首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Studying antagonistic coevolution between host plants and herbivores is particularly relevant for polyphagous species that can experience a great diversity of host plants with a large range of defenses. Here, we performed experimental evolution with the polyphagous spider mite Tetranychus urticae to detect how mites can exploit host plants. We thus compared on a same host the performance of replicated populations from an ancestral one reared for hundreds of generations on cucumber plants that were shifted to either tomato or cucumber plants. We controlled for maternal effects by rearing females from all replicated populations on either tomato or cucumber leaves, crossing this factor with the host plant in a factorial design. About 24 generations after the host shift and for all individual mites, we measured the following fitness components on tomato leaf fragments: survival at all stages, acceptance of the host plant by juvenile and adult mites, longevity, and female fecundity. The host plant on which mite populations had evolved did not affect the performance of the mites, but only affected their sex ratio. Females that lived on tomato plants for circa 24 generations produced a higher proportion of daughters than did females that lived on cucumber plants. In contrast, maternal effects influenced juvenile survival, acceptance of the host plant by adult mites and female fecundity. Independently of the host plant species on which their population had evolved, females reared on the tomato maternal environment produced offspring that survived better on tomato as juveniles, but accepted less this host plant as adults and had a lower fecundity than did females reared on the cucumber maternal environment. We also found that temporal blocks affected mite dispersal and both female longevity and fecundity. Taken together, our results show that the host plant species can affect critical parameters of population dynamics, and most importantly that maternal and environmental conditions can facilitate colonization and exploitation of a novel host in the polyphagous T. urticae, by affecting dispersal behavior (host acceptance) and female fecundity.  相似文献   

2.
The biology of the weevilBangasternus fausti (Reitter), the larvae of which live in the flowerheads ofCentaurea diffusa (De Lamarck) and some relatedCentaurea spp., was studied in the field and in the laboratory in northern Greece and in the laboratory in Rome, Italy. The species is univoltine and overwinters as adults. Under laboratory conditions adults lived up to 90 days and up to 359 eggs were deposited by a single female (n=18). The maximum number of eggs laid by a female per day was 12 and the maximum number of days a female laid eggs was 73. Generally, there is only one larva per seedhead. One-hundred percent seed destruction was recorded in 18.7% of 502 field collected seedheads, each with oneB. fausti egg. The average mortality of the species, from egg to adult, was 94.4% in the field during 1988 (n=200) and 95.8% during 1987 (n=502).   相似文献   

3.
Interspecific competition has been suggested as an explanation for the failure of some insects as biological control agents for weeds. Enclosure and exclusion cages were used, in southern British Columbia, Canada to evaluate the importance of interspecific competition between a seedhead weevil, Larinus minutus, and a gall-inducing fly, Urophora affinis, two biocontrol agents released against spotted knapweed in North America. At the seedhead scale, U. affinis, which is an inferior biological control agent based on knapweed seed mortality, was the superior competitor. Larinus minutus attack rates were significantly lower in the presence of U. affinis compared to release treatments where L. minutus was attacking alone. Reduced L. minutus attack rates were apparent in seed heads expected to contain both species, assuming insect distributions were random, but instead only contained U. affinis. L. minutus did not significantly affect U. affinis density. Although overall attack rates on knapweed seedheads were higher when both species were together at a site, the consequence of the antagonistic interaction is that overall seed destruction was not as high as it could have been if the weevil were attacking on its own. These results support minimizing the number of biocontrol agents released that use similar resources on the target weed, to avoid negative interactions between control agents and potential reductions in biocontrol efficacy resulting from competitive exclusion.  相似文献   

