首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Closely related taxa living in sympatry provide good opportunities to investigate the origin of barriers to gene flow as well as the extent of reproductive isolation. The only two recognized subspecies of the Chinese rufous horseshoe bat Rhinolophus sinicus are characterized by unusual relative distributions in which R. s. septentrionalis is restricted to a small area within the much wider range of its sister taxon R. s. sinicus. To determine the history of lineage divergence and gene flow between these taxa, we applied phylogenetic, demographic and coalescent analyses to multi-locus datasets. MtDNA gene genealogies and microsatellite-based clustering together revealed three divergent lineages of sinicus, corresponding to Central China, East China and the offshore Hainan Island. However, the central lineage of sinicus showed a closer relationship with septentrionalis than with other lineages of R. s. sinicus, in contrary to morphological data. Paraphyly of sinicus could result from either past asymmetric mtDNA introgression between these two taxa, or could suggest septentrionalis evolved in situ from its more widespread sister subspecies. To test between these hypotheses, we applied coalescent-based phylogenetic reconstruction and Approximate Bayesian Computation (ABC). We found that septentrionalis is likely to be the ancestral taxon and therefore a recent origin of this subspecies can be ruled out. On the other hand, we found a clear signature of asymmetric mtDNA gene flow from septentrionalis into central populations of sinicus yet no nuclear gene flow, thus strongly pointing to historical mtDNA introgression. We suggest that the observed deeply divergent lineages within R. sinicus probably evolved in isolation in separate Pleistocene refugia, although their close phylogeographic correspondence with distinct eco-environmental zones suggests that divergent selection might also have promoted broad patterns of population genetic structure.  相似文献   

2.
The utility and reliability of mitochondrial DNA sequences in phylogenetic and phylogeographic studies may be compromised by widespread and undetected nuclear mitochondrial copies (numts) as well as heteroplasmy within individuals. Both numts and heteroplasmy are likely to be common across diverse taxa yet few studies have characterised their frequencies and variation at the intra-specific level. Here we report the presence of both numts and heteroplasmy in the mitochondrial control region of the Chinese horseshoe bat Rhinolophus sinicus. In total we generated 123 sequences from 18 bats, which contained two different numt clades (i.e. Numt-1 and Numt-2) and one mtDNA clade. The sequence divergence between Numt-1 and Numt-2 was 16.8% and each numt type was found in all four R. sinicus taxa, suggesting either two ancient translocations of mitochondrial DNA into the nucleus from the same source taxon, or a single translocation from different source taxa that occurred before the split of R. sinicus into different lineages. Within the mtDNA clade, phylogenetic relationships among the four taxa of R. sinicus were similar to those seen in previous results. Based on PCR comparisons, heteroplasmy was inferred between almost all individuals of R. sinicus with respect to sequence variation. Consistent with introgression of mtDNA between Central sinicus and septentrionalis, individuals from these two taxa exhibited similar signatures of repeated sequences in the control region. Our study highlights the importance of testing for the presence of numts and heteroplasmy when applying mtDNA markers to phylogenetic studies.  相似文献   

3.
4.
Instances of hybridization between mammalian taxa in the wild are rarely documented. To test for introgression between sibling species of horseshoe bat (Rhinolophus yunanensis and R. pearsoni) and two subspecies of the latter (R. p. pearsoni and R. p. chinensis), we sequenced two mtDNA and two ncDNA markers in individuals sampled from multiple localities within their overlapping ranges. The interspecific mtDNA gene tree corresponded to the expected taxonomic divisions, and coalescent‐based analyses suggested divergence occurred around 4 MYA. However, these relationships strongly conflicted with those recovered from two independent nuclear gene trees, in which R. yunanensis clustered with R. p. pearsoni to the exclusion of R. p. chinensis. This geographically widespread discordance is best explained by large‐scale historical introgression of ncDNA from R. yunanensis to R. pearsoni by male‐mediated exchange in mixed species colonies during Pleistocene glacial periods, when ranges may have contracted and overlapped more than at present. Further species tree–gene tree conflicts were detected between R. p. pearsoni and R. p. chinensis, also indicating past and/or current introgression in their overlapping regions. However, here the patterns point to asymmetric mtDNA introgression without ncDNA introgression. Analyses of coalescence times indicate this exchange has occurred subsequent to the divergence of these subspecies from their common ancestor. Our work highlights the importance of using multiple data sets for reconstructing phylogeographic histories and resolving taxonomic relationships.  相似文献   

