共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cellular senescence limits the replicative capacity of normal cells and acts as an intrinsic barrier that protects against the development of cancer. Telomere shortening–induced replicative senescence is dependent on the ATM‐p53‐p21 pathway but additional genes likely contribute to senescence. Here, we show that the p53‐responsive gene BTG2 plays an essential role in replicative senescence. Similar to p53 and p21 depletion, BTG2 depletion in human fibroblasts leads to an extension of cellular lifespan, and ectopic BTG2 induces senescence independently of p53. The anti‐proliferative function of BTG2 during senescence involves its stabilization in response to telomere dysfunction followed by serum‐dependent binding and relocalization of the cell cycle regulator prolyl isomerase Pin1. Pin1 inhibition leads to senescence in late‐passage cells, and ectopic Pin1 expression rescues cells from BTG2‐induced senescence. The neutralization of Pin1 by BTG2 provides a critical mechanism to maintain senescent arrest in the presence of mitogenic signals in normal primary fibroblasts. 相似文献
3.
Germana Falcone Alessia Mazzola Flavia Michelini Gianluca Bossi Federica Censi Maria G. Biferi Luisa Minghetti Giovanna Floridia Maurizio Federico Antonio Musio Marco Crescenzi 《Aging cell》2013,12(2):312-315
Senescence is thought to be triggered by DNA damage, usually indirectly assessed as activation of the DNA damage response (DDR), but direct surveys of genetic damage are lacking. Here, we mitotically reactivate senescent human fibroblasts to evaluate their cytogenetic damage. We show that replicative senescence is generally characterized by telomeric fusions. However, both telomeric and extratelomeric aberrations are prevented by hTERT, indicating that even non‐telomeric damage descends from the lack of telomerase. Compared with replicative senescent cells, oncogene‐induced senescent fibroblasts display significantly higher levels of DNA damage, depicting how oncogene activation can catalyze the generation of further, potentially tumorigenic, genetic damage. 相似文献
4.
5.
6.
Yuan Xue Marcus E. Marvin Iglika G. Ivanova David Lydall Edward J. Louis Laura Maringele 《Aging cell》2016,15(3):553-562
Telomere attrition is linked to cancer, diabetes, cardiovascular disease and aging. This is because telomere losses trigger further genomic modifications, culminating with loss of cell function and malignant transformation. However, factors regulating the transition from cells with short telomeres, to cells with profoundly altered genomes, are little understood. Here, we use budding yeast engineered to lack telomerase and other forms of telomere maintenance, to screen for such factors. We show that initially, different DNA damage checkpoint proteins act together with Exo1 and Mre11 nucleases, to inhibit proliferation of cells undergoing telomere attrition. However, this situation changes when survivors lacking telomeres emerge. Intriguingly, checkpoint pathways become tolerant to loss of telomeres in survivors, yet still alert to new DNA damage. We show that Rif1 is responsible for the checkpoint tolerance and proliferation of these survivors, and that is also important for proliferation of cells with a broken chromosome. In contrast, Exo1 drives extensive genomic modifications in survivors. Thus, the conserved proteins Rif1 and Exo1 are critical for survival and evolution of cells with lost telomeres. 相似文献
7.
8.
9.
How much do we know about the biology of aging from cell culture studies? Most normal somatic cells have a finite potential to divide due to a process termed cellular or replicative senescence. A growing body of evidence suggests that senescence evolved to protect higher eukaryotes, particularly mammals, from developing cancer. We now know that telomere shortening, due to the biochemistry of DNA replication, induces replicative senescence in human cells. However, in rodent cells, replicative senescence occurs despite very long telomeres. Recent findings suggest that replicative senescence is just the tip of the iceberg of a more general process termed cellular senescence. It appears that cellular senescence is a response to potentially oncogenic insults, including oxidative damage. In young organisms, growth arrest by cell senescence suppresses tumor development, but later in life, due to the accumulation of senescent cells which secret factors that can disrupt tissues during aging, cellular senescence promotes tumorigenesis. Therefore, antagonistic pleiotropy may explain in part, if not in whole, the apparently paradoxical effects of cellular senescence, though this still remains an open question. 相似文献
10.