4.
The predatory midge Aphidoletes aphidimyza (Rondani) (Diptera: Cecidomyiidae) is widely used for the control of Aphis spp. in many agricultural systems. We aimed to determine the most suitable host plant for rearing the predatory midges on the prey Aphis gossypii Glover (Hemiptera: Aphididae). Six host plants were selected: cucumber (Cucumis sativus L. cv. Beith Alpha), tomato (Solanum lycopersicum L. cv. Falat111), eggplant (Solanum melongena L. cv. Yummy), pepper (Capsicum annuum L. cv. Bertene) (all Solanaceae), okra [Abelmoschus esculentus (L.) Moensch cv. Clemson Spineless] (Malvaceae), and squash (Cucurbita pepo L. cv. Hybrid rajai) (Cucurbitaceae). Some physical traits (length and density of trichomes) and chemical attributes (nitrogen content) of prey host plants were investigated. The results showed that prey host plants differed significantly in their effect on fitness of the predator. The shortest immature development time (18.07 ± 0.257 days), the longest female adult longevity (7.5 ± 0.18 days), and the highest fecundity (89 eggs/female) of A. aphidimyza were found with squash as prey food. The highest intrinsic rate of increase (0.171 ± 0.009 day?1) and also the shortest mean generation time (22.4 ± 0.32 days) were also obtained when A. aphidimyza fed on A. gossypii reared on squash. Canonical correlation analysis (CCA) approved the correlation between life‐history traits of A. aphidimyza and characteristics of prey host plants. The suitability of squash for rearing A. aphidimyza can be attributed to the higher nitrogen content, longer trichomes, and relatively high density of trichomes, which provided a better environment for A. gossypii and indirectly favored A. aphidimyza. This study showed that squash is the most suitable host plant for rearing A. aphidimyza feeding on A. gossypii.  相似文献   

5.
The effects of water and nutrient addition on a trophic chain were studied in a plant‐endophage‐parasitoid system comprised of insects associated with flower heads of Chromolaena squalida (Asteraceae). Nine species of endophages associated with C. squalida flower heads were found, belonging to two families of Diptera – Tephritidae (Cecidochares sp1, Cecidochares sp2, Xanthaciura biocellata, X. chrysura, X. sp. and Neomyopites sp.) and Agromyzidae (Melanagromyza sp.), and two families of Coleoptera – Apionidae (Apion sp.) and Anthicidae (Anthicidae sp.). A factorial field experiment with water and nutrient addition showed that resource availability can affect the developmental process of flower heads. Fertilization increased flower‐head diameter and nitrogen and alkaloid concentrations. Although nutrient availability affected the size and chemistry of flower heads, endophage species did not respond consistently to the experimental treatments. This is contrary to other studies where endophages showed preference for larger flower heads. Thus, the plant vigour hypothesis was not corroborated for our study system. Our results also showed that coupled responses of plants to resource availability (i.e. tissue nutritional quality and investment in growth of the structure that serves as shelter for endophages) can represent distinct kinds of indirect interactions with opposing effects on the herbivore‐parasitoid interaction.  相似文献   

6.
7.
Complex haploid‐diploid life cycles amongst marine organisms may be maintained by ecological differences in life‐history phases. For red algal species within the Gigartinaceae, such differences may be driven, in part, by different cell wall composition and resultant biomechanical strengths of haploid and diploid phases. A field experiment tested the attachment strengths of gametophytes and tetrasporophytes of the isomorphic red alga, Chondrus verrucosus (with comparisons of fertile and vegetative fronds, with and without natural tissue damage across three wave‐exposed sites). Seventy‐nine percent of all fronds broke at the stipe‐holdfast junction. There were significant differences in attachment strength (break force and break stress), but not gross morphology (frond length, number of branch axes, wet weight and cross‐sectional area of fronds that dislodged at the stipe‐holdfast junction) of life‐history phases, with tetrasporophytes exhibiting weaker tissue strength and attachment, and therefore greater susceptibility to dislodgement by waves. However, fertility and tissue damage did not consistently influence dislodgement in pull‐to‐break tests simulating the effects of single waves. The ecological and evolutionary consequences of greater susceptibility to dislodgement of tetrasporophytes (relative to gametophytes) warrant further investigation.  相似文献   

