首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Knockdown of Akt1 promotes Epithelial-to-Mesenchymal Transition in breast cancer cells. However, the mechanisms are not completely understood.

Methods

Western blotting, immunofluorescence, luciferase assay, real time PCR, ELISA and Matrigel invasion assay were used to investigate how Akt1 inhibition promotes breast cancer cell invasion in vitro. Mouse model of lung metastasis was used to measure in vivo efficacy of Akt inhibitor MK2206 and its combination with Gefitinib.

Results

Knockdown of Akt1 stimulated β-catenin nuclear accumulation, resulting in breast cancer cell invasion. β-catenin nuclear accumulation induced by Akt1 inhibition depended on the prolonged activation of EGFR signaling pathway in breast cancer cells. Mechanistic experiments documented that knockdown of Akt1 inactivates PIKfyve via dephosphorylating of PIKfyve at Ser318 site, resulting in a decreased degradation of EGFR signaling pathway. Inhibition of Akt1 using MK2206 could induce an increase in the expression of EGFR and β-catenin in breast cancer cells. In addition, MK2206 at a low dosage enhance breast cancer metastasis in a mouse model of lung metastasis, while an inhibitor of EGFR tyrosine kinase Gefitinib could potentially suppress breast cancer metastasis induced by Akt1 inhibition.

Conclusion

EGFR-mediated β-catenin nuclear accumulation is critical for Akt1 inhibition-induced breast cancer metastasis.
  相似文献   

2.

Background

Esophageal squamous cell carcinoma (ESCC) is the most common histological type of esophageal cancer, with a poor prognosis. Deregulation of WNT and NOTCH signaling pathways is important in ESCC progression, which can be due to either malfunction of their components or crosstalk with other pathways. Therefore, identification of new crosstalk between such pathways may be effective to introduce new strategies for targeted therapy of cancer. A correlation study was performed to assess the probable interaction between growth factor receptors and WNT/NOTCH pathways via the epidermal growth factor receptor (EGFR) and Musashi1 (MSI1), respectively.

Methods

Levels of MSI1/EGFR mRNA expression in tumor tissues from 48 ESCC patients were compared to their corresponding normal tissues using real-time polymerase chain reaction.

Results

There was a significant correlation between EGFR and MSI1 expression (p?=?0.05). Moreover, there was a significant correlation between EGFR/MSI1 expression and grade of tumor differentiation (p?=?0.02).

Conclusion

This study confirms a direct correlation between MSI1 and EGFR and may support the important role of MSI1 in activation of EGFR through NOTCH/WNT pathways in ESCC.
  相似文献   

3.
4.

Background

The dismal outcome of malignant peripheral nerve sheath tumor (MPNST) highlights the necessity of finding new therapeutic methods to benefit patients with this aggressive sarcoma. Our purpose was to investigate epidermal growth factor receptor (EGFR) as a potential therapeutic target in MPNSTs.

Patients and methods

We performed a microarray based-comparative genomic hybridization (aCGH) profiling of two cohorts of primary MPNST tissue samples including 25 patients treated at The University of Texas MD Anderson Cancer Center (MD Anderson) and 26 patients from Tianjin Medical University Cancer Institute & Hospital (TMUCIH). Fluorescence in situ hybridization (FISH) method was used to validate the gene amplification detected by aCGH analysis. Another independent cohort of 56 formalin fixed paraffin embedded (FFPE) MPNST samples was obtained to explore EGFR protein expression by immunohistochemical analysis. Cell biology detection and validation were performed on human MPNST cell lines ST88-14 and STS26T.

Results

aCGH and pathway analysis of the 51 MPNSTs identified significant gene amplification events in EGFR pathway, including frequent amplifications of EGFR gene itself, which was subsequently validated by FISH assay. High expression of EGFR protein was associated with poor disease-free and overall survival of human MPNST patients. In human MPNST cell lines ST88-14 and STS26T, inhibition of EGFR by siRNA or Gefitinib led to decreased cell proliferation, migration, and invasion accompanied by attenuation of PI3K/AKT and MAPK pathways.

Conclusion

These results suggest that EGFR is a potential therapeutic target for MPNST.
  相似文献   

5.

Objective

To promote targeting specificity of anti-CD47 agents, we have constructed a novel bispecific antibody fusion protein against EGFR and CD47, which may minimize the “off-target” effects caused by CD47 expression on red blood cells.