Emad K. Ahmed Adelina Rogowska‐Wrzesinska Peter Roepstorff Anne‐Laure Bulteau Bertrand Friguet 《Aging cell》2010,9(2):252-272
Oxidized proteins as well as proteins modified by the lipid peroxidation product 4‐hydroxy‐2‐nonenal (HNE) and by glycation (AGE) have been shown to accumulate with aging in vivo and during replicative senescence in vitro. To better understand the mechanisms by which these damaged proteins build up and potentially affect cellular function during replicative senescence of WI‐38 fibroblasts, proteins targeted by these modifications have been identified using a bidimensional gel electrophoresis‐based proteomic approach coupled with immunodetection of HNE‐, AGE‐modified and carbonylated proteins. Thirty‐seven proteins targeted for either one of these modifications were identified by mass spectrometry and are involved in different cellular functions such as protein quality control, energy metabolism and cytoskeleton. Almost half of the identified proteins were found to be mitochondrial, which reflects a preferential accumulation of damaged proteins within the mitochondria during cellular senescence. Accumulation of AGE‐modified proteins could be explained by the senescence‐associated decreased activity of glyoxalase‐I, the major enzyme involved in the detoxification of the glycating agents methylglyoxal and glyoxal, in both cytosol and mitochondria. This finding suggests a role of detoxification systems in the age‐related build‐up of damaged proteins. Moreover, the oxidized protein repair system methionine sulfoxide reductase was more affected in the mitochondria than in the cytosol during cellular senescence. Finally, in contrast to the proteasome, the activity of which is decreased in senescent fibroblasts, the mitochondrial matrix ATP‐stimulated Lon‐like proteolytic activity is increased in senescent cells but does not seem to be sufficient to cope with the increased load of modified mitochondrial proteins. 相似文献
11.
Tianpeng Zhang Zepeng Zhang Feng Li Qian Hu Haiying Liu Mengfan Tang Wenbin Ma Junjiu Huang Zhou Songyang Yikang Rong Shichuan Zhang Benjamin PC Chen Yong Zhao 《EMBO reports》2017,18(8):1412-1428
Repetitive DNA is prone to replication fork stalling, which can lead to genome instability. Here, we find that replication fork stalling at telomeres leads to the formation of t‐circle‐tails, a new extrachromosomal structure that consists of circular telomeric DNA with a single‐stranded tail. Structurally, the t‐circle‐tail resembles cyclized leading or lagging replication intermediates that are excised from the genome by topoisomerase II‐mediated cleavage. We also show that the DNA damage repair machinery NHEJ is required for the formation of t‐circle‐tails and for the resolution of stalled replication forks, suggesting that NHEJ, which is normally constitutively suppressed at telomeres, is activated in the context of replication stress. Inhibition of NHEJ or knockout of DNA‐PKcs impairs telomere replication, leading to multiple‐telomere sites (MTS) and telomere shortening. Collectively, our results support a “looping‐out” mechanism, in which the stalled replication fork is cut out and cyclized to form t‐circle‐tails, and broken DNA is religated. The telomere loss induced by replication stress may serve as a new factor that drives replicative senescence and cell aging. 相似文献
12.