5.
Phylogenetic conflicts between genetic markers can help to disentangle complex histories of phylogeography and introgression among taxa. We previously proposed that the Chinese mainland subspecies of the intermediate horseshoe bat Rhinolophus affinis himalayanus colonized Hainan Island to form the subspecies R. a. hainanus. Subsequent recolonization of the mainland formed a third taxon, R. a macrurus, and a secondary contact zone with the ancestral himalayanus. To test for historical and recurrent genetic exchange between these mainland subspecies, we sampled populations of each from two parapatric zones and undertook analyses using one mtDNA marker, three nuclear genes and 14 microsatellites. Nuclear DNA, echolocation call frequencies and morphological data all recovered two taxa; however, a mtDNA phylogeny revealed two himalayanus clades, of which one clustered with macrurus, as well as some shared or related mtDNA haplotypes in eastern populations. Isolation‐with‐migration (IM) models suggested some mtDNA gene flow from macrurus to himalayanus. However, strong population structure in himalayanus raises the possibility that macrurus captured mtDNA from a coastal population of himalayanus that has since become rare or extinct. To reconcile these two sets of results, we suggest that the IM estimates might reflect historical mtDNA gene flow among populations of himalayanus, before mtDNA was subsequently captured by macrurus. Finally, microsatellite‐based ABC analyses supported the island origin of macrurus; however, mtDNA‐based ABC analyses suggest this taxon might have evolved on the mainland. Our findings highlight the importance of understanding population history and structure for interpreting hybridization and introgression events.  相似文献   

6.
Tertiary cormorant fossils (Aves: Phalacrocoracidae) from Late Oligocene deposits in Australia are described. They derive from the Late Oligocene – Early Miocene (26–24 Mya) Etadunna and Namba Formations in the Lake Eyre and Lake Frome Basins, South Australia, respectively. A new genus, Nambashag gen. nov. , with two new species ( Nambashag billerooensis sp. nov. , 30 specimens; Nambashag microglaucus sp. nov. , 14 specimens), has been established. Phylogenetic analyses based on 113 morphological and two integumentary characters indicated that Nambashag is the sister taxon to the Early Miocene Nectornis miocaenus of Europe and all extant phalacrocoracids. As Nambashag, Nectornis, and extant phalacrocoracids constitute a strongly supported clade sister to Anhinga species, the fossil taxa have been referred to Phalacrocoracidae. Sulids and Fregata were successive sister taxa to the Phalacrocoracoidea, i.e. phalacrocoracids + Anhinga. As phalacrocoracids lived in both Europe and Australia during the Late Oligocene and no older phalacrocoracid taxa are known, the biogeographical origin of cormorants remains unanswered. The phylogenetic relationships of extant taxa were not wholly resolved, but contrary to previous morphological analyses, considerable concordance was found with relationships recovered by recent molecular analyses. Microcarbo is sister to all other extant phalacrocoracids, and all Leucocarbo species form a well‐supported clade. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 163 , 277–314.  相似文献   

7.
Black rats are major invasive vertebrate pests with severe ecological, economic and health impacts. Remarkably, their evolutionary history has received little attention, and there is no firm agreement on how many species should be recognized within the black rat complex. This species complex is native to India and Southeast Asia. According to current taxonomic classification, there are three taxa living in sympatry in several parts of Thailand, Cambodia and Lao People's Democratic Republic, where this study was conducted: two accepted species (Rattus tanezumi, Rattus sakeratensis) and an additional mitochondrial lineage of unclear taxonomic status referred to here as ‘Rattus R3’. We used extensive sampling, morphological data and diverse genetic markers differing in rates of evolution and parental inheritance (two mitochondrial DNA genes, one nuclear gene and eight microsatellite loci) to assess the reproductive isolation of these three taxa. Two close Asian relatives, Rattus argentiventer and Rattus exulans, were also included in the genetic analyses. Genetic analyses revealed discordance between the mitochondrial and nuclear data. Mitochondrial phylogeny studies identified three reciprocally monophyletic clades in the black rat complex. However, studies of the phylogeny of the nuclear exon interphotoreceptor retinoid‐binding protein gene and clustering and assignation analyses with eight microsatellites failed to separate Rtanezumi and R3. Morphometric analyses were consistent with nuclear data. The incongruence between mitochondrial and nuclear (and morphological) data rendered Rtanezumi/R3 paraphyletic for mitochondrial lineages with respect to Rsakeratensis. Various evolutionary processes, such as shared ancestral polymorphism and incomplete lineage sorting or hybridization with massive mitochondrial introgression between species, may account for this unusual genetic pattern in mammals.  相似文献   