Results

The novel bispecific antibody fusion protein, denoted as Bi-SP could simultaneously bind to EGFR and CD47 and exhibited potent phagocytosis-stimulation effects in vitro. Bi-SP treatment with a low dose more effectively inhibited tumor growth than either EGFR-targeting antibody, Pan or the SIRPα variant-Fc (SIRPαV-Fc) in the A431 xenograft tumor model. In addition, the treatment with Bi-SP produced less red blood cell (RBC) losses than the SIRPαV-Fc treatment, suggesting its potential use for minimizing RBC toxicity in therapy.

Conclusions

Bi-SP with improved therapeutic index has the potential to treat CD47+ and EGFR+ cancers in clinics.
  相似文献   

6.

Background

Inflammatory conditions are involved in the pathophysiology of cancer. Recent findings have revealed that excessive salt and fat intake is involved in the development of severe inflammatory reactions.

Methods

literature search was performed on various online databases (PubMed, Scopus, and Google Scholar) regarding the roles of high salt and fat intake in the induction of inflammatory reactions and their roles in the etiopathogenesis of cancer.

Results

The results indicate that high salt and fat intake can induce severe inflammatory conditions. However, various inflammatory conditions have been strongly linked to the development of cancer. Hence, high salt and fat intake might be involved in the pathogenesis of cancer progression via putative mechanisms related to inflammatory reactions.

Conclusion

Reducing salt and fat intake may decrease the risk of cancer.
  相似文献   

7.
8.

Background

Kallistatin is a serine proteinase inhibitor and heparin-binding protein. It is considered an endogenous angiogenic inhibitor. In addition, multiple studies demonstrated that kallistatin directly inhibits cancer cell growth. However, the molecular mechanisms underlying these effects remain unclear.

Methods

Pull-down, immunoprecipitation, and immunoblotting were used for binding experiments. To elucidate the mechanisms, integrin β3 knockdown (siRNA) or blockage (antibody treatment) on the cell surface of small the cell lung cancer NCI-H446 cell line was used.

Results

Interestingly, kallistatin was capable of binding integrin β3 on the cell surface of NCI-H446 cells. Meanwhile, integrin β3 knockdown or blockage resulted in loss of antitumor activities induced by kallistatin. Furthermore, kallistatin suppressed tyrosine phosphorylation of integrin β3 and its downstream signaling pathways, including FAK/-Src, AKT and Erk/MAPK. Viability, proliferation and migration of NCI-H446 cells were inhibited by kallistatin, with Bcl-2 and Grb2 downregulation, and Bax, cleaved caspase-9 and caspase 3 upregulation.

Conclusions

These findings reveal a novel role for kallistatin in preventing small cell lung cancer growth and mobility, by direct interaction with integrin β3, leading to blockade of the related signaling pathway.
  相似文献   

9.

Introduction

Hypoxia commonly occurs in cancers and is highly related with the occurrence, development and metastasis of cancer. Treatment of triple negative breast cancer remains challenge. Knowledge about the metabolic status of triple negative breast cancer cell lines in hypoxia is valuable for the understanding of molecular mechanisms of this tumor subtype to develop effective therapeutics.

Objectives

Comprehensively characterize the metabolic profiles of triple negative breast cancer cell line MDA-MB-231 in normoxia and hypoxia and the pathways involved in metabolic changes in hypoxia.

Methods

Differences in metabolic profiles affected pathways of MDA-MB-231 cells in normoxia and hypoxia were characterized using GC–MS based untargeted and stable isotope assisted metabolomic techniques.

Results

Thirty-three metabolites were significantly changed in hypoxia and nine pathways were involved. Hypoxia increased glycolysis, inhibited TCA cycle, pentose phosphate pathway and pyruvate carboxylation, while increased glutaminolysis in MDA-MB-231 cells.

Conclusion

The current results provide metabolic differences of MDA-MB-231 cells in normoxia and hypoxia conditions as well as the involved metabolic pathways, demonstrating the power of combined use of untargeted and stable isotope-assisted metabolomic methods in comprehensive metabolomic analysis.
  相似文献   

10.

Introduction

Cellular metabolism is altered during cancer initiation and progression, which allows cancer cells to increase anabolic synthesis, avoid apoptosis and adapt to low nutrient and oxygen availability. The metabolic nature of cancer enables patient cancer status to be monitored by metabolomics and lipidomics. Additionally, monitoring metabolic status of patients or biological models can be used to greater understand the action of anticancer therapeutics.

