首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vacancy chain theory describes a unique mechanism for the sequential distribution of animal resources across multiple individuals. This theory applies to any resources, such as shelters or nest sites, that are discrete, reusable, and limited in use to single individuals or groups at one time. Hermit crabs rely on gastropod shells for shelter, and a single vacant shell can initiate a chain of sequential shell switches that distributes new resources across many individuals. Using the terrestrial hermit crab Coenobita clypeatus , we examined the previously untested theoretical prediction that this process will yield trickle-down resource benefits to vacancy chain participants (aggregate benefits). In laboratory experiments, we measured improvements in shell quality when a single vacant shell was provided to groups of eight crabs. We found that crabs participating in vacancy chains (averaging 3.2 individuals) gained significant reductions in their shell crowding. In addition, vacancy chains terminated early when experimental groups included a single crab occupying a damaged shell, because damaged vacancies always remained unoccupied. Hermit crabs in damaged shells were more likely to win resource contests for high quality shells against size-matched hermit crabs in crowded shells. Finally, field additions of many new shells to an island population of C. clypeatus hermit crabs reduced average shell crowding for crabs of all sizes, possibly from propagation of benefits through vacancy chains. These results provide empirical support for the theoretical prediction that vacancy chains should provide benefits distributed across many vacancy chain participants. Since shelter-based vacancy chains likely occur in other animals, additional studies of vacancy chain processes should provide new insights into resource acquisition behaviors in diverse animal groups.  相似文献   

2.
Vacancy chains occur when individuals occupy discrete re‐useable resource units, which once abandoned by the current owner can then be occupied by a new owner. In order to enter the newly vacated resource the new owner must first vacate its current resource unit, such that a vacancy chain consists of a series of linked moves between resource units of different value, equivalent to different ‘strata’ in the chain. Vacancy chains may represent an important route by which resources are distributed through populations. Indeed, the arrival of a new resource has the potential to initiate a series of moves propagating beyond the individual that encounters the new resource unit. Thus, the chain participants as a whole may experience ‘aggregate benefits’ from the arrival of the new resource unit. The extent of these benefits, however, may not necessarily be evenly distributed between all chain participants; some individuals could receive greater than average benefits by moving through more than one stratum (‘skipping’) and some individuals could experience a reduction in resource value by moving to a resource unit of lower quality than that occupied initially (a ‘backward move’). Such moves represent deviations from the ‘ideal’ vacancy chains assumed by theory. Here we analyse the aggregate benefits and benefits to individuals participating in vacancy chains of empty gastropod shells in the hermit crab Pagurus bernhardus. We also investigate the effect of predation risk on these two levels of benefits and on chain structure. Adding a new shell at the top of the chain causes an overall increase in shell quality after 24 h but the distribution of benefits between strata in the chain varies with the presence and absence of the predator cue. Although there was significant concordance between chain structure in the presence and absence of the predator cue, the structure was significantly different from an ideal vacancy chain in the absence but not the presence of the predator cue.  相似文献   

3.
《Animal behaviour》1988,36(5):1265-1274
A number of resources important to humans such as jobs in bureaucracies, houses and apartments are allocated through a mechanism known as a vacancy chain. In a vacancy chain process an initial, vacant resource unit entering a population of users is taken by a first individual who leaves his/her previous resource unit behind, which is taken by a second individual, and so on. In this process an initial resource unit works both directly and indirectly to provide opportunities for several individuals to gain new and better resources. Vacancy chains are hypothesized to be important in resource distribution for a variety of non-human animals, and it is documented, in particular, that the hermit crab Pagurus longicarpus gets the gastropod shells in which it lives through this mechanism. The direct and indirect effects of vacancy chains on hermit crabs and the systematic ways in which chains flow through groups of crabs and their resources are indicated. In systems where they occur, it is further hypothesized that vacancy chains have unique implications for the ecology of resource users. Several of these hypotheses are explored using the example of hermit crabs.  相似文献   

4.
Summary A vacancy chain is a unique type of resource acquisition process composed of an interconnected series of events in which the gaining of a particular resource unit by one individual depends directly on prior acquisition events by other individuals. Taken from the sociological literature, vacancy chains may also describe the distribution of many types of animal resources such as burrows, dwellings and shelters. Using data on hermit crabs, we present a Markov model simulating a vacancy chain process, and test the model against field data. Our results show that a simple Markov model adequately describes shell acquisition in hermit crabs, and that models combining shell size and crude estimates of quality fit the data extremely well. We illustrate in detail how to generate vacancy chain models from ecological data, how to determine the number and size of organisms gaining new resource units from resource introductions of specific sizes, and how to statistically evaluate the accuracy of Markov models. Not recognizing the presence of a vacancy chain system may lead to serious errors in estimating resource dynamics and therefore in demographic and competition models based on these dynamics. Finally, we suggest some ways in which vacancy chain models can aid studies of competition, population dynamics, life histories, and conservation in species using this type of resource acquisition process.  相似文献   

