共查询到20条相似文献,搜索用时 8 毫秒
1.
Akira Wagatsuma Yuzo Takayama Takayuki Hoshino Masataka Shiozuka Shigeru Yamada Ryoichi Matsuda Kunihiko Mabuchi 《Molecular and cellular biochemistry》2018,437(1-2):45-53
Endothelial inflammation and monocyte plays an essential role in the initiation and progression of atherosclerosis. Ghrelin is beneficial for atherosclerosis progression. However, the detailed and precise molecular mechanisms of how ghrelin regulates endothelial inflammation are not clear. In this study, we investigated the regulation mechanism of ghrelin on TNF-α-activated endothelial inflammation and monocyte adhesion. It was found that TNF-α-induced monocyte adhesion on HUVEC was significantly attenuated by ghrelin. Furthermore, we found that ghrelin effectively suppressed TNF-α-induced inflammatory factors’ (including ICAM-1, VCAM-1, MCP-1, and IL-1β) expression through inhibiting AMPK phosphorylation and p65 expression both in HUVEC and THP-1. This phenomenon was further demonstrated by using AMPK agonist AICAR and inhibitor compound C, respectively. Our findings suggest that ghrelin may mediate TNF-α-induced endothelial inflammation and monocyte adhesion, in part via AMPK/NF-κB signaling pathway. These novel anti-inflammatory and immunoregulatory actions of ghrelin may play a certain role in understanding the formation and development of atherosclerosis. 相似文献
2.
Retinoic acid induces myogenin synthesis and myogenic differentiation in the rat rhabdomyosarcoma cell line BA-Han-1C 总被引:2,自引:0,他引:2 下载免费PDF全文
The F3 molecule is a member of the immunoglobulin superfamily anchored to membranes by a glycane-phosphatidylinositol, and is predominantly expressed on subsets of axons of the central and peripheral nervous system. In a previous paper (Gennarini, G., P. Durbec, A. Boned, G. Rougon, and C. Goridis. 1991. Neuron. 6:595-606), we have established that F3 fulfills the operational definition of a cell adhesion molecule and that it stimulates neurite outgrowth when presented to sensory neurons as a surface component of transfected CHO cells. In the present study the question as to whether soluble forms of F3 would be functionally active was addressed in vitro on cultures of mouse dorsal root ganglion neurons. We observed that preparations enriched in soluble F3 had no effect on neuron attachment but enhanced neurite initiation and neurite outgrowth in a dose-dependent manner. By contrast, soluble NCAM-120 does not have any measurable effect on these phenomena. Addition of anti-F3 monovalent antibodies reduced the number of process-bearing neurons and the neuritic output per neuron to control values. Addition of cerebrospinal fluid, a natural source of soluble F3, also stimulated neurite extension, and this effect was partially blocked by anti-F3 antibodies. Our results suggest that the soluble forms of adhesive proteins with neurite outgrowth-promoting properties could act at a distance from their site of release in a way reminiscent of growth and trophic factors. 相似文献
3.
4.
Raimondi L Ciarapica R De Salvo M Verginelli F Gueguen M Martini C De Sio L Cortese G Locatelli M Dang TP Carlesso N Miele L Stifani S Limon I Locatelli F Rota R 《Cell death and differentiation》2012,19(5):871-881
Rhabdomyosarcoma (RMS) is a paediatric soft-tissue sarcoma arising from skeletal muscle precursors coexpressing markers of proliferation and differentiation. Inducers of myogenic differentiation suppress RMS tumourigenic phenotype. The Notch target gene HES1 is upregulated in RMS and prevents tumour cell differentiation in a Notch-dependent manner. However, Notch receptors regulating this phenomenon are unknown. In agreement with data in RMS primary tumours, we show here that the Notch3 receptor is overexpressed in RMS cell lines versus normal myoblasts. Notch3-targeted downregulation in RMS cells induces hyper-phosphorylation of p38 and Akt essential for myogenesis, resulting in the differentiation of tumour cells into multinucleated myotubes expressing Myosin Heavy Chain. These phenomena are associated to a marked decrease in HES1 expression, an increase in p21(Cip1) level and the accumulation of RMS cells in the G1 phase. HES1-forced overexpression in RMS cells reverses, at least in part, the pro-differentiative effects of Notch3 downregulation. Notch3 depletion also reduces the tumourigenic potential of RMS cells both in vitro and in vivo. These results indicate that downregulation of Notch3 is sufficient to force RMS cells into completing a correct full myogenic program providing evidence that it contributes, partially through HES1 sustained expression, to their malignant phenotype. Moreover, they suggest Notch3 as a novel potential target in human RMS. 相似文献
5.