Objectives

Discuss how metabolomics and lipidomics can be used to (i) identify metabolic biomarkers of cancer and (ii) understand the mechanism-of-action of anticancer therapies. Discuss considerations that can maximize the clinical value of metabolic cancer biomarkers including case–control, prognostic and longitudinal study designs.

Methods

A literature search of the current relevant primary research was performed.

Results

Metabolomics and lipidomics can identify metabolic signatures that associate with cancer diagnosis, prognosis and disease progression. Discriminatory metabolites were most commonly linked to lipid or energy metabolism. Case–control studies outnumbered prognostic and longitudinal approaches. Prognostic studies were able to correlate metabolic features with future cancer risk, whereas longitudinal studies were most effective for studying cancer progression. Metabolomics and lipidomics can help to understand the mechanism-of-action of anticancer therapeutics and mechanisms of drug resistance.

Conclusion

Metabolomics and lipidomics can be used to identify biomarkers associated with cancer and to better understand anticancer therapies.
  相似文献   

11.

Objective

To study the effects of recombinant neuritin expressed by Pichia pastoris GS115 on the senescence, apoptosis, proliferation, and migration associated with rat bone marrow-derived mesenchymal stem cells (BMSCs).

Results

Recombinant neuritin was purified by Ni-affinity chromatography and identified by western blot and MALDI-TOF spectrometry. The effects of recombinant neuritin on senescence, apoptosis, proliferation, and migration of rat BMSCs WERE investigated. β-Galactosidase staining indicated that recombinant neuritin administration significantly inhibited BMSCs senescence at 1 μg neuritin/ml. Additionally, recombinant neuritin reduced the number of apoptotic cells at the early stage according to Annexin V/propidium iodide staining and inhibited cell proliferation according to MTT assay results. Moreover wound healing assay results showed that recombinant neuritin promoted BMSCs migration in the neuritin-treatment group.

Conclusion

Recombinant neuritin affects the senescence, apoptosis, proliferation, migration of rat BMSCs. Our findings offer insight into neuritin function outside of the nervous system.
  相似文献   

12.

Introduction

Although smoking is a major risk factor for pharyngolaryngeal cancer, most smokers do not develop pharyngolaryngeal cancer.

Objectives

In the prospective Korean Cancer Prevention Study-II (KCPS-II), we investigated the application of metabolomics to differentiate smokers with incident pharyngolaryngeal cancer (pharyngolaryngeal cancer group) from smokers who remained free from cancer (controls) during a mean follow-up period of 7 years and aimed to discover valuable early biomarkers of pharyngolaryngeal cancer.

Methods

We used baseline serum samples from 30 smoking men with incident pharyngolaryngeal cancer and 59 age-matched cancer-free smoking men. Metabolic alterations associated with the incidence of pharyngolaryngeal cancer were investigated by performing metabolomics on baseline serum samples using ultra-performance liquid chromatography-linear-trap quadrupole-Orbitrap mass spectrometry.

Results

Compared to the control group, the pharyngolaryngeal cancer group showed significantly higher oxidized LDL levels. Seventeen metabolites were differentially abundant between the two groups. At baseline, compared to controls, smokers with incident pharyngolaryngeal cancer during follow-up showed significantly higher levels of pyroglutamic acid (glutathione metabolism) but lower levels of lysophosphatidylcholines (lysoPCs) C14:0, C15:0, C16:0, C17:0, C18:0, and C20:5; glycerophosphocholine; PC C36:5; lysoPEs C16:0, C20:1, and C22:0 (glycerophospholipid metabolism); SM (d18:0/16:1); and SM (d18:1/18:1) (sphingomyelin metabolism). Furthermore, smokers with incident pharyngolaryngeal cancer showed significantly higher levels of oleamide and lower levels of tryptophan and linoleyl carnitine at baseline than cancer-free smokers.

Conclusion

This prospective study showed the clinical relevance of dysregulated metabolism of glutathione, glycerophospholipids and sphingolipids to the pathogenesis of pharyngolaryngeal cancer among smokers. These data suggest that the dysregulation of these metabolic processes may be a key mechanism underlying pharyngolaryngeal cancer progression and development.
  相似文献   

13.

Background

Cancer-associated fibroblasts (CAFs) are one of the most important components of tumor stroma and play a key role in modulating tumor growth. However, a mechanistic understanding of how CAFs communicate with tumor cells to promote their proliferation and invasion is far from complete. A major reason for this is that most current techniques and model systems do not capture the complexity of signal transduction that occurs between CAFs and tumor cells.