8.
D. T. Briese 《Oecologia》1996,105(4):464-474
Female Larinus latus lay eggs into the capitula of their Onopordum spp. host plants from the onset of capitulum development until the completion of flowering. This tight linkage between insect life-history and plant development optimised larval survival, apart from some initial asynchrony between the readiness of the females to oviposit and the suitability of the very small capitula to physically support eggs. Eggs were laid on bracts and stems of capitula or directly in the florets, when these became available. Both the location of the egg and time of oviposition influenced mortality factors such as egg and larval parasitism, egg desiccation and larval establishment. Overall, survival of eggs laid later in the season into florets was higher, although the adults that emerged were smaller. The change in choice of oviposition site that occurs at the onset of flowering, not only favours survival, but ensures more efficient resource use by the larvae. This occurs because sequential flowering of Onopordum spp. drives a sequential oviposition pattern and spreads the egg load more evenly over the available capitula, reversing a trend earlier in the season to clump eggs that were laid directly on the bracts. Other potential constraints, such as capitulum size, absolute egg density and previous egg-laying do not play a major role in determining the oviposition pattern of L. latus. Larval survival was positively correlated with capitulum size and not strongly influenced by egg density. Competition for resources only appeared to play a role in smaller capitula, and manifested itself in a reduction in the size of emerging adults rather than the death of immatures. In the absence of strong interspecific competition, the oviposition behavior of L. latus has become geared to maximising resource use for larvae (i.e. its own potential competitiveness) rather than minimising interactions with other members of the capitulum endophage guild.  相似文献   

9.
Life‐history stages such as reproduction and molt are energetically costly. Reproductive costs include those associated not only with offspring production, but also protecting and provisioning young. Costs typically associated with molting include decreased thermoregulatory and locomotive performance, and increased metabolic and nutritional costs. Energetic demands may disrupt homeostasis, particularly in terms of its maintenance (e.g., oxidative stress and immunity). Few investigators have explored the relationship between effort (increased metabolic rate) and oxidative status and stress by comparing life‐history stages with different energetic demands. However, comparative studies are crucial for understanding the processes of energy allocation and their consequences for different physiological functions. Our objective was to determine how two highly demanding life‐history stages, breeding and molting, affected oxidative balance in Chinstrap Penguins (Pygoscelis antarcticus), a species where these two activities do not overlap. We found that the heterophil/lymphocyte (H/L) ratio was significantly higher during breeding than molting; oxidative damage was also higher during breeding. In contrast, we found no significant differences between these stages in total antioxidant capacity. We also found sex differences, with males having greater oxidative damage than females. Our results suggest that breeding is more stressful and more demanding for Chinstrap Penguins than molting, and provide further support for the relationship between effort, in terms of increased metabolic rate, and oxidative balance.  相似文献   

10.
The reproductive ability of female tephritids can be limited and prevented by denying access to host plants and restricting the dietary precursors of vitellogenesis. The mechanisms underlying the delayed egg production in each case are initiated by different physiological processes that are anticipated to have dissimilar effects on lifespan and reproductive ability later in life. The egg‐laying abilities of laboratory‐reared females of the Mediterranean fruit fly (Ceratitis capitata Wiedmann) and melon fly (Bactrocera cucurbitae Coquillett) from Hawaii are delayed or suppressed by limiting access to host fruits and dietary protein. In each case, this is expected to prevent the loss of lifespan associated with reproduction until protein or hosts are introduced. Two trends are observed in each species: first, access to protein at eclosion leads to a greater probability of survival and a higher reproductive ability than if it is delayed and, second, delayed host access reduces lifetime reproductive ability without improving life expectancy. When host access and protein availability are delayed, the rate of reproductive senescence is reduced in the medfly, whereas the rate of reproductive senescence is generally increased in the melon fly. Overall, delaying reproduction lowers the fitness of females by constraining their fecundity for the remainder of the lifespan without extending the lifespan. © 2013 The Royal Entomological Society  相似文献   

11.
12.
The rain‐fed lowland rice weed Rhamphicarpa fistulosa (Rice Vampireweed) is a facultative root parasitic plant. Growth and reproduction of R. fistulosa benefit considerably from parasitism, but how this affects the host plant is not well established. We determined accumulation and partitioning of rice–parasite biomass in two pot experiments. First, rice (cv. IR64) was grown under eight R. fistulosa densities (15–1000 seeds per pot) with two sampling times. Next, 2 parasite densities (6 and 13 plants per pot) were combined with 9 destructive samplings. Infection increased host root: shoot ratios and decreased host plant height, leaf area and tiller number. Reductions in light interception were followed by reductions in light use efficiency, causing 22–71% losses in host plant biomass and 78–100% losses in host kernel production. Parasitism eventually caused a complete standstill of host plant growth, while the parasite managed to gradually increase its share in total host plant–parasite biomass up to 50–82%. This implies that ultimately the host plant was producing solely for the sake of the parasite. Due to its facultative nature, R. fistulosa may incorrectly be perceived as relatively harmless. Upon infection this Rice Vampireweed, however, turns into a genuine slave master, whereby it completely dominates its host.  相似文献   