8.
The taxonomic status of Rhinolophus macrotis sensu lato (s.l.) in Vietnam and adjacent territories remains problematic. To address this issue, we performed an integrated study of morphological, acoustic, and genetic characters of R. macrotis s.l. specimens and compared these with sympatric species within the philippinensis group (R. marshalli, R. paradoxolophus, and R. rex). Our results reveal that in addition to a cryptic species of R. macrotis previously found in Jiangxi and Jingmen, China, R. macrotis s.l. in continental Asia includes three further species, namely R. cf. siamensis, R. cf. macrotis, and R. cf. macrotis “Phia Oac.” These four taxa are distinguished from genuine R. macrotis in Nepal and R. siamensis in Thailand by their morphological and/or genetic features. Further taxonomic evaluation of the subspecies of R. macrotis s.l. is needed to determine their affinities with recently recognized cryptic species and to possibly describe new taxa. Our results also show that interspecific divergences in mitochondrial DNA sequences (Cytb and COI genes) among taxa within the philippinensis group (particularly between R. cf. siamensis/R. cf. macrotis and R. rex/R. paradoxolophus) are significantly lower than those of other morphological groups in the genus. These phylogenetic patterns might be explained by recent allopatric speciation or ancient introgression events among ancestors of the taxa during the Pleistocene. However, further investigations including genetic analyses of nuclear genes are needed to test the latter hypothesis.  相似文献   

9.
Range shifts during the Pleistocene shaped the unique phylogeographical structures of numerous species. Accompanying species migration, sister taxa may have experienced multiple introgression events. Here, we report the signature of introgression events in multiple areas in Schizocodon, herbs endemic to Japan, using amplified fragment length polymorphism (AFLP) fingerprinting and plastid DNA haplotyping in 48 populations. Although the present distributions of S. soldanelloides and S. ilicifolius are mainly allopatric, the species share plastid DNA haplotypes in each region (north‐eastern, north‐central, south‐central and south‐western Japan); in contrast, the specific groups were highly supported by AFLP analyses. These results support the occurrence of multiple introgression events in Schizocodon. Notably, the disjunct plastid haplotypes found only in S. ilicifolius var. intercedens suggest complete plastid DNA replacement at local areas from S. soldanelloides into S. ilicifolius var. ilicifolius. Furthermore, we found that S. soldanelloides experienced range contraction and expansion during glacial and interglacial cycles based on mismatch distribution analysis and ecological niche modelling. Based on several pieces of evidence, our study supports the idea that historical range shifts associated with Pleistocene climatic oscillations favoured multiple and regional introgression events in Schizocodon. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 46–63.  相似文献   

10.
11.
中华菊头蝠(Rhinolophus sinicus)主要分布于我国境内,属于典型的洞栖食虫性蝙蝠,具有重要的研究意义与保护价值。近年,在湘西州境内的16个溶洞中对其栖息生态特征进行了观察,共记录到其个体12942只次,数据分析结果显示:该蝠是该区域溶洞中的居留型优势蝠种,具有集群冬眠的习性。每年的9月中下旬开始逐步聚群冬眠,翌年的3月底开始苏醒,其夏季的繁育场所非常隐蔽,通常位于人无法进入的洞段或人迹罕至的洞穴。总体上,其栖点主要集中于距洞口150—200 m(91.60%)的洞段,离地高度6—10 m(91.75%),多以“双足悬挂”的栖姿将身体悬空倒挂于洞道的顶壁。其体温与栖点温度之间不存在显著性差异(P>0.05),但具有明显的线性正相关关系(R~2=0.8886)。其栖点安全性春夏季高,秋冬季中等偏低。中华菊头蝠作为该区域洞栖性蝙蝠的优势种,在维持洞穴生态系统的稳定中发挥着至关重要的作用,加强对洞穴生态系统中蝙蝠伞护性的研究有助于洞穴生态保护教育及对蝙蝠种群的保护实践。  相似文献   