Methods

In this study, we employed a stable isotope labeling with amino acids in cell culture (SILAC) strategy to label invasive breast cancer cells, MDA-MB-231, and breast cancer patient-derived CAF cells. We used an antibody-based phosphotyrosine peptide enrichment method coupled to LC–MS/MS to catalog and quantify tyrosine phosphorylation-mediated signal transduction events induced by the bidirectional communication between patient-derived CAFs and tumor cells.

Results

We discovered that distinct signaling events were activated in CAFs and in tumor epithelial cells during the crosstalk between these two cell types. We identified reciprocal activation of a number of receptor tyrosine kinases including EGFR, FGFR1 and EPHA2 induced by this bidirectional communication.

Conclusions

Our study not only provides insights into the mechanisms of the interaction between CAFs and tumor cells, but the model system described here could be used as a prototype for analysis of intercellular communication in many different tumor microenvironments.
  相似文献   

14.

Background

The aim of this study is to report the outcome after surgical treatment of 32 patients with ampullary cancers from 1990 to 1999.

Methods

Twenty-one of them underwent pancreaticoduodenectomy and 9 local excision of the ampullary lesion. The remaining 2 patients underwent palliative surgery.

Results

When the final histological diagnosis was compared with the preoperative histological finding on biopsy, accurate diagnosis was preoperatively established in 24 patients. The hospital morbidity was 18.8% as 9 complications occurred in 6 patients. Following local excision of the ampullary cancer, the survival rate at 3 and 5 years was 77.7% and 33.3% respectively. Among the patients that underwent Whipple's procedure, the 3-year survival rate was 76.2% and the 5-year survival rate 62%.

Conclusion

In this series, local resection was a safe option in patients with significant co-morbidity or small ampullary tumors less than 2 cm in size, and was associated with satisfactory long-term survival rates.
  相似文献   

15.

Objective

To measure clusterin expression in pancreatic cancer tissues and cell lines and to evaluate whether clusterin confers resistance to gmcitabine in pancreatic cancer cells.

Methods

Immunohistochemistry for clusterin was performed on 50 primary pancreatic cancer tissues and 25 matched backgrounds, and clusterin expression in 5 pancreatic cancer cell lines was quantified by Western blot and PT-PCR. The correlation between clusterin expression level and gmcitabine IC50 in pancreatic cancer cell lines was evaluated. The effect of an antisense oligonucleotide (ASO) against clusterin(OGX-011) on gmcitabine resistance was evaluated by MTT assays. Xenograft model was used to demonstrate tumor growth.

Results

Pancreatic cancer tissues expressed significantly higher levels of clusterin than did normal pancreatic tissues (P < 0.01). Clusterin expression levels were correlated with gmcitabine resistance in pancreatic cancer cell lines, and OGX-011 significantly decreased BxPc-3 cells resistance to gmcitabine (P < 0.01). In vivo systemic administration of AS clusterin and gmcitabine significantly decreased the s.c. BxPC-3 tumor volume compared with mismatch control ODN plus gmcitabine.

Conclusion

Our finding that clusterin expression was significantly higher in pancreatic cancer than in normal pancreatic tissues suggests that clusterin may confer gmcitabine resistance in pancreatic cancer cells.
  相似文献   

16.

Background

Tyro3, Axl, and Mertk (TAMs) are a family of three conserved receptor tyrosine kinases that have pleiotropic roles in innate immunity and homeostasis and when overexpressed in cancer cells can drive tumorigenesis.

Methods

In the present study, we engineered EGFR/TAM chimeric receptors (EGFR/Tyro3, EGFR/Axl, and EGF/Mertk) with the goals to interrogate post-receptor functions of TAMs, and query whether TAMs have unique or overlapping post-receptor activation profiles. Stable expression of EGFR/TAMs in EGFR-deficient CHO cells afforded robust EGF inducible TAM receptor phosphorylation and activation of downstream signaling.

Results

Using a series of unbiased screening approaches, that include kinome-view analysis, phosphor-arrays, RNAseq/GSEA analysis, as well as cell biological and in vivo readouts, we provide evidence that each TAM has unique post-receptor signaling platforms and identify an intrinsic role for Axl that impinges on cell motility and invasion compared to Tyro3 and Mertk.

Conclusion

These studies demonstrate that TAM show unique post-receptor signatures that impinge on distinct gene expression profiles and tumorigenic outcomes.
  相似文献   

17.