13.
Investment in host defences against pathogens may lead to trade‐offs with host fecundity. When such trade‐offs arise from genetic correlations, rates of phenotypic change by natural selection may be affected. However, genetic correlations between host survival and fecundity are rarely quantified. To understand trade‐offs between immune responses to baculovirus exposure and fecundity in the gypsy moth (Lymantria dispar), we estimated genetic correlations between survival probability and traits related to fecundity, such as pupal weight. In addition, we tested whether different virus isolates have different effects on male and female pupal weight. To estimate genetic correlations, we exposed individuals of known relatedness to a single baculovirus isolate. To then evaluate the effect of virus isolate on pupal weight, we exposed a single gypsy moth strain to 16 baculovirus isolates. We found a negative genetic correlation between survival and pupal weight. In addition, virus exposure caused late‐pupating females to be identical in weight to males, whereas unexposed females were 2–3 times as large as unexposed males. Finally, we found that female pupal weight is a quadratic function of host mortality across virus isolates, which is likely due to trade‐offs and compensatory growth processes acting at high and low mortality levels, respectively. Overall, our results suggest that fecundity costs may strongly affect the response to selection for disease resistance. In nature, baculoviruses contribute to the regulation of gypsy moth outbreaks, as pathogens often do in forest‐defoliating insects. We therefore argue that trade‐offs between host life‐history traits may help explain outbreak dynamics.  相似文献   

14.
Understanding animal performance in heterogeneous or variable environments is a central question in ecology. We combine modelling and experiments to test how temperature and food availability variance jointly affect life‐history traits of ectotherms. The model predicts that as mean temperatures move away from the ectotherm's thermal optimum, the effect size of joint thermal and food variance should become increasingly sensitive to their covariance. Below the thermal optimum, performance should be positively correlated with food–temperature covariance and the opposite is predicted above it. At lower temperatures, covariance should determine whether food and temperature variance increases or decreases performance compared to constant conditions. Somewhat stronger than predicted, the covariance effect below the thermal optimum was confirmed experimentally on an aquatic ectotherm (Daphnia magna) exposed to diurnal food and temperature variance with different amounts of covariance. Our findings have important implications for understanding ectotherm responses to climate‐driven alterations of thermal mean and variance.  相似文献   

15.
1. Third instars of the invasive blow fly Chrysomya rufifacies are facultative predators on larvae of the native blow fly Cochliomyia macellaria. 2. The effects of priority arrival time on the survivorship and fitness of C. rufifacies and C. macellaria were investigated in laboratory experiments. 3. Cochliomyia macellaria colonising a resource within 1–2 days after C. rufifacies resulted in a 20–70% reduction in survivorship, pupal weight and fecundity compared with those colonising a resource more than 2 days before or after C. rufifacies. Inversely, C. rufifacies exhibited a 50% increase in survivorship and fecundity when closely (~2 days) associated temporally on the resource with C. macellaria and was negatively affected by disparate arrival. 4. These results demonstrate that arrival sequence significantly affects the fitness of both C. rufifacies and C. macellaria. Early colonisation may allow C. macellaria to persist in a community, while there are fitness benefits for C. rufifacies colonising after C. macellaria. 5. The 60% reduction in C. macellaria survivorship when in close temporal association with C. rufifacies may act as an agent of selection for C. macellaria to colonise a resource early and develop quickly to avoid predation on resources colonised by C. rufifacies. 6. Selection for such traits may explain how C. macellaria is able to persist despite intraguild predation by this invasive species. In contrast, the 50% increase in survivorship and fecundity exhibited by C. rufifacies when arriving after C. macellaria may select for C. rufifacies to delay colonisation.  相似文献   