5.
The process of how the hermit crab,Pagurus geminus, acquires a new shell was investigated in the natural habitat at Ezura in Shirahama, Wakayama Prefecture, during the non-breeding season, and the following results were obtained. Hermit crabs acquired new shells most frequently by shell exchange between 2 individuals and occasionally by attacking snails. Acquisition through location of empty shells was not found. At the snail attacking site or the site of shell exchange attempts, sometimes many other individuals appeared and, frequently, confusing or complex shell changes were observed. The importance of introduction of fresh shells to a hermit crab population and the possibility for a certain individual to acquire a shell introduced by others through shell exchange attempts are discussed.  相似文献   

6.
Resource assessment in hermit crabs: the worth of their own shell   总被引:1,自引:0,他引:1  
Animals gather information about the quality of a resource throughits assessment and behave accordingly as a result of adaptivemotivational changes. In the hermit crab Pagurus longicarpus,we investigated whether an individual was affected in its motivationto acquire a new shell by the quality of the domicile shell(own resource value [ORV]), of the offered shell (external resourcevalue [ERV]), or of both and asked whether its motivation wasaltered by the information gathered during shell investigation.We analyzed the behavior of hermit crabs inhabiting shells ofdiffering qualities and compared their willingness to acquirean offered shell—optimal, smaller than optimal, or largerthan optimal—by measuring the latency to approach it,the number of shell investigation, and its total duration. Crabsin smaller shells (SSs) approached more quick and often theoffered shell, whereas crabs in larger shells investigated theoffered shell more thoroughly. The readiness of crabs to approachthe offered shell and the extent of its investigation were independentof the ERV but were exclusively affected by the ORV, whereasthe number and duration of shell investigation did not changewith time as investigation proceeded, except for crabs in SSs.These results suggest that P. longicarpus' motivation to acquirea new shell is exclusively influenced by the value of the shellit inhabits rather than by the quality of the shell it is offeredand that this species does not gather—or does not use—informationabout ERV during investigation.  相似文献   

7.
The small-scale distribution and resource utilization patterns of hermit crabs living in symbiosis with sea anemones were investigated in the Aegean Sea. Four hermit crab species, occupying shells of nine gastropod species, were found in symbiosis with the sea anemone Calliactis parasitica. Shell resource utilization patterns varied among hermit crabs, with Dardanus species utilizing a wide variety of shells. The size structure of hermit crab populations also affected shell resource utilization, with small-sized individuals inhabiting a larger variety of shells. Sea anemone utilization patterns varied both among hermit crab species and among residence shells, with larger crabs and shells hosting an increased abundance and biomass of C. parasitica. The examined biometric relationships suggested that small-sized crabs carry, proportionally to their weight, heavier shells and increased anemone biomass than larger ones. Exceptions to the above patterns are related either to local resource availability or to other environmental factors.  相似文献   

8.
Frequent shell exchanges among hermit crabs imply the enigmatic circumstance that large crabs frequently obtain large shells from smaller crabs. This seeming anomaly is explored as a key to the shell resource system. It is hypothesized to reflect how, where, and how often shells become available to the crabs. Shells become available infrequently, as snails die, and are available to the crabs for only a brief time before they become inaccessible. The standing crop of empty shells is almost always low and is irrelevant to rates of shell turnover in the crab population. Crabs are most likely to encounter shells of the wrong size, and the chance of encountering a shell of the desired size decreases as a crab grows. Snails and crabs are usually found on different portions of the shore; thus, crabs must make “foraging trips” for shells. Under this regime of shell supply, a crab will get a suitable shell the fastest when it accepts any fresh shell that is larger than its initial shell. It can then trade with other crabs to improve its shell fit. This behavior will make small crabs into a regular source of large shells for large crabs, and a shell exchange ritual will be strongly favored because both participants will benefit. Shells are an unusual resource because they are the object of both competitive and mutualistic interactions. This ambiguous quality is revealed in the intraspecific and interspecific responses of crabs to each other and to shells.  相似文献   