Background

The HER3 receptor functions as a major cause of drug resistance in cancer treatment. It is believed that therapeutic targeting of HER3 is required to improve patient outcomes. It is not clear whether a novel strategy with two functional cooperative miRNAs would effectively inhibit erbB3 expression and potentiate the anti-proliferative/anti-survival effects of a HER2-targeted therapy (trastuzumab) and chemotherapy (paclitaxel) on HER2-overexpressing breast cancer cells.

Results

Combination of miR-125a and miR-205, as compared to either miRNA alone, potently inhibited expression of HER3 in HER2-overexpressing breast cancer BT474 cells. Co-expression of the two miRNAs not only reduced the levels of phosphorylated erbB3 (P-erbB3), Akt (P-Akt), and Src (P-Src), it also inhibited cell proliferation and increased cells at G1 phase. A multi-miRNA lentiviral vector - the cluster of miR-125a and miR-205 - was constructed to simultaneously express the two miRNAs in HER2-overexpressing breast cancer cells. Concurrent expression of miR-125a and miR-205 via the miRNA cluster transfection significantly enhanced trastuzumab-mediated growth inhibition and cell cycle G1 arrest in BT474 cells and markedly increased paclitaxel-induced apoptosis in another HER2-overexpressing breast cancer cell line HCC1954.

Conclusions

Here, we showed that functional cooperative miRNAs effectively suppressed erbB3 expression. This novel approach targeting of HER3 was able to enhance the therapeutic efficacy of trastuzumab and paclitaxel against HER2-overexpressing breast cancer.
  相似文献   

18.

Background

Programmed cell death 1 (PD-1) functions as an immune checkpoint in the process of anti-tumor immune response. The PD-1 blockade is now becoming a fundamental part in cancer immunotherapy. So it’s essential to elicit the PD-1 related immune process in different types of cancer.

Methods

The Cancer Genome Atlas was used to collect the RNA-seq data of 33 cancer types. The microenvironment cell populations-counter was used to analyze the immune cell infiltrates. KEGG and GO analysis were performed to investigate PD-1 associated biological process. Kaplan–Meier survival curves and Cox’s proportional hazards model were performed for prognostic value analysis.

Results

We demonstrated that PD-1 expression varied in different cancer types. The uveal melanoma had a low PD-1 expression and poor infiltrated with immune cells. But it showed the strong correlation of PD-1 with the most types of immune cells. The PD-1 demonstrated a robust relationship with other immunomodulators and showed its involvement in critical functions correlated with anti-tumor immune pathways. Survival analysis indicated the PD-1 expression suggested different prognosis in different cancer types.

Conclusions

Our investigations promote a better understanding of the PD-1 blockade and provide PD-1 related personized combined immunotherapy for different types of cancer patients.
  相似文献   

19.

Background

Inhibition of the PD-L1/PD-1 immune checkpoint axis represents one of the most promising approaches of immunotherapy for various cancer types. However, immune checkpoint inhibition is successful only in subpopulations of patients emphasizing the need for powerful biomarkers that adequately reflect the complex interaction between the tumor and the immune system. Recently, recurrent copy number gains (CNG) in chromosome 9p involving PD-L1 were detected in many cancer types including lung cancer, melanoma, bladder cancer, head and neck cancer, cervical cancer, soft tissue sarcoma, prostate cancer, gastric cancer, ovarian cancer, and triple-negative breast cancer.

Methods

Here, we applied functional genomics to analyze global mRNA expression changes associated with chromosome 9p gains. Using the TCGA data set, we identified a list of 75 genes that were strongly up-regulated in tumors with chromosome 9p gains across many cancer types.

Results

As expected, the gene set was enriched for chromosome 9p and in particular chromosome 9p24 (36 genes and 23 genes). Furthermore, we found enrichment of two expression programs derived from genes within and beyond 9p: one implicated in cell cycle regulation (22 genes) and the other implicated in modulation of the immune system (16 genes). Among these were specific cytokines and chemokines, e.g. CCL4, CCL8, CXCL10, CXCL11, other immunoregulatory genes such as IFN-G and IDO1 as well as highly expressed proliferation-related kinases and genes including PLK1, TTK, MELK and CDC20 that represent potential drug targets.

Conclusions

Collectively, these data shed light on mechanisms of immune escape and stimulation of proliferation in cancer with PD-L1 CNG and highlight additional vulnerabilities that may be therapeutically exploitable.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号