首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant biotechnology is a dynamically developing science, which comprises many fields of knowledge. Novel plant genetic engineering findings highly influence the improvement of industrial production. These findings mostly concern cis-regulatory elements, which are sequences controlling gene expression at all developmental stages. They comprise of promoters, enhancers, insulators and silencers, which are used to construct synthetic expression cassettes. Examples of most important cis-regulatory elements are reviewed in the present paper. Variability among core promoters content and distal promoter regions impedes evaluation of interactions between them during the artificial promoters construction. Synthetic promoters and artificial expression cassettes trigger a significant increase in gene expression level, better properties and quality of a product. Accumulating knowledge about gene promoters, cis sequences and their cooperating factors allows uniform expression systems and highly predictable results.  相似文献   

2.
3.
4.
Escherichia coli has been used for recombinant protein production for many years. However, no native E. coli promoters have been found for constitutive expression in LB medium. To obtain high-expression E. coli promoters active in LB medium, we inserted various promoter regions upstream of eEmRFP that encodes a red fluorescent protein. Among the selected promoters, only colonies of srlA promoter transformants turned red on LB plate. srlA is a gene that regulates sorbitol utilization. The addition of sorbitol enhanced eEmRFP expression but glucose and other sugars repressed, indicating that srlAp is a sorbitol-enhanced glucose-repressed promoter. To analyze the srlAp sequence, a novel site-directed mutagenesis method was developed. Since we demonstrated that homologous recombination in E. coli could occur between 12-bp sequences, 12-bp overlapping sequences were attached to the set of primers that were designed to produce a full-length plasmid, denoted “one-round PCR product.” Using this method, we identified that the srlA promoter region was 100 bp. Further, the sequence adjacent to the start codon was found to be essential for high expression, suggesting that the traditionally used restriction enzyme sites for cloning in the promoter region have hindered expression. The srlA-driven expression system and DNA manipulation with one-round PCR products are useful tools in E. coli genetic engineering.  相似文献   

5.
A third generation promoter probe shuttle vector pKG was constructed, using the green fluorescent protein as a reporter, for in situ evaluation of Deinococcal promoter activity in Escherichia coli or Deinococcus radiodurans. The construct yielded zero background fluorescence in both the organisms, in the absence of promoter sequences. Fifteen Deinococcal promoters, either harbouring Radiation and Desiccation Response Motif (RDRM) or not, were cloned in vector pKG. Only the RDRM-promoter constructs displayed (i) gamma radiation inducible GFP expression in D. radiodurans, following gamma irradiation, (ii) DdrO-mediated repression of GFP expression in heterologous E. coli, or (iii) abolition in GFP induction following gamma irradiation, in pprI mutant of D. radiodurans. Utility of pKG vector for real-time in situ assessment of Deinococcal promoter function was, thus, successfully demonstrated.  相似文献   

6.
In vitro recombination methods have enabled one-step construction of large DNA sequences from multiple parts. Although synthetic biological circuits can in principle be assembled in the same fashion, they typically contain repeated sequence elements such as standard promoters and terminators that interfere with homologous recombination. Here we use a computational approach to design synthetic, biologically inactive unique nucleotide sequences (UNSes) that facilitate accurate ordered assembly. Importantly, our designed UNSes make it possible to assemble parts with repeated terminator and insulator sequences, and thereby create insulated functional genetic circuits in bacteria and mammalian cells. Using UNS-guided assembly to construct repeating promoter-gene-terminator parts, we systematically varied gene expression to optimize production of a deoxychromoviridans biosynthetic pathway in Escherichia coli. We then used this system to construct complex eukaryotic AND-logic gates for genomic integration into embryonic stem cells. Construction was performed by using a standardized series of UNS-bearing BioBrick-compatible vectors, which enable modular assembly and facilitate reuse of individual parts. UNS-guided isothermal assembly is broadly applicable to the construction and optimization of genetic circuits and particularly those requiring tight insulation, such as complex biosynthetic pathways, sensors, counters and logic gates.  相似文献   

7.
8.
Gene yddG of Escherichia coli encodes a protein of the inner membrane. Data obtained earlier demonstrated that under conditions of aromatic amino acids overproduction YddG promotes their export from E. coli cells. In this work, a method of primer extension was used to localize the P yddG promoter, which corresponds to E. coli promoters recognized by RNA polymerase in complex with σ70 or σS subunits. By constructing a gene of the hybrid protein YddG’-LacZ at the intrinsic site of gene yddG location in the E. coli chromosome and analyzing the activity of β-galactosidase in cells growing on laboratory media LB and M9, the constitutive type of yddG expression at a low level was demonstrated (the activity was about 3 to 4% of the LacZ level under induction of the lac operon in E. coli wild-type cells). The expression of yddG had a twofold increase under conditions of retarded cell growth upon the stress caused by the high NaCl content (0.6 M) or by the presence of phenylalanine excess quantities (>1 mM) in the culture medium.  相似文献   

