首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Litterfall is an essential component of tropical forest productivity, transferring nutrients from the vegetation back to soils. Here, we summarize the data from 105 estimates of fine litterfall production from 45 sites in the Atlantic Forest domain, including two types of forests, evergreen and seasonal, and two successional stages, secondary and old growth. The overall litterfall average was 8.0 ± 2.5 Mg/ha. Litterfall was significantly in higher seasonal forests than in evergreen forests and in old growth versus secondary forests. Leaves were the major component of litterfall, contributing 68 percent to the total. The second most important component was branches, contributing 22 percent, followed by reproductive organs (flowers and fruits), at 6 percent. Accurate measurements of tropical forest productivity are crucial for estimating their role in sequestering atmospheric carbon, and we suggest some ways to standardize litterfall sampling to obtain better estimates.  相似文献   

2.
Fertilization experiments in tropical forests have shown that litterfall increases in response to the addition of one or more soil nutrients. However, the relationship between soil nutrient availability and litterfall is poorly defined along natural soil fertility gradients, especially in tropical montane forests. Here, we measured litterfall for two years in five lower montane 1‐ha plots spanning a soil fertility and precipitation gradient in lower montane forest at Fortuna, Panama. Litterfall was also measured in a concurrent nitrogen fertilization experiment at one site. Repeated‐measures ANOVA was used to test for site (or treatment), year, and season effects on vegetative, reproductive and total litterfall. We predicted that total litterfall, and the ratio of reproductive to leaf litterfall, would increase with nutrient availability along the fertility gradient, and in response to nitrogen addition. We found that total annual litterfall varied substantially among 1‐ha plots (4.78 Mg/ha/yr to 7.96 Mg/ha/yr), and all but the most aseasonal plot showed significant seasonality in litterfall. However, litterfall accumulation did not track soil nutrient availability; instead forest growing on relatively infertile soil, but dominated by an ectomycorrhizal tree species, had the highest total litterfall accumulation. In the fertilization plots, significantly more total litter fell in nitrogen addition relative to control plots, but this increase in response to nitrogen (13%) was small compared to variation observed among 1‐ha plots. These results suggest that while litterfall at Fortuna is nutrient‐limited, compositional and functional turnover along the fertility gradient obscure any direct relationship between soil resource availability and canopy productivity.  相似文献   

3.
Tropical upper montane forests usually comprise trees of small stature with a relatively low aboveground productivity. In contrast to this rule, in the Cordillera de Talamanca (Costa Rica), tall trees (>35 m in height and more than 60 cm in diameter) are characteristic for the upper montane old-growth oak forests which are growing at an altitude of almost 3,000 m close to the alpine timberline. For these exceptional forests, productivity data are not yet available. In this study, we analyzed litterfall and its components (tree leaves, litter of epiphytic vascular and non-vascular plants, mistletoes, twigs and other canopy debris) in three forest stands belonging to different successional stages and related seasonal changes in litterfall to micrometeorological variables. The studied stands were early-successional forest (10–15-year-old), mid-successional forest (40-year-old), and old-growth forest. The stands are dominated by Quercus copeyensis and are located at 2,900-m altitude. Total litterfall was highest in the mid-successional forest (1,720 g m−2 y−1), and reached 1,288 g m−2 y−1 in the old-growth forest and 934 g m−2 y−1 in the early-successional forest. Litter mass was dominated by leaves in all stages (56–84% of total litterfall). In the old-growth forest, however, twigs and small canopy debris particles (33%), epiphytes (6%), and mistletoes (5%) also contributed substantially to litter mass. Leaf litterfall showed a clear seasonal pattern with a negative correlation to monthly precipitation and highest values in the dry season (January–April). However, the strongest correlation existed with minimum air temperature (negative), probably because temperatures already dropped at the end of the rainy season, when precipitation had not yet declined and leaf shedding already increased. In contrast, litterfall of epiphyte mass, and twigs and other debris was mostly dependent on occasional strong winds. We conclude that the upper montane oak forests of the Cordillera de Talamanca are exceptional with respect to the large tree size and the relatively high productivity as indicated by litterfall. Litter mass was especially high in the mid-successional and old-growth forests, where the observed annual totals are among the highest recorded for tropical forests so far.  相似文献   