9.
Specific chemicals in the environment evoke significant changes in the behavior of many aquatic organisms. We studied in the laboratory whether satiated individuals of the hermit crab, Pagurus longicarpus Say 1817, adjust their investigatory behavior towards an empty, optimal gastropod shell according to differences of chemical context. We also explored to what extent shell investigation by a crab in the same hunger state was affected by occupying an inadequately sized shell. Our results confirmed in part previous findings that crabs can discriminate the odor of freshly dead snails from the odor of freshly dead conspecifics. In the presence of the former odor, crabs inhabiting shells of inadequate size were more responsive and active than those in better-fitting shells. To the contrary, regardless of the quality of the inhabited shell, P. longicarpus remained practically motionless when presented with the odor of freshly dead conspecifics, possibly because the risks of incurring in predators would outweigh the benefits of acquiring a new shell. Unexpectedly, we found that crabs in both types of shell quality exhibited nearly the same behavior in control water, while crabs in adequate shells were more responsive in the presence of food odor. Individuals appeared insensitive to the odor of live snails; indeed, only one hermit crab species has been seen removing living snails from their shells. An intriguing result was that water conditioned by the odors of live conspecifics exerted a strong effect on all the individuals by inducing an intense shell investigation. Our study underlines the central role exerted by chemical detection in hermit crabs' behavior and demonstrates the existence of a complex interplay among chemical context, the physiological state of the animal, and the ecological pressures of the habitat.  相似文献   

10.
The existence of consistent individual differences in behaviour (‘animal personality’) has been well documented in recent years. However, how such individual variation in behaviour is maintained over evolutionary time is an ongoing conundrum. A well-studied axis of animal personality is individual variation along a bold–shy continuum, where individuals differ consistently in their propensity to take risks. A predation-risk cost to boldness is often assumed, but also that the reproductive benefits associated with boldness lead to equivalent fitness outcomes between bold and shy individuals over a lifetime. However, an alternative or complementary explanation may be that bold individuals phenotypically compensate for their risky lifestyle to reduce predation costs, for instance by investing in more pronounced morphological defences. Here, we investigate the ‘phenotypic compensation’ hypothesis, i.e. that bold individuals exhibit more pronounced anti-predator defences than shy individuals, by relating shell shape in the aquatic snail Radix balthica to an index of individual boldness. Our analyses find a strong relationship between risk-taking propensity and shell shape in this species, with bolder individuals exhibiting a more defended shell shape than shy individuals. We suggest that this supports the ‘phenotypic compensation’ hypothesis and sheds light on a previously poorly studied mechanism to promote the maintenance of personality variation among animals.  相似文献   

11.
Contesting animals typically gather information about the resource value and that information affects fight motivation. However, it is possible that particular resource characteristics alter the ability to fight independently of the motivation. Using hermit crabs, we investigate how the resource in terms of shell quality affects both motivation and ability to fight. These crabs fight for shells, but those shells have to be carried and may impose physiological costs that impede fight vigour. We find that the shell has different effects on motivation and ability. Potential attackers in very small shells were highly motivated to attack but, rather than having enhanced ability, unexpectedly quickly fatigued and subsequently were not more successful in the fights than were crabs in larger shells. We also examined whether defending crabs could gather information about the attacker''s shell from the vigour of the attack. Defending crabs gave up quickly when a potential gain had been assessed, indicating that such information had been gathered. However, there was no indication that this could be owing to the activity of the attacker and the information is probably gathered via visual assessment of the shell.  相似文献   

12.
Intraspecific shell exchange in the hermit crab Clibanarius virescens (Krauss) was studied by field and laboratory experiments. Shell exchange frequencies were determined in potentially competitive (only one individual of a pair would benefit from an exchange) and potentially mutualistic (both members benefit) situations. The frequency of competitive exchanges in laboratory experiments, which paired individuals occupying very poor quality shells and individuals occupying the shells in which they were collected, was very low (2%). Higher exchange frequencies were observed between individuals in poor quality shells and individuals in shells of their preferred size. Shell exchange frequencies were highest in mutualistic situations and situations in which all individuals occupied poor quality shells. Crabs which had been evicted from their shells by the experimenter prior to selecting new shells were evicted from the new shells in subsequent shell fight experiments significantly more often than crabs which had not been evicted. Field experiments resulted in exchange frequencies similar to those observed in the laboratory. The relevance of the present experiments to Maynard Smith and Parker's theory of asymmetric contests is discussed.  相似文献   