G T Snoek C L Mummery C E van den Brink P T van der Saag S W de Laat 《Developmental biology》1986,115(2):282-292
We have characterized effects of phorbol, 12-myristate 13 acetate (PMA) on growth and differentiation in a nullipotent embryonal carcinoma (EC) cell line, F9, in a pluripotent EC line, P19, and in the differentiated derivatives of these cells, In P19EC and F9EC PMA addition resulted in inhibition of growth, while in the differentiated derivates PMA was mitogenic. PMA did not induce differentiation in EC cells but potentiated the retinoic acid (RA) induced differentiation in P19EC, although, not in F9EC. Rapid morphological changes by PMA were seen in P19EC and two differentiated derivatives which represent different stages of differentiation. In F9 no rapid morphological changes were induced by PMA. Using [3H]phorbol dibutyrate as a ligand we showed that during differentiation into endoderm-like cells the number of phorbol ester receptors increases, while in epithelial-like derivatives no increase is found. In differentiated cells with an increased number of phorbol ester receptors, the cytoplasmic Ca2+- and phospholipid-dependent protein kinase (the putative receptor for phorbol esters) activity was also increased. Only in those derivatives where the number of phorbol ester receptors is increased, is the binding of epidermal growth factor (EGF) inhibited by PMA. These results suggest a relationship between levels of expression of phorbol ester receptors, cytoplasmic protein kinase C and biological effects, namely rapid morphological changes, altered growth, potentiation of RA induced differentiation, and inhibition of EGF binding. 相似文献
6.
Bortoli S Renault V Mariage-Samson R Eveno E Auffray C Butler-Browne G Piétu G 《Gene》2005,347(1):65-72
In this study, we have used high density cDNA arrays to assess age-related changes in gene expression in the myogenic program of human satellite cells and to elucidate modifications in differentiation capacity that could occur throughout in vitro cellular aging. We have screened a collection of 2016 clones from a human skeletal muscle 3'-end cDNA library in order to investigate variations in the myogenic program of myotubes formed by the differentiation of myoblasts of individuals with different ages (5 days old, 52 years old and 79 years old) and induced to differentiate at different stages of their lifespan (early proliferation, presenescence and senescence). Although our analysis has not been able to underline specific changes in the expression of genes encoding proteins involved in muscle structure and/or function, we have demonstrated an age-related induction of genes involved in stress response and a down-regulation of genes involved both in mitochondrial electron transport/ATP synthase and in glycolysis/TCA cycle. From this global approach of post-mitotic cell aging, we have identified 2 potential new markers of presenescence for human myotubes, both strongly linked to carbohydrate metabolism, which could be useful in developing therapeutic strategies. 相似文献
7.
Different molecules are available to recruit new neighboring myogenic cells to the site of regeneration. Formerly called B cell stimulatory factor-1, IL-4 can now be included in the list of motogenic factors. The present report demonstrates that human IL-4 is not required for fusion between mononucleated myoblasts but is required for myotube maturation. In identifying IL-4 as a pro-migratory agent for myogenic cells, these results provide a mechanism which partly explains IL-4 demonstrated activity during differentiation. Among the different mechanisms by which IL-4 might enhance myoblast migration processes, our results indicate that there are implications of some integrins and of three major components of the fibrinolytic system. Indeed, increases in the amount of active urokinase plasminogen activator and its receptor were observed following an IL-4 treatment, while the plasminogen activator inhibitor-1 decreased. Finally, IL-4 did not modify the amount of cell surface alpha5 integrin but increased the presence of beta3 and beta1 integrins. This integrin modulation might favor myogenic cell migration and its interaction with newly formed myotubes. Therefore, IL-4 co-injection with transplanted myoblasts might be an approach to enhance the migration of transplanted cells for the treatment of a damaged myocardium or of a Duchenne Muscular Dystrophy patient. 相似文献
8.
Developing chick skeletal muscle undergoes an isozymic shift from type K pyruvate kinase to type M during development. A major increase in pyruvate kinase activity follows the isozymic shift, resulting in at least 40-fold higher specific activities by adulthood. Similar isozymic changes occur in primary cultures of myogenic cells from 12-day-old chick embryos. Cultures initially contain only type K pyruvate kinase. Type M appears by the fourth day of culture and accounts for 80–90% of the activity by the eleventh day. Type M did not accumulate when cell fusion was prevented by removing Ca2+ from the growth medium or when protein synthesis was inhibited by cycloheximide. 相似文献
9.