4.
Tropical rain forests worldwide are affected by anthropogenic disturbances, and secondary forests that develop afterwards are often dominated by pioneer tree species, but the consequences of different anthropogenic disturbances on nutrient cycling are poorly understood. Because most nutrient cycling in tropical rain forests occurs through litterfall and in the soil organic layer, we measured litterfall of a widespread and dominant pioneer tree, okoume (Aucoumea klaineana, Burseraceae) in Gabon, in one forest previously disturbed by logging and in another by agriculture. Litterfall of okoume trees, measured over 14 months, was 18.2 Mg ha−1 year−1 in the formerly logged forest, which was 72.6% greater than in the forest more recently disturbed by agriculture (10.6 Mg ha−1 year−1). Litter decomposition rates were more rapid in the formerly logged forest, and this may explain why litter thickness was 32% lower in the formerly logged forest, despite the greater litterfall within it. Our results highlight that two widespread anthropogenic disturbances in Gabonese rain forests have significantly different consequences on litterfall of a dominant tree and therefore are likely to have different effects on nutrient cycling and forest ecosystem function.  相似文献   

5.
Abstract Microdisturbance to seedlings is important because it can differentially affect the mortality and recruitment of seedlings of forest tree species and thereby ultimately affect community composition. Microdisturbance due to litterfall has been shown to vary greatly in its influence on seedling survival among and within forests, and yet there have been no previous studies that investigate the cause of these differences. In this study the influence of macro‐litterfall on seedling damage is investigated in five complex temperate forests in New Zealand. Litterfall damage to artificial seedlings in these forests was strongly correlated with macro‐leaf‐fall (leaves > 30 cm × 1.5 cm) dry weight and total macro‐litterfall (leaves and deadwood > 30 cm × 1.5 cm) surface area (R2 = 0.99, P < 0.005 for each). Protective vegetation within 2 m of the ground (mostly lianes and woody shrubs) reduced the risk of litterfall damage by up to 84%. Hitherto unexplained differences in litterfall damage to seedlings found among, and within, forests (tropical and temperate) may therefore be due to differences in rates of macro‐leaf‐fall and forest structure. These results are important because they suggest that subtle differences in forest structure, and species composition, may influence regeneration patterns through the litterfall microdisturbance regime.  相似文献   

6.
Litter production, litter standing crop, and potential nutrient return via litterfall to soil were studied during a 4-year period (January 2004–December 2007) in a Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) plantation and a secondary broadleaved forest in Hunan Province in subtropical China. Mean annual litterfall in the sampling sites varied from 358 g m−2 in the pure plantation to 669 g m−2 in the secondary broadleaved forest. Total litterfall followed a bimodal distribution pattern for both forests. Amount of litterfall was also related to the air temperature in both forests. During the period under this study, annual variation in the total litterfall in the pure plantation was significantly higher than that in the secondary broadleaved forest. Litterfall was markedly seasonal in the both forests. Leaf proportions of litterfall in the pure plantation and secondary broadleaved forest were 58.1 and 61.7%, respectively. Total potential nutrient returns to the soil through litterfall in the pure plantation were only 46.2% of those in the secondary broadleaved forest. Total litter standing crop was 913 and 807 g m−2 in the pure plantation and secondary broadleaved forest, respectively. Our results confirm that conversion from a secondary broadleaved forest into a pure coniferous plantation changes the functioning of the litter system.  相似文献   

