto-oct-7-ynopyranose with methyl 2,3,4-tri-O-benzyl-6-deoxy-β-d-galacto-heptodialdo-1,5-pyranoside afforded a 2:1 mixture of the 1S and 1R isomers (1a and 1b) of 3-[6(R)-O-benzyl-1,2:3,4-di-O-isopropylidene-α-d-galactopyranos-6-yl]-1-hydroxy-1-(methyl 2,3,4-tri-O-benzyl-6-deoxy-β-d-galactopyranosid-6-yl)propyne. A single crystal of the 1-O-acetyl derivative (1c) of 1a was investigated by X-ray diffraction methods in a four-circle diffractometer. Compound 1c crystallises in the monoclinic system, space group P21 (Z = 2) with cell dimensions a = 14.896(2), b = 8.295(1), c = 20.547(3) Å, and β = 102.66(1)°. The structure was solved by direct methods and refined by a full-matrix, least-squares procedure against 3839 unique reflections (F > 2σF), resulting in a final R = 0.045 (unit weights). The configuration at the new chiral center (C-1) was established as S(d). The galactopyranose rings have conformations 4C1 (tri-O-benzylated moiety) and °S5 + °T2 (di-O-isopropylidenated moiety). The 1,2- and 3,4-O-isopropylidene rings have 3T2 and 2E conformations, respectively.  相似文献   

17.
Photo-oxygenation of 3-ethoxycarbonyl-5-(2,3-O-isopropylidene-β-d-erythrofuranosyl)-2-methylfuran and 3-hydroxymethyl-5-(2,3-O-isopropylidene-β-d-erythrofuranosyl)-2-methylfuran yields the corresponding endo-peroxides which rearrange at room temperature into the O-glycosyl derivatives ethyl 2,3-O-isopropylidene-β-d-erythrofuranosyl 2-acetylfumarate and 2,3-O-isopropylidene-β-d-erythrofuranosyl 3-acetyl-3-hydroxymethylacrylate, respectively. The endo-peroxides can be reduced without rearrangement, yielding C-glycosyl derivatives. Alcoholysis of the O-glycosyl derivatives yields 2,3-O-isopropylidene-d-erythrose, dialkyl 2-acetyl-3-alkoxysuccinates, 4-ethoxycarbonyl-5-methoxy-5-methyl-2-oxo-2,5-dihydrofuran and 4-hydroxymethyl-5-methoxy-5-methyl-2-oxo-2,5-dihydrofuran.  相似文献   

18.
In the course of a chemotaxonomic survey of New Zealand Podocarpus species, a number of new flavonoid glycosides have been isolated from P. nivalis. These are: luteolin 3′-O-β-D-xyloside, luteolin 7-O-β-D-glucoside-3′-O-β-D-xyloside, dihydroquercetin 7-O-β-D-glucoside, 7-O-methyl-(2R:3R)-dihydrokaempferol 5-O-β-D-glucopyranoside, 7-O-methyl-(2R:3R)-dihydroquercetin 5-O-β-D-glucopyranoside, 7-O-methylkaempferol 5-O-β-D-glucopyranoside and 7-O-methylquercetin 5-O-β-D-glucopyranoside. Diagnostically useful physical techniques for distinguishing substitution patterns in dihydroflavonols are discussed and summarized. Glucosylation of the 5-hydroxyl group in (+)-dihydroflavonols is shown to reverse the sign of rotation at 589 nm.  相似文献   

19.
l-Tyrosine O-glucoside (I) and dopamine-3-O-glucoside (II) have been isolated from seeds of Entada pursaetha DC. The structures have been established by spectroscopic methods, identification of hydrolysis products and comparison with synthetic material. Syntheses are described of II, dopamine 4-glucoside and tyramine-O-glucoside.  相似文献   

20.
An arabinoglucuronoxylan was extracted from the holocellulose of sugi (Cryptomeria japonica) wood with 10% KOH and subjected to hydrolysis by partially purified xylanase fraction from a commercial cellulase preparation “Meicelase”. Neutral sugars liberated were analyzed by size exclusion chromatography showing the presence of xylooligosaccharides up to xylohexaose. Aldouronic acids liberated were purified by preparative anion exchange chromatography. Their structures were identified by monosaccharide analysis, comparison of their volume distribution coefficients (Dvs) with those of the authentic samples in anion exchange chromatography and 1H and 13C NMR spectroscopy, resulting in the characterization of eight aldouronic acids including acids consisting of two 4-O-Me-α-D-GlcAp residues and 3-5 D-Xyl residues.
1.
Fr. 1-S1: (aldohexaouronic acid, MeGlcA3Xyl5), O-β-Xylp-(1 → 4)-O-β-D-Xylp-(1 → 4)-[O-(4-O-Me-α-D-GlcAp)-(1 → 2)]-O-β-Xylp-(1 → 4)-O-β-D-Xylp-(1 → 4)-D-Xyl
2.
Fr. 1-S2: (aldopentaouronic acid, MeGlcA3Xyl4), O-β-Xylp-(1 → 4)-[O-(4-O-Me-α-D-GlcAp)-(1 → 2)]-O-β-D-Xylp-(1 → 4)-O-β-Xylp-(1 → 4)-D-Xyl
3.
Fr. 2-S1: (aldotetraouronic acid, MeGlcA3Xyl3), O-(4-O-Me-α-D-GlcAp)-(1 → 2)-O-β-D-Xylp-(1 → 4)-O-β-D-Xylp-(1 → 4)-D-Xyl
4.
Fr. 3-S1: (aldotetraouronic acid, GlcA3Xyl3), O-(α-D-GlcAp)-(1 → 2)-O-β-D-Xylp-(1 → 4)-O-β-Xylp-(1 → 4)-D-Xyl,
5.
Fr. 4-S1: (aldotriouronic acid, GlcA2Xyl2), O-(4-O-Me-α-D-GlcAp)-(1 → 2)-O-β-D-Xylp-(1 → 4)-D-Xyl
6.
Fr. 4-S2: (MeGlc4MeGlcA3Xyl5), O-β-D-Xylp-(1 → 4)-[O-(4-O-Me-α-D-GlcAp)]-(1 → 2)-O-β-D-Xylp-(1 → 4)-[O-(4-O-Me-α-D-GlcAp)]-(1 → 2)-O-β-D-Xylp-(1 → 4)-O-β-D-Xylp-(1 → 4)-D-Xyl
7.
Fr. 6-S1: (MeGlcA4MeGlcA3Xyl4), O-(4-O-Me-α-D-GlcAp)-(1 → 2)-O-β-D-Xylp-(1 → 4)-O-[(4-O-Me-α-D-GlcAp)]-(1 → 2)-O-β-D-Xylp-(1 → 4)-O-β-D-Xylp-(1 → 4)-D-Xyl
8.
Fr. 7-S1: (MeGlcA3MeGlc2Xyl3), O-(4-O-Me-α-D-GlcAp)-(1 → 2)-O-β-D-Xylp-(1 → 4)-O-[(4-O-Me-α-D-GlcAp)]-(1 → 2)-O-β-D-Xylp-(1 → 4)-D-Xyl
Fr. 4-S2 was a new acidic oligosaccharide. The distribution pattern of these vicinal uronic acid units along the D-xylan chain was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号