首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
A common characteristic of aging is defective regeneration of skeletal muscle. The molecular pathways underlying age‐related decline in muscle regenerative potential remain elusive. microRNAs are novel gene regulators controlling development and homeostasis and the regeneration of most tissues, including skeletal muscle. Here, we use satellite cells and primary myoblasts from mice and humans and an in vitro regeneration model, to show that disrupted expression of microRNA‐143‐3p and its target gene, Igfbp5, plays an important role in muscle regeneration in vitro. We identified miR‐143 as a regulator of the insulin growth factor‐binding protein 5 (Igfbp5) in primary myoblasts and show that the expression of miR‐143 and its target gene is disrupted in satellite cells from old mice. Moreover, we show that downregulation of miR‐143 during aging may act as a compensatory mechanism aiming at improving myogenesis efficiency; however, concomitant upregulation of miR‐143 target gene, Igfbp5, is associated with increased cell senescence, thus affecting myogenesis. Our data demonstrate that dysregulation of miR‐143‐3p:Igfbp5 interactions in satellite cells with age may be responsible for age‐related changes in satellite cell function.  相似文献   

3.
Sarcopenia, the loss of skeletal muscle mass and function during aging, is a major contributor to disability and frailty in the elderly. Previous studies found a protective effect of reduced histone deacetylase activity in models of neurogenic muscle atrophy. Because loss of muscle mass during aging is associated with loss of motor neuron innervation, we investigated the potential for the histone deacetylase (HDAC) inhibitor butyrate to modulate age‐related muscle loss. Consistent with previous studies, we found significant loss of hindlimb muscle mass in 26‐month‐old C57Bl/6 female mice fed a control diet. Butyrate treatment starting at 16 months of age wholly or partially protected against muscle atrophy in hindlimb muscles. Butyrate increased muscle fiber cross‐sectional area and prevented intramuscular fat accumulation in the old mice. In addition to the protective effect on muscle mass, butyrate reduced fat mass and improved glucose metabolism in 26‐month‐old mice as determined by a glucose tolerance test. Furthermore, butyrate increased markers of mitochondrial biogenesis in skeletal muscle and whole‐body oxygen consumption without affecting activity. The increase in mass in butyrate‐treated mice was not due to reduced ubiquitin‐mediated proteasomal degradation. However, butyrate reduced markers of oxidative stress and apoptosis and altered antioxidant enzyme activity. Our data is the first to show a beneficial effect of butyrate on muscle mass during aging and suggests HDACs contribute to age‐related muscle atrophy and may be effective targets for intervention in sarcopenia and age‐related metabolic disease.  相似文献   

4.
Muscle stem (satellite) cells are relatively resistant to cell‐autonomous aging. Instead, their endogenous signaling profile and regenerative capacity is strongly influenced by the aged P‐Smad3, differentiated niche, and by the aged circulation. With respect to muscle fibers, we previously established that a shift from active Notch to excessive transforming growth factor‐beta (TGF‐β) induces CDK inhibitors in satellite cells, thereby interfering with productive myogenic responses. In contrast, the systemic inhibitor of muscle repair, elevated in old sera, was suggested to be Wnt. Here, we examined the age‐dependent myogenic activity of sera TGF‐β1, and its potential cross‐talk with systemic Wnt. We found that sera TGF‐β1 becomes elevated within aged humans and mice, while systemic Wnt remained undetectable in these species. Wnt also failed to inhibit satellite cell myogenicity, while TGF‐β1 suppressed regenerative potential in a biphasic fashion. Intriguingly, young levels of TGF‐β1 were inhibitory and young sera suppressed myogenesis if TGF‐β1 was activated. Our data suggest that platelet‐derived sera TGF‐β1 levels, or endocrine TGF‐β1 levels, do not explain the age‐dependent inhibition of muscle regeneration by this cytokine. In vivo, TGF‐β neutralizing antibody, or a soluble decoy, failed to reduce systemic TGF‐β1 and rescue myogenesis in old mice. However, muscle regeneration was improved by the systemic delivery of a TGF‐β receptor kinase inhibitor, which attenuated TGF‐β signaling in skeletal muscle. Summarily, these findings argue against the endocrine path of a TGF‐β1‐dependent block on muscle regeneration, identify physiological modalities of age‐imposed changes in TGF‐β1, and introduce new therapeutic strategies for the broad restoration of aged organ repair.  相似文献   

5.
Pairing two animals in parabiosis to test for systemic or circulatory factors from one animal affecting the other animal has been used in scientific studies for at least 150 years. These studies have led to advances in fields as diverse as endocrinology, immunology, and oncology. A variation on the technique, heterochronic parabiosis, whereby two animals of different ages are joined to test for systemic regulators of aspects of aging or age‐related diseases also has almost a century‐long scientific history. In this review, we focus on the history of heterochronic parabiosis, methodological considerations and caveats, and the major advances that have emerged from those studies, including recent advances in our understanding of stem cell aging.  相似文献   