13.
Pre-fight displays typically provide honest, but sometimes dishonest, information about resource holding potential and may be influenced by assessment of resource value and hence motivation to acquire the resource. These assessments of potential costs and benefits are also predicted to influence escalated fight behaviour. This is examined in shell exchange contests of hermit crabs in which we establish an information asymmetry about a particularly poor quality shell. The poor shell was created by gluing sand to the interior whereas control shells lacked sand and the low value of the poor shell could not be accurately assessed by the opponent. Crabs in the poor shell showed changes in the use of pre-fight displays, apparently to increase the chances of swapping shells. When the fights escalated, crabs in poor shells fought harder if they took the role of attacker but gave up quickly if in the defender role. These tactics appear to be adaptive but do not result in a major shift in the roles taken or outcome. We thus link resource assessment with pre-fight displays, the roles taken, tactics used during escalation and the outcome of these contests.  相似文献   

14.
Hermit crabs are critically dependent upon gastropod shells for their survival and reproductive fitness. While anecdotal reports have suggested that hermit crabs may be capable of removing live gastropods from their shells to access the essential shell resource, no systematic experiments have been conducted to investigate this possibility. This paper reports experiments on both marine (Pagurus bernhardus) and terrestrial (Coenobita compressus) hermit crabs in which crabs were paired in the laboratory with the gastropods whose shells they inhabit in the field. Pairings included both shelled and naked crabs and spanned the full range of the gastropod life cycle. Neither marine nor terrestrial hermit crabs were successful at removing live gastropods from their shells. Furthermore, only a small fraction of the crabs (5.7%) were capable of accessing shells in which the gastropod had been killed in advance, with its body left intact inside the shell. Finally, although hermit crabs readily entered empty shells positioned on the surface, few crabs (14.3%) were able to access empty shells that were buried just centimeters beneath them. These results suggest that hermit crabs are constrained consumers, with the shells they seek only being accessible during a narrow time window, which begins following natural gastropod death and bodily decomposition and which typically ends when the gastropod's remnant shell has been buried by tidal forces. Further experiments are needed on more species of hermit crabs as well as fine-grained measurements of (i) the mechanical force required to pull a gastropod body from its shell and (ii) the maximum corresponding force that can be generated by different hermit crab species' chelipeds.  相似文献   

15.
Complex environments present substantial spatio-temporal uncertainty in where and when rare ecological resources become available. How animals navigate this uncertainty to turn the seemingly unpredictable into the predictable is a fundamental question in evolutionary ecology. Here we use subtidal hermit crabs (Pagurus acadianus) as a model system to experimentally test in the field how animals resolve spatio-temporal uncertainty in resource availability. Quadrat sampling within the subtidal zone revealed that hermit crabs face an extreme ecological challenge, based on the rarity of empty shells across space and time. We show how this spatio-temporal uncertainty is ultimately resolved using long-distance chemical cues, which are associated with non-destructive shell predation on living gastropods, the original source of shells. By experimentally releasing cues that simulated the chemical by-products of predation, we reveal that certain flesh cues provide fine-grained information about the precise spatial and temporal window of new shell availability. These cues were most attractive to individuals with the greatest existing resource needs, and in the absence of this information individuals were highly constrained in their ability to discover newly available resources. Broadly, these experiments reveal that exploiting simple cues from heterospecific predators can provide a solution to the general ecological challenge of finding resources that are rare in space and time.  相似文献   

16.
Most hermit crabs depend on empty gastropod shells for shelter; competition for appropriate shells is often severe. This study determined whether shells that have been drilled by naticid gastropods are suitable for occupancy by the hermit crab Pagurus longicarpus. Differences in the characteristics of empty shells and those occupied by hermit crabs were assessed at two adjacent field sites in Nahant, Massachusetts. Drilling damage was far more frequent in empty gastropod shells than in shells occupied by hermit crabs, suggesting that individuals of P. longicarpus avoid drilled shells. They did not appear to avoid shells with other forms of damage. Laboratory experiments confirmed that these hermit crabs preferentially chose intact shells over drilled shells, even when the intact shells offered were most suitable for crabs half the weight of those tested. Final shell choices were generally made within 1 h. The hermit crabs apparently discriminated between intact and drilled shells based on tactile cues, since crabs kept in the dark showed the same preference for intact shells. The hermit crabs strongly avoided, to nearly the same extent, artificially drilled shells, naturally drilled shells, and shells with holes artificially drilled on the opposite side of the shell from where they would normally be located. Possible selective forces causing P. longicarpus to show such strong behavioral avoidance of drilled shells include increased vulnerability of crabs in drilled shells to osmotic stress, predation, and eviction by conspecifics.  相似文献   