7.
From 1996 to 2002, we measured litterfall, standing litter crop, and litter turnover rates in scrub, basin, fringe and riverine forests in two contrasting mangrove ecosystems: a carbonate-dominated system in the Southeastern Everglades and a terrigenous-dominated system in Laguna de Terminos (LT), Mexico. We hypothesized that litter dynamics is driven by latitude, geomorphology, hydrology, soil fertility and soil salinity stress. There were significant temporal patterns in LT with litterfall rates higher during the rainy season (2.4 g m−2 day−1) than during the dry season (1.8 g m−2 day−1). Total annual litterfall was significantly higher in the riverine forest (12.8 Mg ha−2 year−1) than in the fringe and basin forests (9.7 and 5.2 Mg ha−2 year−1, respectively). In Southeastern Everglades, total annual litterfall was also significantly higher during the rainy season than during the dry season. Spatially, the scrub forest had the lowest annual litterfall (2.5 Mg ha−2 year−1), while the fringe and basin had the highest (9.1 and 6.5 Mg ha−2 year−1, respectively). In LT, annual standing litter crop was 3.3 Mg ha−1 in the fringe and 2.2 Mg ha−1 in the basin. Litter turnover rates were significantly higher in the fringe mangrove forest (4.1 year−1) relative to the basin forests (2.2 year−1). At Southeastern Everglades there were significant differences in annual standing litter crop: 1.9, 3.3 and 4.5 Mg ha−1 at scrub, basin and fringe mangrove sites, respectively. Furthermore, turnover rates were similar at both basin and fringe mangrove types (2.1 and 2.0 year−1, respectively) but significantly higher than scrub mangrove forest (1.3 year−1). These findings suggest that litter export is important in regulating litter turnover rates in frequently flooded riverine and fringe forests, while in infrequently flooded basin forests, in situ litter decomposition controls litter turnover rates.  相似文献   

8.
Ice storms are an important and recurring ecological disturbance in many temperate forest ecosystems. In 1998, a severe ice storm damaged over ten million hectares of forest across northern New York State, eastern Canada, and New England impacting ecosystem processes across the landscape. This study investigated the spatial arrangement of forest damage at the terrestrial-aquatic interface, an ecological edge of importance to aquatic habitat and nutrient cycling. Vegetation indices, derived from satellite imagery and field-based data, were used to measure forest canopy damage across a 2045 km2 region in northern New York State affected by the 1998 storm. We investigated the forest damage gradient in the riparian zone of 13 stream segments of varying size (92.5 km total length) and 13 lakes (37.4 km of shoreline). Large streams (-fourth and fifth order), occurring in forests that received modest ice damage (<15% disturbance coverage), exhibited significantly more damage in the riparian zone within 25 m of the water than in adjacent forest sections; F(3,12) = 7.3 P = 0.005. In similar moderately damaged forests, lake shorelines were significantly more damaged than interior forests; F(3,9) = 6.4 P = 0.013. Analysis of transitions in damage intensity revealed that canopy disturbance followed a decreasing trend (up to 3.5 times less) with movement inland from the terrestrial-aquatic interface. The observed predisposition of forest to disturbance along this ecosystem interface emphasizes the role of the physical landscape in concentrating the movement of wood from the forest canopy to locations proximate to water bodies, thus reinforcing findings that ice storms are drivers of ecological processes that are spatially concentrated.  相似文献   

9.
Litterfall and litter decomposition are key elements of nutrient cycling in tropical forests, a process in which decomposer communities such as macro-arthropods play a critical role. Understanding the rate and extent to which ecosystem function and biodiversity recover during succession is useful to managing the growing area of tropical successional forest globally. Using a replicated chronosequence of forest succession (5–15, 15–30, 30–45 years, and primary forest) on abandoned pastures in lowland tropical wet forest, we examined litterfall, litter chemistry, and effects of macro-arthropod exclusion on decomposition of two litter types (primary and 5- to 15-years-old secondary forest). Further, we assessed macro-arthropod diversity and community composition across the chronosequence. Overstory cover, litterfall, and litter nutrients reached levels similar to primary forest within 15–30 years. Young secondary forest litter (5–15 years) had lower initial N and P content, higher C:N, and decayed 60 percent faster than primary forest litter. The presence of macro-arthropods strongly mediated decomposition and nutrient release rates, increasing litter mass loss by 35–44 percent, N released by 53 percent, and P release by 84 percent. Forest age had no effect on soil nutrients, rates of litter decomposition, nutrient release, or macro-arthropod influence. In contrast, abundance and community composition of macro-arthropods remained significantly lower and distinct in all ages of secondary compared with primary forest. Order richness was lower in 5–15 years of secondary compared with primary forest. Our results suggest that in highly productive tropical wet forest, functional recovery of litter dynamics precedes recovery of decomposer community structure and biodiversity.  相似文献   