9.
Pseudomonas putida is a promising bacterial host for producing natural products, such as polyketides and nonribosomal peptides. In these types of projects, researchers need a genetic toolbox consisting of plasmids, characterized promoters, and techniques for rapidly editing the genome. Past reports described constitutive promoter libraries, a suite of broad host range plasmids that replicate in P. putida, and genome-editing methods. To augment those tools, we have characterized a set of inducible promoters and discovered that IPTG-inducible promoter systems have poor dynamic range due to overexpression of the LacI repressor. By replacing the promoter driving lacI expression with weaker promoters, we increased the fold induction of an IPTG-inducible promoter in P. putida KT2440 to 80-fold. Upon discovering that gene expression from a plasmid was unpredictable when using a high-copy mutant of the BBR1 origin, we determined the copy numbers of several broad host range origins and found that plasmid copy numbers are significantly higher in P. putida KT2440 than in the synthetic biology workhorse, Escherichia coli. Lastly, we developed a λRed/Cas9 recombineering method in P. putida KT2440 using the genetic tools that we characterized. This method enabled the creation of scarless mutations without the need for performing classic two-step integration and marker removal protocols that depend on selection and counterselection genes. With the method, we generated four scarless deletions, three of which we were unable to create using a previously established genome-editing technique.  相似文献   

10.
With the increasingly serious global environment problem caused by slather use of fossil fuels, numerous efforts have been made in developing renewable alternatives. Converting lignocellulose to bioenergy has accomplished by cellulases but the production is limited, therefore the recombinant expression platforms in E. coli have been established. Since E. coli is partly restricted by its inability to secrete enzymes to extracellular membrane, we constructed a synthetic circuit to coexpress cellulases and colicin E7 lysis to solve this problem. The pBAD-RBS-lysis-TT (BBa_K117010) sequence from iGEM was added to form a chimeric plasmid based on pET system, which harboring cellulases from Bacillus subtilis or Thermobifida fusca. The presence of arabinose for the promoter pBAD, leading to induce lysis and further breakdown of the host membrane to release cellulase to extracellular membrane. The extracellular activities increase to 48.1 and 55.5% under lysis gene functioned on Cel5 and CD1, respectively. This is the first attempt to show that cellulases have successfully expressed and released to extracellular membrane without cumbersome steps. Finally, this synthetic circuit simplifies and achieves the simultaneous release and heterologous expression of the cellulases as well as obtain a long-term stable enzyme in E. coli system.  相似文献   

11.
Most of the commercialized Bt crops express cry genes under 35S promoter that induces strong gene expression in all plant parts. However, targeted foreign gene expression in plants is esteemed more important as public may be likely to accept ‘less intrusive’ expression of transgene. We developed plant expression constructs harboring cry1Ac gene under control of wound-inducible promoter (AoPR1) to confine Bt gene expression in insect wounding parts of the plants in comparison with cry1Ac gene under the control of 35S promoter. The constructs were used to transform four Turkish cotton cultivars (GSN-12, STN-468, Ozbek-100 and Ayhan-107) through Agrobacterium tumefaciens strains GV2260 containing binary vectors p35SAcBAR.101 and AoPR1AcBAR.101 harboring cry1Ac gene under control of 35S and AoPR1, respectively. Phosphinothricin (PPT) was used at concentration of 5 mg L?1 for selection of primary transformants. The primary transformants were analyzed for transgene presence and expression standard molecular techniques. The transformants exhibited appreciable mortality rates against larvae of Spodoptera exigua and S. littoralis. It was found that mechanical wounding of T 1 transgenic plants was effective in inducing expression of cry1Ac protein as accumulated levels of cry1Ac protein increased during post-wounding period. We conclude that use of wound-inducible promoter to drive insecticidal gene(s) can be regarded as a valuable insect-resistant management strategy since the promoter activity is limited to insect biting sites of plant. There is no Bt toxin accumulation in unwounded plant organs, seed and crop residues, cotton products and by-products, thus minimizing food and environmental concerns.  相似文献   

12.
13.
The platform chemical 2,3-butanediol (2,3-BDO) is produced by a number of microorganisms via a three-enzyme pathway starting from pyruvate. Here, we report production of 2,3-BDO via a shortened, two-enzyme pathway in Escherichia coli. A synthetic operon consisting of the acetolactate synthase (ALS) and acetoin reductase (AR) genes from Enterobacter under control of the T7 promoter was cloned in an episomal plasmid. E. coli transformed with this plasmid produced 2,3-BDO and the pathway intermediate acetoin, demonstrating that the shortened pathway was functional. To assemble a synthetic operon for inducer- and plasmid-free production of 2,3-BDO, ALS and AR genes were integrated in the E. coli genome under control of the constitutive ackA promoter. Shake flask-level cultivation led to accumulation of ~1 g/L acetoin and ~0.66 g/L 2,3-BDO in the medium. The novel biosynthetic route for 2,3-BDO biosynthesis described herein provides a simple and cost-effective approach for production of this important chemical.  相似文献   