Opposing roles of Ubp3‐dependent deubiquitination regulate replicative life span and heat resistance 下载免费PDF全文
The interplay between molecular chaperones, ubiquitin/deubiquitinating enzymes, and proteasomes is a critical element in protein homeostasis. Among these factors, the conserved deubiquitinase, Ubp3, has the interesting ability, when overproduced, to suppress the requirement for the major cytosolic Hsp70 chaperones. Here, we show that Ubp3 overproduction counteracts deficiency of Hsp70s by the removal of damaged proteins deposited in inclusion bodies (JUNQ) during both aging and heat stress. Consistent with this, Ubp3 destabilized, deubiquitinated, and diminished the toxicity of the JUNQ-associated misfolded protein Ubc9ts in a proteasome-dependent manner. In contrast, another misfolded model protein, ssCPY*, was stabilized by Ubp3-dependent deubiquitination demonstrating a dual role for Ubp3, saving or destroying aberrant protein species depending on the stage at which the damaged protein is committed for destruction. We present genetic evidence for the former of these activities being key to Ubp3-dependent suppression of heat sensitivity in Hsp70-deficient cells, whereas protein destruction suppresses accelerated aging. We discuss the data in view of how heat stress and aging might elicit differential damage and challenges on the protein homeostasis network. 相似文献
13.
14.
Joanna Kaplon Cornelia Hömig‐Hölzel Linda Gao Katrin Meissl Els M. E. Verdegaal Sjoerd H. van der Burg Remco van Doorn Daniel S. Peeper 《Pigment cell & melanoma research》2014,27(4):640-652
The activation of oncogenes in primary cells blocks proliferation by inducing oncogene‐induced senescence (OIS), a highly potent in vivo tumor‐suppressing program. A prime example is mutant BRAF, which drives OIS in melanocytic nevi. Progression to melanoma occurs only in the context of additional alteration(s) like the suppression of PTEN, which abrogates OIS. Here, we performed a near‐genomewide short hairpin (sh)RNA screen for novel OIS regulators and identified by next generation sequencing and functional validation seven genes. While all but one were upregulated in OIS, depletion of each of them abrogated BRAFV600E‐induced arrest. With genome‐wide DNA methylation analysis, we found one of these genes, RASEF, to be hypermethylated in primary cutaneous melanomas but not nevi. Bypass of OIS by depletion of RASEF was associated with suppression of several senescence biomarkers including senescence‐associated (SA)‐β‐galactosidase activity, interleukins, and tumor suppressor p15INK4B. Restoration of RASEF expression inhibited proliferation. These results illustrate the power of shRNA OIS bypass screens and identify a potential novel melanoma suppressor gene. 相似文献
15.
Misregulation of DNA repair is associated with genetic instability and tumorigenesis. To preserve the integrity of the genome, eukaryotic cells have evolved extremely intricate mechanisms for repairing DNA damage. One type of DNA lesion is a double-strand break (DSB), which is highly toxic when unrepaired. Repair of DSBs can occur through multiple mechanisms. Aside from religating the DNA ends, a homologous template can be used for repair in a process called homologous recombination (HR). One key step in committing to HR is the formation of Rad51 filaments, which perform the homology search and strand invasion steps. In S. cerevisiae, Srs2 is a key regulator of Rad51 filament formation and disassembly. In this review, we highlight potential candidates of Srs2 orthologues in human cells, and we discuss recent advances in understanding how Srs2's so-called “anti-recombinase” activity is regulated. 相似文献
16.
17.
18.
Anna B. Sunshine Giang T. Ong Daniel P. Nickerson Daniel Carr Christopher J. Murakami Brian M. Wasko Anna Shemorry Alexey J. Merz Matt Kaeberlein Maitreya J. Dunham 《Aging cell》2016,15(2):317-324
Aneuploidy and aging are correlated; however, a causal link between these two phenomena has remained elusive. Here, we show that yeast disomic for a single native yeast chromosome generally have a decreased replicative lifespan. In addition, the extent of this lifespan deficit correlates with the size of the extra chromosome. We identified a mutation in BUL1 that rescues both the lifespan deficit and a protein trafficking defect in yeast disomic for chromosome 5. Bul1 is an E4 ubiquitin ligase adaptor involved in a protein quality control pathway that targets membrane proteins for endocytosis and destruction in the lysosomal vacuole, thereby maintaining protein homeostasis. Concurrent suppression of the aging and trafficking phenotypes suggests that disrupted membrane protein homeostasis in aneuploid yeast may contribute to their accelerated aging. The data reported here demonstrate that aneuploidy can impair protein homeostasis, shorten lifespan, and may contribute to age‐associated phenotypes. 相似文献
19.