17.
Burciaga  Luis M.  Alvarez  Aldair  Alcaraz  Guillermina 《Hydrobiologia》2021,848(10):2539-2550

Resources may confer advantages by enhancing their owners’ fighting ability (resource holding potential; RHP). While the resource-correlated RHP hypothesis has been recognized as a determinant of agonistic success in different taxa, this has mostly been based on assessment of either the intruder or the owner, but only rarely in both contestants. We tested whether the internal structure of shells affects hermit crabs’ RHP, both as owners defending the shell against eviction and as intruders attempting to gain access to an occupied shell. We conducted contests (n?=?60) to compare the success in shell eviction by intruders in intact shells vs. in shells with the columella artificially reduced, and the success of shell retention by owners in intact shells vs. shells with the columella reduced. The internal configuration of the shell showed different resource-correlated RHP effects depending on the individual’s role in the fight. The presence of a columella in the intruder’s shell did not affect the likelihood that they would evict their opponents. However, owners resisted more evictions in shells with intact columella than those in shells with reduced columella. Our results demonstrate that the same resource can offer different RHP advantages to owners and intruders during an agonistic interaction.

  相似文献   

18.

Many studies have investigated shell‐related behaviour in hermit crabs. Few studies, however, have focused specifically on the intraspecies aggression associated with shell competition. We examined intraspecies aggression in hermit crab (Pagurus samuelis) pairs as it relates to competition for a limiting resource, gastropod shells. Pairs of hermit crabs were observed in the laboratory in four different treatments that varied the presence or absence of shells for one or both of the crabs. Measurements of the latency to respond, the number of bouts, and the fight durations were recorded. There was a significant difference among treatments for all three measurements, and naked hermit crabs were much more aggressive than housed hermit crabs. There was no significant difference in aggression between males and females in any of the three treatments. The heightened aggression observed in naked P. samuelis is likely in service of acquiring a protective shell.  相似文献   

19.
Hermit crabs have two antipredator tactics: taking refuge in its shell and fleeing. We examined the following two hypotheses using the hermit crab Pagurus filholi : (1) hermit crabs change their preference for shell types that they take refuge in and/or change the timing of fleeing (i.e. the duration of refuge in the shell) when they perceive a predator threat; (2) the type of shell that a hermit crab occupies affects the fleeing tactic of the individual. Under the stimulus of a crushed conspecific, hermit crabs changed neither their preference for shell species nor their refuge duration. On the other hand, under the stimulus of the predatory crab Gaetice depressus , hermit crabs increased their preference for Batillaria cumingi shells, which provide superior protection against predators, and shortened their refuge duration in the shells even when they occupied those effective against predation. Refuge duration was longer in B. cumingi shells than in the more vulnerable shells of Homalopoma sangarense . These results suggest that both antipredator defences (changing shell and timing of fleeing) are induced by the stimulus of a predator, and the timing of fleeing is affected by the shell type occupied.  相似文献   

20.
The survival and reproductive success of hermit crabs is intrinsically linked to the quality of their domicile shells. Because damaged or eroded shells can result in greater predation, evaluating shell structure may aid our understanding of population dynamics. We assessed the structural attributes of Cerithium atratum shells through assessments of (a) density using a novel approach involving computed tomography and (b) tolerance to compressive force. Our goal was to investigate factors that may influence decision making in hermit crabs, specifically those that balance the degree of protection afforded by a shell (i.e. density and strength) with the energetic costs of carrying such resources. We compared the density and relative strength (i.e. using compression tests) of shells inhabited by live gastropods, hermit crabs (Pagurus criniticornis) and those found empty in the environment. Results failed to show any relationship between density and shell size, but there was a notable effect of shell density among treatment groups (gastropod/empty/hermit crab). There was also a predictable effect of shell size on maximum compressive force, which was consistent among occupants. Our results suggest that hermit crabs integrate multiple sources of information, selecting homes that while less dense (i.e. reducing the energy costs of carrying these resources), still offer sufficient resistance to compressive forces (e.g. such as those inflicted by shell-breaking predators). Lastly, we show that shell size generally reflects shell strength, thus explaining the motivation of hermit crabs to search for and indeed fight over the larger homes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号