Luo Q Hu S Yan M Sun Z Chen W Chen F 《The international journal of biochemistry & cell biology》2012,44(8):1266-1275
Toll-like receptors are well known as molecular sensors of pathogen-associated molecular patterns. They control activation of the innate immune response and subsequently shape the adaptive immune response. Recent publications have demonstrated that Toll-like receptors also play important roles in multiple human cancers, yet their function in oral squamous cell carcinoma remains unclear. In this study, we showed that both oral squamous cell carcinoma cell lines and tissues from oral squamous carcinoma patients express relatively high levels of Toll-like receptor 3. We also found that synthetic dsRNA-polyinosinic-polycytidilic acid, a Toll-like receptor 3 ligand, induced apoptosis of oral squamous carcinoma cells mainly via Toll-like receptor 3, through interferon-β production and activation of caspases 3 and 9. Moreover, in an oral squamous cell carcinoma xenograft mouse model, we demonstrated for the first time that activation of Toll-like receptor 3 inhibited oral squamous cell carcinoma tumor growth in vivo. Therefore, the direct proapoptotic activity of Toll-like receptor 3 in human oral squamous carcinoma cells may make this protein a viable therapeutic target in the treatment of oral squamous cell carcinoma. 相似文献
10.
Wu H Wang X Liu S Wu Y Zhao T Chen X Zhu L Wu Y Ding X Peng X Yuan J Wang X Fan W Fan M 《European journal of cell biology》2007,86(6):331-344
Sema4C is a member of transmembrane semaphorin proteins which regulate axonal guidance in the developing nervous system. The expression of Sema4C was dramatically induced not only during differentiation of C2C12 mouse myoblasts, but also during injury-induced skeletal muscle regeneration. C2C12 cells stably or transiently expressing Sema4C both showed increased myogenic differentiation reflected by accelerated myotube formation and expression of muscle-specific proteins. Overexpression of Sema4C elicited p38 phosphorylation directly, and the effects of Sema4C during myogenic differentiation could be abolished by the p38alpha-specific inhibitor SB203580. Knockdown of Sema4C by siRNA transfection during C2C12 myoblasts differentiation could suppress the phosphorylation of p38 followed by dramatically diminished myotube formation. Sema4C could activate the myogenin promoter during myogenic differentiation. This activation could be abolished by p38 inhibitor SB203580. Taken together, these observations reveal novel functional potentialities of Sema4C which suggest that Sema4C promotes terminal myogenic differentiation in a p38 MAPK-dependent manner. 相似文献
11.
12.
Danielle E. Arnold Celine Gagne Nima Niknejad Michael W. McBurney Jim Dimitroulakos 《Molecular and cellular biochemistry》2010,335(1-2):1-11
Vasodilator-stimulated phosphoprotein (VASP), an important substrate of PKA, plays a critical role in remodeling of actin cytoskeleton and actin-based cell motility. However, how PKA accurately transfers extracellular signals to VASP and then how phosphorylation of VASP regulates endothelial cell migration have not been clearly defined. Protein kinase A anchoring proteins (AKAPs) are considered to regulate intracellular-specific signal targeting of PKA via AKAP-mediated PKA anchoring. Thus, our study investigated the relationship among AKAP anchoring of PKA, PKA activity, and VASP phosphorylation, which is to clarify the exact role of VASP and its upstream regulatory mechanism in PKA-dependent migration. Our results show that chemotactic factor PDGF activated PKA, increased phosphorylation of VASP at Ser157, and enhanced ECV304 endothelial cell migration. However, phosphorylation site-directed mutation of VASP at Ser157 attenuated the chemotactic effect of PDGF on endothelial cells, suggesting phosphorylation of VASP at Ser157 promotes PKA-mediated endothelial cell migration. Furthermore, disrupting PKA anchoring to AKAP or PKA activity significantly attenuated the PKA activity, VASP phosphorylation, and subsequent cell migration. Meanwhile, disrupting PKA anchoring to AKAP abolished PDGF-induced lamellipodia formation and special VASP accumulation at leading edge of lamellipodia. These results indicate that PKA activation and PKA-mediated substrate responses in VASP phosphorylation and localization depend on PKA anchoring via AKAP in PDGF-induced endothelial cell migration. In conclusion, AKAP anchoring of PKA is an essential upstream event in regulation of PKA-mediated VASP phosphorylation and subsequent endothelial cell migration, which contributes to explore new methods for controlling endothelial cell migration related diseases and angiogenesis. 相似文献
13.