6.
7.
The decline in skeletal muscle mass and strength occurring in aging, referred as sarcopenia, is the result of many factors including an imbalance between protein synthesis and degradation, changes in metabolic/hormonal status, and in circulating levels of inflammatory mediators. Thus, factors that increase muscle mass and promote anabolic pathways might be of therapeutic benefit to counteract sarcopenia. Among these, the insulin‐like growth factor‐1 (IGF‐1) has been implicated in many anabolic pathways in skeletal muscle. IGF‐1 exists in different isoforms that might exert different role in skeletal muscle. Here we study the effects of two full propeptides IGF‐1Ea and IGF‐1Eb in skeletal muscle, with the aim to define whether and through which mechanisms their overexpression impacts muscle aging. We report that only IGF‐1Ea expression promotes a pronounced hypertrophic phenotype in young mice, which is maintained in aged mice. Nevertheless, examination of aged transgenic mice revealed that the local expression of either IGF‐1Ea or IGF‐1Eb transgenes was protective against age‐related loss of muscle mass and force. At molecular level, both isoforms activate the autophagy/lysosome system, normally altered during aging, and increase PGC1‐α expression, modulating mitochondrial function, ROS detoxification, and the basal inflammatory state occurring at old age. Moreover, morphological integrity of neuromuscular junctions was maintained and preserved in both MLC/IGF‐1Ea and MLC/IGF‐1Eb mice during aging. These data suggest that IGF‐1 is a promising therapeutic agent in staving off advancing muscle weakness.  相似文献   

8.
9.
10.
Skeletal muscle aging is accompanied by loss of muscle mass and strength. Examining changes in myonuclear proteins with age would provide insight into molecular processes which regulate these profound changes in muscle physiology. However, muscle tissue is highly adapted for contraction and thus comprised largely of contractile proteins making the nuclear proteins difficult to identify from whole muscle samples. By developing a method to purify myonuclei from whole skeletal muscle, we were able to collect myonuclei for analysis by flow cytometry, biochemistry, and mass spectrometry. Nuclear purification dramatically increased the number and intensity of nuclear proteins detected by mass spectrometry compared to whole tissue. We exploited this increased proteomic depth to investigate age‐related changes to the myonuclear proteome. Nuclear levels of 54 of 779 identified proteins (7%) changed significantly with age; these proteins were primarily involved in chromatin maintenance and RNA processing. To determine whether the changes we detected were specific to myonuclei or were common to nuclei of excitatory tissues, we compared aging in myonuclei to aging in brain nuclei. Although several of the same processes were affected by aging in both brain and muscle nuclei, the specific proteins involved in these alterations differed between the two tissues. Isolating myonuclei allowed a deeper view into the myonuclear proteome than previously possible facilitating identification of novel age‐related changes in skeletal muscle. Our technique will enable future studies into a heretofore underrepresented compartment of skeletal muscle.  相似文献   

11.
To extend life expectancy and ensure healthy aging, it is crucial to prevent and minimize age‐induced skeletal muscle atrophy, also known as sarcopenia. However, the disease's molecular mechanism remains unclear. The age‐related Wnt/β‐catenin signaling pathway has been recently shown to be activated by the (pro)renin receptor ((P)RR). We report here that (P)RR expression was increased in the atrophied skeletal muscles of aged mice and humans. Therefore, we developed a gain‐of‐function model of age‐related sarcopenia via transgenic expression of (P)RR under control of the CAG promoter. Consistent with our hypothesis, (P)RR‐Tg mice died early and exhibited muscle atrophy with histological features of sarcopenia. Moreover, Wnt/β‐catenin signaling was activated and the regenerative capacity of muscle progenitor cells after cardiotoxin injury was impaired due to cell fusion failure in (P)RR‐Tg mice. In vitro forced expression of (P)RR protein in C2C12 myoblast cells suppressed myotube formation by activating Wnt/β‐catenin signaling. Administration of Dickkopf‐related protein 1, an inhibitor of Wnt/β‐catenin signaling, and anti‐(P)RR neutralizing antibody, which inhibits binding of (P)RR to the Wnt receptor, significantly improved sarcopenia in (P)RR‐Tg mice. Furthermore, the use of anti‐(P)RR neutralizing antibodies significantly improved the regenerative ability of skeletal muscle in aged mice. Finally, we show that Yes‐associated protein (YAP) signaling, which is coordinately regulated by Wnt/β‐catenin, contributed to the development of (P)RR‐induced sarcopenia. The present study demonstrates the use of (P)RR‐Tg mice as a novel sarcopenia model, and shows that (P)RR‐Wnt‐YAP signaling plays a pivotal role in the pathogenesis of this disease.  相似文献   

12.
13.
Aging is the single largest risk factor for chronic disease. Studies in model organisms have identified conserved pathways that modulate aging rate and the onset and progression of multiple age‐related diseases, suggesting that common pathways of aging may influence age‐related diseases in humans as well. To determine whether there is genetic evidence supporting the notion of common pathways underlying age‐related diseases, we analyzed the genes and pathways found to be associated with five major categories of age‐related disease using a total of 410 genomewide association studies (GWAS). While only a small number of genes are shared among all five disease categories, those found in at least three of the five major age‐related disease categories are highly enriched for apoliprotein metabolism genes. We found that a more substantial number of gene ontology (GO) terms are shared among the 5 age‐related disease categories and shared GO terms include canonical aging pathways identified in model organisms, such as nutrient‐sensing signaling, translation, proteostasis, stress responses, and genome maintenance. Taking advantage of the vast amount of genetic data from the GWAS, our findings provide the first direct evidence that conserved pathways of aging simultaneously influence multiple age‐related diseases in humans as has been demonstrated in model organisms.  相似文献   