12.
Morphological analyses indicate that horsehose bats in the genus Rhinolophus constitute a monophyletic group which most likely originated in southeastern Asia but which presently inhabits Oriental, Australian, Palaearctic, and Ethiopian zoogeographical provinces. Ten species occur in southern Africa, but it is uncertain which species represent dispersals from Eurasia through North Africa and which have resulted from speciation in Africa. Analyses of 34 allozyme encoding loci in these 10 species and in 2 southern African species of leafnose bats in the sister genus Hipposideros reveal the presence of at least three lineages of Rhinolophus in southern Africa. One lineage includes R. clivosus, R. darlingi, R. fumigatus, and R. hildebrandtii, all of which, except R. clivosus, are endemic to sub-Saharan Africa. Rhinolophus blasii is genetically allied with, but distinct from this group, and appears to be a recent migrant from another lineage centered on the Mediterranean. A third lineage, including at least R. capensis, R. denti, R. simulator, and R. swinnyi, is endemic to sub-Saharan Africa. The phylogenetic position of R. landeri is uncertain, most likely because of the small sample size used to estimate allelic frequencies for this species. The biochemical genetic definitions of these lineages largely agree with previous morphological analyses of Rhinolophus species. Divergences between species within two lineages (R. clivosus, R. darlingi, R. fumigatus, and R. hildebrandtii; and R. capensis, R. denti, R. simulator, and R. swinnyi) appear to reflect two bursts of speciation in the Plio-Pleistocene period within Africa.  相似文献   

13.
An in silico screen of 41 of the 81 coding regions of the Nicotiana plastid genome generated a shortlist of 12 candidates as DNA barcoding loci for land plants. These loci were evaluated for amplification and sequence variation against a reference set of 98 land plant taxa. The deployment of multiple primers and a modified multiplexed tandem polymerase chain reaction yielded 85–94% amplification across taxa, and mean sequence differences between sister taxa of 6.1 from 156 bases of accD to 22 from 493 bases of matK. We conclude that loci should be combined for effective diagnosis, and recommend further investigation of the following six loci: matK, rpoB, rpoC1, ndhJ, ycf5 and accD. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 159 , 1–11.  相似文献   

14.
15.
Discordance between the mitochondrial and nuclear genomes is a prevalent phenomenon in nature, in which the underlying processes responsible are considered to be important in shaping genetic variation in natural populations. Among the evolutionary processes that best explain such genomic mismatches incomplete lineage sorting and introgression are commonly identified, however, many studies are unable to distinguish between these hypotheses, which has become a major challenge in the field. In this issue of Molecular Ecology, Firneno et al. (2020) present an elegant exploration of mitochondrial‐nuclear discordance in Mesoamerican toads. Integrating genome‐scale and spatial data to test between these hypotheses within an empirical model testing framework, they find strong support that incomplete lineage sorting explains the observed discordance. Their work, along with many previous articles in Molecular Ecology, highlights the commonality of mito‐nuclear discordance among species despite the expectations of tightly concerted mitochondrial and nuclear genome evolution. It is increasingly clear that the nuclear genomes of many species are (at least for short periods of evolutionary time) functionally compatible with multiple, divergent mitochondrial haplotypes. As such, we suggest future research not only seeks to understand the processes causing spatial mito‐nuclear discordance (e.g. incomplete lineage sorting, introgression), but also explores those that maintain discordance through time and space (e.g. relaxed selection on mito‐nuclear interactions, heterozygosity, population demographics). We also discuss the vital role that taxonomy plays in interpreting patterns of mito‐nuclear discordance when data‐consistent yet differing taxonomies are used, such as treating allopatrically distributed taxa as multiple isolated populations versus multiple micro‐endemic species.  相似文献   

16.
Vallo, P., Benda, P., Červený, J. & Koubek, P. (2012). Conflicting mitochondrial and nuclear paraphyly in small‐sized West African house bats (Vespertilionidae). —Zoologica Scripta, 42, 1–12. Hybridization between species may result in introgression of mitochondrial DNA from one species to another. Phylogenetic inference, therefore, may not recover true evolutionary relationships. In bats, there are only a few reported cases of introgressive hybridization. House bats are a genus with obscure phylogeny and taxonomy, caused mainly by morphological similarity. We undertook a detailed analysis of small‐sized West African house bats (Scotophilus), tentatively identified as S. nigritellus, to clarify relationships between two sympatric colour forms. These forms were recovered in paraphyletic position to each other in both mitochondrial and nuclear phylogenies, signifying that they are two distinct species. While the yellow‐bellied form could be assigned beyond doubt to S. nigritellus s. str., the white‐bellied form may be an as yet undescribed species. Moreover, the white‐bellied form clustered as a sister mitochondrial lineage to another species, Scotophilus leucogaster. These sister lineages differed by only 2.6–2.8% sequence divergence, which lies within the intraspecific range for this genus. Two nuclear markers, however, contradicted the sister relationship, showing them instead to be distantly related. The apparent conflict between the mitochondrial and nuclear signals suggests that past hybridization may have occurred between these morphologically distinct species.  相似文献   