10.
We registered seedling survival and biomass increase for Rhizophora mangle L., Avicennia germinans L. and Laguncularia racemosa (L.) Gaertn. f, main mangrove species in the Rancheria River delta, Colombia. Only seedlings of R. mangle were found to survive. We also measured maximum rate of litterfall. We estimated annual litterfall through interpolation within an exponential regression performed with maximum and annual litterfall data published in other sources; the value of annual litterfall for the area was estimated to be 12.9 mgha(-1)y(-1). We found a 7.4 mgha(-1)y(-1)(-1) increase in biomass. Litterfall constitutes the larger fraction of the 20.2 mgha(-1)y(-1) productivity of this mangrove. We believe this is a very high value for a forest under unfavorable natural and human conditions, such as high seasonality and continuous use of the forest to feed goats and sheep. We consider that the high productivity is a response to both natural and anthropogenic stress.  相似文献   

11.
西双版纳不同海拔热带雨林凋落量变化研究   总被引:8,自引:0,他引:8       下载免费PDF全文
在3个海拔梯度(600、1 100和1 600 m)选取8块热带雨林样地,研究了印度季风环境下西双版纳热带季节雨林和山地雨林的凋落动态随海拔的变化及其与气候的关系。在3个梯度上,年平均温度分别为22.1、20.1和16.6 ℃,年平均温度递减率为-0.005 3 ℃·m-1。随海拔增加,年平均降雨量增加(分别为1 532、1 659和2 011 mm),但旱季的降雨量基本相同(282~295 mm);年蒸发量变化较小(分别为1 369、1 374和1 330 mm);年平均空气相对湿度降低(分别为86%、81%和84%),旱季后期湿度降低更明显;样地土壤含水显著增加。热带季节雨林凋落量(1 072~1 285 g·m-2·a-1)显著高于热带山地雨林凋落量(718~1 014 g·m-2·a-1)。凋落量和凋落进程变异系数与海拔之间存在线性显著负相关,凋落量与温度线性显著正相关而与降雨量显著负相关。旱季凋落高峰受到空气相对湿度和土壤含水量影响,随海拔增加空气相对湿度降低使得海拔1 105~1 720 m的凋落高峰提前,但土壤含水量继续增加又会使凋落高峰推后。研究结果得出:1)热带季节雨林凋落量与东南亚热带潮湿雨林相近;2)旱季水分限制随海拔增加而变化,影响凋落高峰出现时间;3)随海拔增加,热带山地雨林凋落年进程由季节性向平稳过渡。  相似文献   

12.
Climate change is increasing the intensity of severe tropical storms and cyclones (also referred to as hurricanes or typhoons), with major implications for tropical forest structure and function. These changes in disturbance regime are likely to play an important role in regulating ecosystem carbon (C) and nutrient dynamics in tropical and subtropical forests. Canopy opening and debris deposition resulting from severe storms have complex and interacting effects on ecosystem biogeochemistry. Disentangling these complex effects will be critical to better understand the long‐term implications of climate change on ecosystem C and nutrient dynamics. In this study, we used a well‐replicated, long‐term (10 years) canopy and debris manipulation experiment in a wet tropical forest to determine the separate and combined effects of canopy opening and debris deposition on soil C and nutrients throughout the soil profile (1 m). Debris deposition alone resulted in higher soil C and N concentrations, both at the surface (0–10 cm) and at depth (50–80 cm). Concentrations of NaOH‐organic P also increased significantly in the debris deposition only treatment (20–90 cm depth), as did NaOH‐total P (20–50 cm depth). Canopy opening, both with and without debris deposition, significantly increased NaOH‐inorganic P concentrations from 70 to 90 cm depth. Soil iron concentrations were a strong predictor of both C and P patterns throughout the soil profile. Our results demonstrate that both surface‐ and subsoils have the potential to significantly increase C and nutrient storage a decade after the sudden deposition of disturbance‐related organic debris. Our results also show that these effects may be partially offset by rapid decomposition and decreases in litterfall associated with canopy opening. The significant effects of debris deposition on soil C and nutrient concentrations at depth (>50 cm), suggest that deep soils are more dynamic than previously believed, and can serve as sinks of C and nutrients derived from disturbance‐induced pulses of organic matter inputs.  相似文献   