12‐O‐tetradecanoylphorbol‐13‐acetate and EZH2 inhibition: A novel approach for promoting myogenic differentiation in embryonal rhabdomyosarcoma cells 下载免费PDF全文
Irene Marchesi Luca Sanna Milena Fais Francesco P. Fiorentino Antonio Giordano Luigi Bagella 《Journal of cellular physiology》2018,233(3):2360-2365
14.
Jiheng Zhan Xing Li Dan Luo Yu Hou Yonghui Hou Shudong Chen Zhifeng Xiao Jiyao Luan Dingkun Lin 《Journal of cellular and molecular medicine》2020,24(9):5317-5329
Bone marrow mesenchymal stem cell (BMSC) transplantation represents a promising repair strategy following spinal cord injury (SCI), although the therapeutic effects are minimal due to their limited neural differentiation potential. Polydatin (PD), a key component of the Chinese herb Polygonum cuspidatum, exerts significant neuroprotective effects in various central nervous system disorders and protects BMSCs against oxidative injury. However, the effect of PD on the neuronal differentiation of BMSCs, and the underlying mechanisms remain inadequately understood. In this study, we induced neuronal differentiation of BMSCs in the presence of PD, and analysed the Nrf2 signalling and neuronal differentiation markers using routine molecular assays. We also established an in vivo model of SCI and assessed the locomotor function of the mice through hindlimb movements and electrophysiological measurements. Finally, tissue regeneration was evaluated by H&E staining, Nissl staining and transmission electron microscopy. PD (30 μmol/L) markedly facilitated BMSC differentiation into neuron‐like cells by activating the Nrf2 pathway and increased the expression of neuronal markers in the transplanted BMSCs at the injured spinal cord sites. Furthermore, compared with either monotherapy, the combination of PD and BMSC transplantation promoted axonal rehabilitation, attenuated glial scar formation and promoted axonal generation across the glial scar, thereby enhancing recovery of hindlimb locomotor function. Taken together, PD augments the neuronal differentiation of BMSCs via Nrf2 activation and improves functional recovery, indicating a promising new therapeutic approach against SCI. 相似文献
15.
Protein syntheses during in vitro differentiation of inner cell masses (ICM) isolated from mouse blastocysts and of pluripotent embryonal carcinoma cells (ECC) were compared by two-dimensional electrophoretic analysis of [35S]methionine-labeled cells. While most of the polypeptides found in ICM, ECC, and embryoid bodies (EB) derived from them were common to all four preparations, some distinct differences were noted. More polypeptides changed in intensity during the differentiation of ICM than during the differentiation of ECC. Analysis of ECC prior to differentiation revealed that only some of the polypeptides abundant in ICM were present, while at the same time, some of the polypeptides abundant in ICM-EB were being synthesized. These data indicate that ECC represent cells further advanced in development than the cells of ICM isolated from 4-day-old blastocysts. The EB derived from ECC also differ from those from ICM. Comparison of EB derived from ICM and ECC with cells of the parietal yolk sac line, PYS, indicates that all three synthesize two polypeptides abundant in EB. These two polypeptides can, therefore, be used as biochemical markers of parietal entoderm differentiation. Pluripotent ECC synthesize small amounts of characteristic EB proteins and the 10-nm filament protein (also found in PYS cells but not in EB). This indicates that small numbers of differentiated or differentiating cells are present in pluripotent ECC cultures. 相似文献
16.
G Baldassarre A Boccia P Bruni C Sandomenico M V Barone S Pepe T Angrisano B Belletti M L Motti A Fusco G Viglietto 《Cell growth & differentiation》2000,11(10):517-526
Retinoic acid (RA) treatment of embryonal carcinoma cell line NTERA-2 clone D1 (NT2/D1) induces growth arrest and terminal differentiation along the neuronal pathway. In the present study, we provide a functional link between RA and p27 function in the control of neuronal differentiation in NT2/D1 cells. We report that RA enhances p27 expression, which results in increased association with cyclin E/cyclin-dependent kinase 2 complexes and suppression of their activity; however, antisense clones, which have greatly reduced RA-dependent p27 inducibility (NT2-p27AS), continue to synthesize DNA and are unable to differentiate properly in response to RA as determined by lack of neurite outgrowth and by the failure to modify surface antigens. As to the mechanism involved in RA-dependent p27 upregulation, our data support the concept that RA reduces p27 protein degradation through the ubiquitin/proteasome-dependent pathway. Taken together, these findings demonstrate that in embryonal carcinoma cells, p27 expression is required for growth arrest and proper neuronal differentiation. 相似文献
17.