17.
Discordance between mitochondrial and nuclear phylogenies is being increasingly recognized in animals and may confound DNA‐based taxonomy. This is especially relevant for taxa whose microscopic size often challenges any effort to distinguish between cryptic species without the assistance of molecular data. Regarding mitonuclear discordance, two strikingly contrasting scenarios have been recently demonstrated in the monogonont rotifers of the genus Brachionus. While strict mitonuclear concordance was observed in the marine B. plicatilis species complex, widespread hybridization‐driven mitonuclear discordance was revealed in the freshwater B. calyciflorus species complex. Here, we investigated the frequency of occurrence and the potential drivers of mitonuclear discordance in three additional freshwater monogonont rotifer taxa, and assessed its potential impact on the reliability of DNA taxonomy results based on commonly used single markers. We studied the cryptic species complexes of Keratella cochlearis, Polyarthra dolichoptera and Synchaeta pectinata. Phylogenetic reconstructions were based on the mitochondrial barcoding marker cytochrome c oxidase subunit I gene and the nuclear internal transcribed spacer 1 locus, which currently represent the two most typical genetic markers used in rotifer DNA taxonomy. Species were delimited according to each marker separately using a combination of tree‐based coalescent, distance‐based and allele‐sharing‐based approaches. Mitonuclear discordance was observed in all species complexes with incomplete lineage sorting and unresolved phylogenetic reconstructions recognized as the likely drivers. Evidence from additional sources, such as morphology and ecology, is thus advisable for deciding between often contrasting mitochondrial and nuclear species scenarios in these organisms.  相似文献   

18.
Apple snails (Ampullariidae) are a diverse family of pantropical freshwater snails and an important evolutionary link to the common ancestor of the largest group of living gastropods, the Caenogastropoda. A clear understanding of relationships within the Ampullariidae, and identification of their sister taxon, is therefore important for interpreting gastropod evolution in general. Unfortunately, the overall pattern has been clouded by confused systematics within the family and equivocal results regarding the family's sister group relationships. To clarify the relationships among ampullariid genera and to evaluate the influence of including or excluding possible sister taxa, we used data from five genes, three nuclear and two mitochondrial, from representatives of all nine extant ampullariid genera, and species of Viviparidae, Cyclophoridae, and Campanilidae, to reconstruct the phylogeny of apple snails, and determine their affinities to these possible sister groups. The results obtained indicate that the Old and New World ampullariids are reciprocally monophyletic with probable Gondwanan origins. All four Old World genera, Afropomus, Saulea, Pila, and Lanistes, were recovered as monophyletic, but only Asolene, Felipponea, and Pomella were monophyletic among the five New World genera, with Marisa paraphyletic and Pomacea polyphyletic. Estimates of divergence times among New World taxa suggest that diversification began shortly after the separation of Africa and South America and has probably been influenced by hydrogeological events over the last 90 Myr. The sister group of the Ampullariidae remains unresolved, but analyses omitting certain outgroup taxa suggest the need for dense taxonomic sampling to increase phylogenetic accuracy within the ingroup. The results obtained also indicate that defining the sister group of the Ampullariidae and clarifying relationships among basal caenogastropods will require increased taxon sampling within these four families, and synthesis of both morphological and molecular data. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98 , 61–76.  相似文献   

19.
Genealogical discordance, or when different genes tell distinct stories although they evolved under a shared history, often emerges from either coalescent stochasticity or introgression. In this study, we present a strong case of mito‐nuclear genealogical discordance in the Australian rainforest lizard species complex of Saproscincus basiliscus and S. lewisi. One of the lineages that comprises this complex, the Southern S. basiliscus lineage, is deeply divergent at the mitochondrial genome but shows markedly less divergence at the nuclear genome. By placing our results in a comparative context and reconstructing the lineages' demography via multilocus and coalescent‐based approximate Bayesian computation methods, we test hypotheses for how coalescent variance and introgression contribute to this pattern. These analyses suggest that the observed genealogical discordance likely results from introgression. Further, to generate such strong discordance, introgression probably acted in concert with other factors promoting asymmetric gene flow between the mitochondrial and nuclear genomes, such as selection or sex‐biased dispersal. This study offers a framework for testing sources of genealogical discordance and suggests that historical introgression can be an important force shaping the genetic diversity of species and their populations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号