13.
 该研究以浙江天童常绿阔叶林及退化群落的凋落物特征为内容,探讨了养分归还和土壤养分动态之间的联系。结果显示:1)常绿阔叶林退化显 著降低了凋落物的年凋落量,从成熟常绿阔叶林的13.03 Mg·hm-2下降到灌丛的6.38 Mg·hm-2。2)凋落物氮含量在成熟群落至灌丛阶段下降显 著,而磷含量无明显递减规律;氮磷归还量均随常绿阔叶林退化显著下降。 3)凋落物特征(年均值)与土壤养分的相关分析表明,土壤氮磷含 量与凋落物凋落量间呈显著线性正相关;土壤氮含量与凋落物氮含量间无显著线性关系,而与氮归还量呈显著线性正相关(p<0.05);土壤总磷 含量与凋落物磷含量和磷归还量间均呈显著线性正相关( 磷含量:p<0.01; 磷归还量: p<0.001);土壤无机氮含量与凋落物各特征间无显著相关 关系;土壤氮素硝化速率与凋落物凋落量和氮归还量间呈显著线性正相关(凋落物凋落量:p<0.01; 氮归还量: p<0.005),而与凋落物氮含量无 显著线性关系,与之相比,土壤氮素矿化速率与凋落物特征间均不存在显著线性关系。可以认为,在常绿阔叶林退化过程中,由于不同植物在 养分归还特征上的差异,导致了养分归还量的下降,从而使土壤养分库的物质来源减少,但是,群落结构简化而导致的非生物要素的改变,对 控制土壤生物过程发挥着更大的作用。  相似文献   

14.
Eusse  Ana Maria  Aide  T. Mitchell 《Plant Ecology》1999,145(2):307-315
Historically, Pterocarpus officinalisJacq. (Leguminoseae) dominated freshwater wetlands in the coastal plains of Puerto Rico, but deforestation has reduced its distribution to small patches adjacent to mangrove forests in areas of higher salinity. The objective of this study was to determine how a gradient in soil salinity affected litter, flower, and fruit production in a Pterocarpus officinalis.Three 100 m2 plots were established in each of three sites along a salinity gradient: pasture/Pterocarpus edge (low salinity, mean salinity at 60 cm–9.7 g Kg–1), Pterocarpus forest (intermediate salinity, 11.5 g Kg–1) and a Pterocarpus/mangrove ecotone (high salinity, 15.0 g Kg–1). Across this gradient, P. officinalis accounted for 100% of the relative basal area in the low and intermediate sites and 43% in the high salinity site which was domimated by Laguncularia racemosa. The basal area of P. officinalis decreased along the gradient from 73.5 m2 ha–1 in the low salinity site to 42.0 m2 ha–1 in the high salinity site. Litterfall was sampled on average every 23 days in 45 0.25 m2 traps (5 traps per plot) for two years. Annual litterfall for the forest was 11.9 Mg ha–1 yr–1. Peaks in litterfall were associated with high precipitation in May 1995 and tropical storms in September 1995. Leaf fall of P. officinalis was significantly higher in the low salinity site (4.8 Mg ha–1 yr–1) than the high salinity site (1.8 Mg ha–1 yr–1), but total stand litterfall was greatest in the area of high salinity due to the greater contribution of L. racemosa. Pterocarpus flower and fruit production was approximately 10 times greater in low and intermediate salinity sites in comparison with the high salinity site. An increase in global temperature, will lead to higher sea level and higher soil salinity in costal wetlands. To conserve this wetland forest type it is critical to expand the distribution into areas of lower salinity where this species occurred historically.  相似文献   