16.
The fecundity‐advantage hypothesis (FAH) explains larger female size relative to male size as a correlated response to fecundity selection. We explored FAH by investigating geographic variation in female reproductive output and its relation to sexual size dimorphism (SSD) in Lacerta agilis, an oviparous lizard occupying a major part of temperate Eurasia. We analysed how sex‐specific body size and SSD are associated with two putative indicators of fecundity selection intensity (clutch size and the slope of the clutch size–female size relationship) and with two climatic variables throughout the species range and across two widespread evolutionary lineages. Variation within the lineages provides no support for FAH. In contrast, the divergence between the lineages is in line with FAH: the lineage with consistently female‐biased SSD (L. a. agilis) exhibits higher clutch size and steeper fecundity slope than the lineage with an inconsistent and variable SSD (L. a. exigua). L. a. agilis shows lower offspring size (egg mass, hatchling mass) and higher clutch mass relative to female mass than L. a. exigua, that is both possible ways to enhance offspring number are exerted. As the SSD difference is due to male size (smaller males in L. a. agilis), fecundity selection favouring larger females, together with viability selection for smaller size in both sexes, would explain the female‐biased SSD and reproductive characteristics of L. a. agilis. The pattern of intraspecific life‐history divergence in L. agilis is strikingly similar to that between oviparous and viviparous populations of a related species Zootoca vivipara. Evolutionary implications of this parallelism are discussed.  相似文献   

17.
Studies have proposed that predators of herbivores suffer significant fitness losses from the defense chemicals of host plants, and that herbivores adapted to these chemicals may experience reduced predation risk when residing on such plant species. We examined the effects of oleander, Nerium indicum Mill. (Apocynaceae), a host plant of the spider mite, Tetranychus kanzawai Kishida (Acari: Tetranychidae), on their prime predator, Neoseiulus womersleyi (Schicha) (Acari: Phytoseiidae), and tested the hypothesis that this host plant provides enemy‐free space. At the study sites, T. kanzawai occurred on oleander shrubs; in contrast, although N. womersleyi was present in the area, no individuals were found on oleander. Tetranychus kanzawai feeding on oleander negatively affected the settlement, development, and egg production of N. womersleyi. The lower egg production was a result of both the direct effects of oleander and the indirect effects via T. kanzawai. Previous studies showed that the fitness of T. kanzawai in the presence of N. womersleyi was lower than that in the absence of the predator, and lower on oleander than on other palatable host plant species in the absence of predators. Our findings suggest that N. womersleyi may not be able to invade T. kanzawai patches on oleander shrubs, which results in the fitness of T. kanzawai being higher on oleander than on other host plant species in the same area when N. womersleyi is present. This supports the hypothesis that T. kanzawai acquires enemy‐free space on oleander using the direct and indirect adverse effects of oleander on their predators as major defense mechanisms.  相似文献   

18.
19.
20.
Classical biological weed control is based on the premise that introducing specialized natural enemies from the native range re‐establishes herbivore control of plant invaders, ultimately leading to negative population growth rates. Evidence from past biocontrol programs suggests that herbivores are not solely responsible for shaping plant demography. Diverse environmental conditions in the introduced range may not only affect demography, but also influence top‐down control of target plants. We investigated how flooding affects impacts of predators (top‐down) and plant quality (bottom‐up) on performance of two leaf‐beetles, Galerucella calmariensis L. and Galerucella pusilla Duftschmid (Coleoptera: Chrysomelidae: Galerucini), released in North America as biocontrol agents of purple loosestrife, Lythrum salicaria L. (Lythraceae). Predation and flooding regime have been linked to low leaf‐beetle recruitment at sites where insects failed to attain outbreak populations. Predator exclusion experiments at adjacent flooded and non‐flooded sites indicated a positive effect of flooding on leaf‐beetle survival for all developmental stages, whereas predator exposure had little effect. There was no difference in predation rates at sites with successful or failed purple loosestrife control, questioning the importance of predation in limiting growth and impact of these biocontrol agents’ populations. Effect of flooding on purple loosestrife quality was evaluated in a common garden study where plants were grown under different flooding treatments. Plants grown in flooded soil had higher water content and lower tannic acid concentration than plants grown in well‐drained soil. Consistent with field observations, leaf‐beetle oviposition rate and survival were higher on flooded plants. Results indicate that both bottom‐up and top‐down forces operate on Galerucella populations, yet their relative strength is mediated by flooding regime. Ignoring intricacies of plant‐herbivore and trophic interactions in the introduced range appears to be a major handicap for the improvement of weed biocontrol programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号