14.
A special Escherichia coli strain capable of producing a leaderless lacZ mRNA from the chromosomal lac promoter was constructed to study the mechanism of the leaderless mRNA translation. The translation efficiency of this noncanonical mRNA is very low in comparison with the canonical cellular templates, but it increases by one order of magnitude in the presence of chromosomal mutations in the genes encoding ribosomal S1 and S2 proteins. The new strain possesses obvious advantages over the commonly used plasmid constructs (first of all, due to the constant dosage of lacZ gene in the cell) and opens the possibilities of investigation of the specific conditions for the leaderless mRNA translation in vivo using the molecular genetic approaches.  相似文献   

15.
16.
17.
Our current ability to engineer biological circuits is hindered by design cycles that are costly in terms of time and money, with constructs failing to operate as desired, or evolving away from the desired function once deployed. Synthetic biologists seek to understand biological design principles and use them to create technologies that increase the efficiency of the genetic engineering design cycle. Central to the approach is the creation of biological parts--encapsulated functions that can be composited together to create new pathways with predictable behaviors. We define five desirable characteristics of biological parts--independence, reliability, tunability, orthogonality and composability, and review studies of small natural and synthetic biological circuits that provide insights into each of these characteristics. We propose that the creation of appropriate sets of families of parts with these properties is a prerequisite for efficient, predictable engineering of new function in cells and will enable a large increase in the sophistication of genetic engineering applications.  相似文献   

18.
We have constructed a synthetic ecosystem consisting of two Escherichia coli populations, which communicate bi‐directionally through quorum sensing and regulate each other's gene expression and survival via engineered gene circuits. Our synthetic ecosystem resembles canonical predator–prey systems in terms of logic and dynamics. The predator cells kill the prey by inducing expression of a killer protein in the prey, while the prey rescue the predators by eliciting expression of an antidote protein in the predator. Extinction, coexistence and oscillatory dynamics of the predator and prey populations are possible depending on the operating conditions as experimentally validated by long‐term culturing of the system in microchemostats. A simple mathematical model is developed to capture these system dynamics. Coherent interplay between experiments and mathematical analysis enables exploration of the dynamics of interacting populations in a predictable manner.  相似文献   

19.
The precise control of multiple heterologous enzyme expression levels in one Escherichia coli strain is important for cascade biocatalysis, metabolic engineering, synthetic biology, natural product synthesis, and studies of complexed proteins. We systematically investigated the co-expression of up to four thermophilic enzymes (i.e., α-glucan phosphorylase (αGP), phosphoglucomutase (PGM), glucose 6-phosphate dehydrogenase (G6PDH), and 6-phosphogluconate dehydrogenase (6PGDH)) in E. coli BL21(DE3) by adding T7 promoter or T7 terminator of each gene for multiple genes in tandem, changing gene alignment, and comparing one or two plasmid systems. It was found that the addition of T7 terminator after each gene was useful to decrease the influence of the upstream gene. The co-expression of the four enzymes in E. coli BL21(DE3) was demonstrated to generate two NADPH molecules from one glucose unit of maltodextrin, where NADPH was oxidized to convert xylose to xylitol. The best four-gene co-expression system was based on two plasmids (pET and pACYC) which harbored two genes. As a result, apparent enzymatic activities of the four enzymes were regulated to be at similar levels and the overall four-enzyme activity was the highest based on the formation of xylitol. This study provides useful information for the precise control of multi-enzyme-coordinated expression in E. coli BL21(DE3).  相似文献   

20.
Synthetic biology has developed numerous parts for building synthetic gene circuits. However, few parts have been described for prokaryotes to integrate two signals at a promoter in an AND fashion, i.e. the promoter is only activated in the presence of both signals. Here we present a new part for this function: a split intein T7 RNA polymerase. We divide T7 RNA polymerase into two expression domains and fuse each to a split intein. Only when both domains are expressed does the split intein mediate protein trans-splicing, yielding a full-length T7 RNA polymerase that can transcribe genes via a T7 promoter. We demonstrate an AND gate with the new part: the signal-to-background ratio is very high, resulting in an almost digital signal. This has utility for more complex circuits and so we construct a band-pass filter in Escherichia coli. The split intein approach should be widely applicable for engineering artificial gene circuit parts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号