Foam cell‐derived 4‐hydroxynonenal induces endothelial cell senescence in a TXNIP‐dependent manner 下载免费PDF全文
Yael Riahi Nurit Kaiser Guy Cohen Ihab Abd‐Elrahman Galia Blum Oz M. Shapira Tomer Koler Maya Simionescu Anca V. Sima Neven Zarkovic Kamelija Zarkovic Marica Orioli Giancarlo Aldini Erol Cerasi Gil Leibowitz Shlomo Sasson 《Journal of cellular and molecular medicine》2015,19(8):1887-1899
Vascular endothelial cell (VEC) senescence is considered an early event in the development of atherosclerotic lesions. Stressful stimuli, in particular oxidative stress, have been linked to premature senescence in the vasculature. Foam cells are a major source of reactive oxygen species and may play a role in the induction of VEC senescence; hence, we investigated their involvement in the induction of VEC senescence in a co‐culture transwell system. Primary bovine aortic endothelial cells, exposed to the secretome of THP‐1 monocyte‐derived foam cells, were analysed for the induction of senescence. Senescence associated β‐galactosidase activity and the expression of p16 and p21 were increased, whereas phosphorylated retinoblastoma protein was reduced. This senescent phenotype was mediated by 4‐hydroxnonenal (4‐HNE), a lipid peroxidation product secreted from foam cells; scavenging of 4‐HNE in the co‐culture medium blunted this effect. Furthermore, both foam cells and 4‐HNE increased the expression of the pro‐oxidant thioredoxin‐interacting protein (TXNIP). Molecular manipulation of TXNIP expression confirmed its involvement in foam cell‐induced senescence. Previous studies showed that peroxisome proliferator‐activated receptor (PPAR)δ was activated by 4‐hydroalkenals, such as 4‐HNE. Pharmacological interventions supported the involvement of the 4‐HNE‐PPARδ axis in the induction of TXNIP and VEC senescence. The association of TXNIP with VEC senescence was further supported by immunofluorescent staining of human carotid plaques in which the expression of both TXNIP and p21 was augmented in endothelial cells. Collectively, these findings suggest that foam cell‐released 4‐HNE activates PPARδ in VEC, leading to increased TXNIP expression and consequently to senescence. 相似文献
20.
S.‐F. Lv M.‐Z. Jia S.‐S. Zhang S. Han J. Jiang 《Plant biology (Stuttgart, Germany)》2019,21(4):595-603
- Ethylene and nitric oxide (NO) act as endogenous regulators during leaf senescence. Levels of ethylene or its precursor 1‐aminocyclopropane‐1‐carboxylate acid (ACC) depend on the activity of ACC synthases (ACS), and NO production is controlled by NO‐associated 1 (NOA1). However, the integration mechanisms of ACS and NOA1 activity still need to be explored during leaf senescence.
- Here, using experimental techniques, such as physiological and molecular detection, liquid chromatography‐tandem mass spectrometry and fluorescence measurement, we investigated the relevant mechanisms.
- Our observations showed that the loss‐of‐function acs1‐1 mutant ameliorated age‐ or dark‐induced leaf senescence syndrome, such as yellowing and loss of chlorophyll, that acs1‐1 reduced ACC accumulation mainly in mature leaves and that acs1‐1‐promoted NOA1 expression and NO accumulation mainly in juvenile leaves, when compared with the wild type (WT). But the leaf senescence promoted by the NO‐deficient noa1 mutant was not involved in ACS1 expression. There was a similar sharp reduction of ACS1 and NOA1 expression with the increase in WT leaf age, and this inflection point appeared in mature leaves and coincided with the onset of leaf senescence.
- These findings suggest that NOA1‐dependent NO accumulation blocked the ACS1‐induced onset of leaf senescence, and that ACS1 activity corresponds to the onset of leaf senescence in Arabidopsis.