18.
We and others previously showed that p38 mitogen-activated protein kinase is indispensable for myogenic differentiation. However, it is less clear which of the four p38 isoforms in the mouse genome participates in this process. Using C2C12 myogenic cells as a model, we showed here that p38alpha, beta, and gamma are expressed with distinct expression patterns during differentiation. Knockdown of any of them by small interfering RNA inhibits myogenic differentiation, which suggests that the functions of the three p38 isoforms are not completely redundant. To further elucidate the unique role of each p38 isoform in myogenic differentiation, we individually knocked down one p38 isoform at a time in C2C12 cells, and we compared the whole-genome gene expression profiles by microarrays. We found that some genes are coregulated by all three p38 isoforms, whereas others are uniquely regulated by one particular p38 isoform. Furthermore, several novel p38 target genes (i.e., E2F2, cyclin D3, and WISP1) are found to be required for myogenin expression, which provides a molecular basis to explain why different p38 isoforms are required for myogenic differentiation. 相似文献
19.
Wagatsuma A Shiozuka M Kotake N Takayuki K Yusuke H Mabuchi K Matsuda R Yamada S 《Molecular and cellular biochemistry》2011,358(1-2):265-280
Heat-shock protein90 (HSP90) plays an essential role in maintaining stability and activity of its clients. HSP90 is involved in cell differentiation and survival in a variety of cell types. To elucidate the possible role of HSP90 in myogenic differentiation and cell survival, we examined the time course of changes in the expression of myogenic regulatory factors, intracellular signaling molecules, and anti-/pro-apoptotic factors when C2C12 cells were cultured in differentiation condition in the presence of a HSP90-specific inhibitor, geldanamycin. Furthermore, we examined the effects of geldanamycin on muscle regeneration in vivo. Our results showed that geldanamycin inhibited myogenic differentiation with decreased expression of MyoD, myogenin and reduced phosphorylation levels of Akt1. Geldanamycin had little effect on the phosphorylation levels of p38MAPK and ERK1/2 but reduced the phosphorylation levels of JNK. Along with myogenic differentiation, geldanamycin increased apoptotic nuclei with decreased expression of Bcl-2. The skeletal muscles forced to regenerate in the presence of geldanamycin were of poor repair with small regenerating myofibers and increased connective tissues. Together, our findings suggest that HSP90 may modulate myogenic differentiation and may be involved in cell survival. 相似文献
20.
Leloup L Daury L Mazères G Cottin P Brustis JJ 《The international journal of biochemistry & cell biology》2007,39(6):1177-1189
Recent research carried out in our laboratory has shown that IGF-1, TGF-beta1, and insulin were able to strongly stimulate myoblast migration by increasing milli-calpain expression and activity. However, the signalling pathways involved in these phenomena remain unknown. The aim of this study was to identify the signalling pathway(s) responsible for the effects of IGF-1, TGF-beta1, and insulin on myoblast migration and on milli-calpain expression and activity. For this purpose, wound healing assays were carried out in the presence of growth factors with or without specific inhibitors of ERK/MAP kinase and PI3K/Akt pathways. The results clearly showed that the inhibition of the ERK/MAP kinase pathway prevents the effects of growth factors on myoblast migration. Secondly, the expression and the activity of milli-calpain were studied in cells treated with growth factor, alone or with ERK/MAP kinase inhibitor. The results demonstrated that the up-regulation of milli-calpain expression and activity was mediated by the ERK/MAP kinase pathway. Finally, the possible implication of MyoD and myogenin, myogenic regulatory factors able to regulate milli-calpain expression, was studied. Taken together our results clearly showed that the ERK/MAP kinase signalling pathway is responsible for the effects of the three growth factors on myoblast migration and on milli-calpain expression and activity. On the opposite, the PI3K/Akt signalling pathway, MyoD and myogenin seem to be not implicated in these phenomena. 相似文献