15.
There have been few attempts to compare fruit productivity throughout the world, although this is indispensable for understanding the global variations in frugivore diversity. The purposes of this study are (1) to reveal the patterns in fruit fall in tropical and temperate forests, (2) to examine the environmental factors (location, climate, and total litterfall) affecting these patterns, and (3) to assess the effect of fruit fall on frugivore diversity by using bird and primate data. Fruit fall was compared among 53 forests, from around the equator to the cool-temperate zone at 62°N, in Asia, Africa, North and South America, and Australia. Average ± SD of fruit fall (kg/ha/year) was 454 ± 258 in tropical, and 362 ± 352 in temperate forests. Fruit fall was exceptionally high in Australia (812 ± 461). When Australia was excluded, fruit fall significantly decreased with increasing absolute latitude and altitude, and fruit fall in tropical forest was 1.7 times larger than that in temperate forests (265 ± 227). Total litterfall affected fruit fall significantly, explaining 32, 28, and 64% of the variations of fruit fall in the entire data, tropical data, and temperate data, respectively. The fruit fall/litterfall ratio did not differ between temperate and tropical forests but was significantly higher in Australia than in other regions. Among climatic parameters (annual temperature, precipitation, actual evapotranspiration), a positive relationship was found between temperature and fruit fall in the entire dataset and within temperate forests. Fruit fall seemed to explain the temperate/tropical difference in frugivorous primate diversity to some extent, but not for frugivorous bird diversity. This study shows that the difference in fruit fall in tropical and temperate forests is smaller than that in frugivore diversity, and that it could explain at least part of the frugivore diversity.  相似文献   

16.
Evaluation of litterfall production is important for understanding nutrient cycling, forest growth, successional pathways, and interactions with environmental variables in forest ecosystems. Litterfall was intensively studied during the period of 1982–2001 in two subtropical monsoon vegetation gradients in the Dinghushan Biosphere Reserve, Guangdong Province, China. The two gradients include: (1) a successional gradient composed of pine forest (PF), mixed pine and broadleaved forest (MF) and monsoon evergreen broadleaved forest (BF), and (2) an altitudinal gradient composed of Baiyunci ravine rain forest (BRF), Qingyunci ravine rain forest (QRF), BF and mountainous evergreen broadleaved forest (MMF). Mean annual litterfall production was 356, 861 and 849 g m−2 for PF, MF and BF of the successional gradient, and 1016, 1061, 849 and 489 g m−2 for BRF, QRF, BF and MMF of the altitudinal gradient, respectively. As expected, mean annual litterfall of the pioneer forest PF was the lowest, but rapidly increased over the observation period while those in other forests were relatively stable, confirming that forest litterfall production is closely related to successional stages and growth patterns. Leaf proportions of total litterfall in PF, MF, BF, BRF, QRF and MMF were 76.4%, 68.4%, 56.8%, 55.7%, 57.6% and 69.2%, respectively, which were consistent with the results from studies in other evergreen broadleaved forests. Our analysis on litterfall monthly distributions indicated that litterfall production was much higher during the period of April to September compared to other months for all studied forest types. Although there were significant impacts of some climate variables (maximum and effective temperatures) on litterfall production in some of the studied forests, the mechanisms of how climate factors (temperature and rainfall) interactively affect litterfall await further study.  相似文献   

17.
Litterfall of the mangroves and its subsequent decomposition is an important mechanism in terms of productivity and nutrient cycle of that ecosystem. Present study emphasizes on the significance of litter biomass and role of environmental factors impacting this process. Mangrove litter undergoes degradation and decomposition and serves as the main source of carbon in different forms within the system, mangrove forests adjacent to the creeks at Sagar Island of the Hooghly–Matla estuarine ecosystem. This system receives a major load of carbon from adjacent mangrove forest in the form of litterfall throughout the year. Keeping in view the effect of environmental factors on litterfall and dynamics of carbon, machine learning method has been applied for this study. Different forms of carbon and environmental factors like temperature, salinity, pH, dissolved oxygen are estimated following standard procedure. Correlation, redundancy analysis and LASSO (Least Absolute Shrinkage and Selection Operator) regression are done in order to know the impact of environmental variables on carbon pool dynamics and effect of litterfall on the carbon pools in soil and water. The results reflect a strong correlation among the studied environmental factors and carbon pool dynamics. It has been revealed from the LASSO prediction results that each carbon pool is sensitive to a separate set of environmental factors.  相似文献   