14.
Loss of skeletal muscle mass is one of the most widespread and deleterious processes in aging humans. However, the mechanistic metabolic principles remain poorly understood. In the framework of a multi‐organ investigation of age‐associated changes of ceramide species, a unique and distinctive change pattern of C16:0 and C18:0 ceramide species was detected in aged skeletal muscle. Consistently, the expression of CerS1 and CerS5 mRNA, encoding the ceramide synthases (CerS) with substrate preference for C16:0 and C18:0 acyl chains, respectively, was down‐regulated in skeletal muscle of aged mice. Similarly, an age‐dependent decline of both CerS1 and CerS5 mRNA expression was observed in skeletal muscle biopsies of humans. Moreover, CerS1 and CerS5 mRNA expression was also reduced in muscle biopsies from patients in advanced stage of chronic heart failure (CHF) suffering from muscle wasting and frailty. The possible impact of CerS1 and CerS5 on muscle function was addressed by reversed genetic analysis using CerS1Δ/Δ and CerS5Δ/Δ knockout mice. Skeletal muscle from mice deficient of either CerS1 or CerS5 showed reduced caliber sizes of both slow (type 1) and fast (type 2) muscle fibers, fiber grouping, and fiber switch to type 1 fibers. Moreover, CerS1‐ and CerS5‐deficient mice exhibited reduced twitch and tetanus forces of musculus extensor digitorum longus. The findings of this study link CerS1 and CerS5 to histopathological changes and functional impairment of skeletal muscle in mice that might also play a functional role for the aging skeletal muscle and for age‐related muscle wasting disorders in humans.  相似文献   

15.
16.
Alavez S  Lithgow GJ 《Aging cell》2012,11(2):187-191
Over the last 10 years, various screens of small molecules have been conducted to find long sought interventions in aging. Most of these studies were performed in invertebrates but the demonstration of pharmacological lifespan extension in the mouse has created considerable excitement. Since aging is a common risk factor for several chronic diseases, there is a reasonable expectation that some compounds capable of extending lifespan will be useful for preventing a range of age‐related diseases. One of the potential targets is protein aggregation which is associated with several age‐related diseases. Genetic studies have long indicated that protein homeostasis is a critical component of longevity but recently a series of chemicals have been identified in the nematode Caenorhabditis elegans that lead to the maintenance of the homeostatic network and extend lifespan. Herein we review these interventions in C. elegans and consider the potential of improving health by enhancing protein homeostasis.  相似文献   

17.
One of the key mechanisms underlying skeletal muscle functional deterioration during aging is disrupted mitochondrial dynamics. Regulation of mitochondrial dynamics is essential to maintain a healthy mitochondrial population and prevent the accumulation of damaged mitochondria; however, the regulatory mechanisms are poorly understood. We demonstrated loss of mitochondrial content and disrupted mitochondrial dynamics in muscle during aging concomitant with dysregulation of miR‐181a target interactions. Using functional approaches and mito‐QC assay, we have established that miR‐181a is an endogenous regulator of mitochondrial dynamics through concerted regulation of Park2, p62/SQSTM1, and DJ‐1 in vitro. Downregulation of miR‐181a with age was associated with an accumulation of autophagy‐related proteins and abnormal mitochondria. Restoring miR‐181a levels in old mice prevented accumulation of p62, DJ‐1, and PARK2, and improved mitochondrial quality and muscle function. These results provide physiological evidence for the potential of microRNA‐based interventions for age‐related muscle atrophy and of wider significance for diseases with disrupted mitochondrial dynamics.  相似文献   

18.
19.
Skeletal muscle aging is a major cause of disability and frailty in the elderly. The progressive impairment of skeletal muscle function with aging was recently linked to a disequilibrium between damage and repair. Macrophages participate in muscle tissue repair, first as pro‐inflammatory M1 subtype and then as anti‐inflammatory M2 subtype. However, information on the presence of macrophages in skeletal muscle is still sporadic and the effect of aging on macrophage phenotype remains unknown. In this study, we sought to characterize the polarization status of macrophages in skeletal muscle of persons across a wide range of ages. We found that most macrophages in human skeletal muscle are M2, and that this number increased with advancing age. On the contrary, M1 macrophages declined with aging, making the total number of macrophages invariant with older age. Notably, M2 macrophages colocalized with increasing intermuscular adipose tissue (IMAT) in aging skeletal muscle. Similarly, aged BALB/c mice showed increased IMAT and M2 macrophages in skeletal muscle, accompanied by slightly increased collagen protein production. Collectively, we report that polarization of macrophages to the major M2 subtype is associated with IMAT and propose that increased M2 in aged skeletal muscle may impact upon muscle metabolism associated with aging.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号