18.
Highly seasonal rainfall creates a pulse of litterfall in the southern Yucatan peninsula region, with cascading effects on the timing of essential nutrient fluxes, microbial dynamics, and vegetation growth. I investigated whether forest age or a regional environmental gradient related to rainfall has a greater effect on patterns of litterfall in this increasingly human‐dominated landscape. Litterfall was sampled in 10–13 stands in each of three locations spanning a rainfall gradient of ca 900–1400 mm/yr. Litter was collected monthly from November 1998 through January 2000 in mature forests and in secondary forests aged 2–25 yr. Despite a substantial precipitation gradient, age was the only significant predictor of annual litter mass. Two‐ to five‐yr‐old forests produced significantly less litter than 12–25‐yr‐old secondary forests (4.6 vs. 6.2 Mg/ha/yr), but the difference between older secondary forests and mature forests (9 percent) was not significant. Litter production increased with rainfall, but not significantly so. The pattern of litterfall was similar across locations and age classes, with a peak during late March or early April. However, litterfall seasonality was most pronounced in the old secondary and mature forests. Litterfall was more evenly distributed throughout the year in forests under 10 yr old. Seasonality of litterfall was also less pronounced at the wettest site, with less disparity between peak litterfall and off‐peak months. Seasonality was not related to soil texture. Forest age and rainfall are important drivers of litterfall dynamics; however, both litter mass and degree of seasonality depended more strongly on forest age. Thus, the impact of land‐use change on litter nutrient cycling is as great, if not greater, than the constraint imposed by the major natural environmental factor affecting tropical dry forests.  相似文献   

19.
Litterfall is a fundamental process in the nutrient cycle of forest ecosystems and a major component of annual net primary production (NPP). Despite its importance for understanding ecosystem energetics and carbon accounting, the dynamics of litterfall production following disturbance and throughout succession remain poorly understood in boreal forest ecosystems. Using a replicated chronosequence spanning 209 years following fire and 33 years following logging in Ontario, Canada, we examined the dynamics of litterfall production associated with stand development, overstory composition type (broadleaf, mixedwood, and conifer), and disturbance origin. We found that total annual litterfall production increased with stand age following fire and logging, plateauing in post-fire stands approximately 98 years after fire. Neither total annual litterfall production nor any of its constituents differed between young fire- or logging-originated stands. Litterfall production was generally higher in broadleaf stands compared with mixedwood and conifer stands, but varied seasonally, with foliar litterfall highest in broadleaf stands in autumn, and epiphytic lichen litterfall highest in conifer stands in spring. Contrary to previous assumptions, we found that the contribution of litterfall production to net primary production increased with stand age, highlighting the need for modeling studies of net primary productivity to account for the effects of stand age on litterfall dynamics.  相似文献   

20.
Litterfall production, decomposition and nutrient use efficiency in three different tropical forest ecosystems in SW China were studied for 10 years. Annual mean litterfall production in tropical seasonal forest (TSF) (9.47?±?1.65 Mg ha?1) was similar to that in man-made tropical forest (MTF) (9.23?±?1.29 Mg ha?1) (P?>?0.05) but both were significantly lower than that in secondary tropical forest (STF) (12.96?±?1.71 Mg ha?1) (P?<?0.05). The annual variation of litterfall was greater in TSF (17.4%, P?<?0.05) than in MTF (14.0%) or STF (13.2%). The annual mean decomposition rate of litterfall increased followed the order of MTF (2.72)?<?TSF (3.15)?<?STF (3.50) (P?<?0.05), which was not correlated with annual precipitation or annual mean temperature, but was rather related to litter quality. The nutrient use efficiency was found to be element-dependent and to vary significantly among the three forest types (P?<?0.05). These results indicate that litterfall production and decomposition rates in different tropical forest systems are related to plant species composition and are influenced strongly by coexisting species and their life stage (age) but less so by the species richness. Constructing multi-species and multistory man-made tropical forest is an effective way to enhance biological productivity and maintain soil nutrients on degraded tropical land.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号