首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Raman spectrometry and electron microscopy show that, in the hydrocarbon-rich alga Botryococcus braunii, hydrocarbons accumulate in two distinct sites; internally in cytoplasmic inclusions and externally in successive outer walls and derived globules. No other classes of lipid are present in noticeable amounts in the cytoplasmic inclusions and in the external globules. The same hydrocarbons are observed in the internal and external pools but with different relative abundances, the shorter hydrocarbons being more abundant in the internal pool. The bulk of B. braunii hydrocarbons (ca 95%) is located in the external pool. Such an extracellular location allows this species to exhibit both an unusually high hydrocarbon content (15% of dry wt) and a normal level (0.75%) within the cells. The hydrocarbon pattern and location of B. braunii were compared with that of other organisms; a close relation appears between higher plant epidermal cells and this green alga. The trilaminar outer walls of B. braunii, at whose contact external hydrocarbon globules accumulate, contain a sporopollenin-like compound.  相似文献   

2.
The outer walls of the green alga Botryococcus braunii (main sites of hydrocarbon production and accumulation) show a complex constitution. They comprise a biopolymer highly resistant to non-oxidative degradation. The resistant polymer accounts for ca 9% of the cell dry wt and appears, along with hydrocarbons, as one of the major constituents of the alga. In addition to chemical resistance, B. braunii polymer exhibits other properties: mode of deposition and fluorescence, often used to identify sporopollenins. (Class of wall components generally regarded as originating from polymerization of carotenoid derivatives.) Nevertheless further studies, using IR spectroscopy and high resolution 13C NMR of solids, along with determination of elemental composition and unsaturation levels, indicate that the bulk of the resistant polymer from B. braunii outer walls does not derive from carotenoids; accordingly it cannot be considered, in this respect, as a sporopollenin. In fact the information obtained on the structure of this important constituent of the alga is consistent with its formation via oxidative polymerization of B. braunii dienic hydrocarbons.  相似文献   

3.
A ‘resting state’ isolate of the hydrocarbon-producing alga Botryococcus braunii photoassimilated sodium [14C]bicarbonate at rates comparable to fast growing algae, such as Chlorella (> 1.50 μg atoms 14C/mg chlorophyll·hr). Early in the reaction (up to several min), most of the radioactivity was associated with water-soluble metabolites. However, labelling of hexane-soluble compounds steadily from ca 3% at 15 sec to over 50% of the total incorporated 14C at 60 min. The purified hexane fraction, which consisted of a series of botryococcenes and squalene, constituted a relatively constant proportion (40–45%) of the total hexane-soluble radioactivity at all but the earliest time points (< 60 sec). This fraction initially consisted almost exclusively of a C30 botryococcene (ca 91%) and squalene (ca 8%); however, small amounts of radioactivity sequentially appeared in the C31, C32 and C34 botryococcenes. The results of pulse-chase experiments implicated the C30 botryococcene as the precursor of the higher homologues; during the chase, loss of radioactivity from the C30 compound was accompanied by a concomitant increase in the labelling of the C31 and C32 compounds. This study provides further evidence that the relatively slow growth of Botryococcus in culture may result, in part, from the diversion of a large proportion of reduced carbon into energetically expensive compounds and that the slower growth rate in the ‘resting state’ cannot be totally attributed to an impaired or intrinsically slow metabolism.  相似文献   

4.
Nine branched hydrocarbons of the botryococcene type (CnH2n-10 30 ? n ? 37) have been isolated from the green alga Botryococcus braunii. Hydrocarbon mixtures were recovered from wild algae collected in fresh water lakes or from the same strains growing in laboratory; they were further separated by reversed-phase, and in some cases by normal phase, HPLC. From chemical investigations, GC/MS analyses, 1H and 13C NMR spectroscopy, the structures of four new botryococcenes (one C33H56, two C34H58 and one C37H64) were elucidated.  相似文献   

5.
Botryococcus braunii, B race is a unique green microalga that produces large amounts of liquid hydrocarbons known as botryococcenes that can be used as a fuel for internal combustion engines. The simplest botryococcene (C30) is metabolized by methylation to give intermediates of C31, C32, C33, and C34, with C34 being the predominant botryococcene in some strains. In the present work we have used Raman spectroscopy to characterize the structure of botryococcenes in an attempt to identify and localize botryococcenes within B. braunii cells. The spectral region from 1600–1700 cm−1 showed ν(C=C) stretching bands specific for botryococcenes. Distinct botryococcene Raman bands at 1640 and 1647 cm−1 were assigned to the stretching of the C=C bond in the botryococcene branch and the exomethylene C=C bonds produced by the methylations, respectively. A Raman band at 1670 cm−1 was assigned to the backbone C=C bond stretching. Density function theory calculations were used to determine the Raman spectra of all botryococcenes to compare computed theoretical values with those observed. The analysis showed that the ν(C=C) stretching bands at 1647 and 1670 cm−1 are actually composed of several closely spaced bands arising from the six individual C=C bonds in the molecule. We also used confocal Raman microspectroscopy to map the presence and location of methylated botryococcenes within a colony of B. braunii cells based on the methylation-specific 1647 cm−1 botryococcene Raman shift.  相似文献   

6.
Lipid composition and hydrocarbon structure of two colonial green algae of the genus Botryococcus, i.e., a museum strain and a field sample collected for the first time from Lake Shira (Khakasia, Siberia), have been compared. Polar lipids, diacylglycerols, alcohols, triacylglycerols, sterols, sterol esters, free fatty acids and hydrocarbons have been identified among lipids in the laboratory culture. The dominant fraction in the museum strain was formed by polar lipids (up to 50% of the lipids) made up of fatty acids from C12 to C24. Palmitic, oleic, C16 - C18 dienoic and trienoic acids were the main fatty acids of the museum strain. Aliphatic hydrocarbons were found in the lipid of the museum strain. However, these amounted maximally to about 1% of the dry biomass at the end of exponential growth phase. The qualitative and quantitative compositions of FAs and hydrocarbons of the museum strain of Botryococcus, (registered at the Cambridge collection as Botryococcus braunii Kutz No LB 807/1 Droop 1950 H-252) differed from those of the Botryococcus strain described in the literature as Botryococcus braunii. The Botryococcus sp. found in Lake Shira is characterized by a higher lipid content (<40% of the dry weight). Polar lipids, sterols, triacylglycerols, free fatty acids and hydrocarbons have been identified among lipids in the field sample. The main lipids in this sample were dienes and trienes (hydrocarbons <60% of total lipid). Monounsaturated and very long chain monounsaturated fatty acids, including C28:1 and C32:1 acids, were identified in the Botryococcus found in Lake Shira. The chemo-taxonomic criteria allow us to unequivocally characterize the organism collected from Lake Shira as Botryococcus braunii, race A.  相似文献   

7.
Samples of the green colonial alga Botryococcus braunii, collected from various localities, were grown in the laboratory and examined for their hydrocarbon content and morphology. Although few differences appeared between the ultrastructures of the samples, the nature of their hydrocarbons, which remains unchanged at any stage of growth, allows the distinction of two physiological races viz algae producing odd-numbered unbranched alkadienes and trienes (C25C31) (the A race) and those producing polymethylated triterpenes CnH2n-10 (C30C37), the botryococcenes (the B race). In laboratory culture, the hydrocarbon content of these new strains is very high, from 30 to 60% of the dry biomass. For the two races the greatest hydrocarbon productivity takes place during the active growth phase. The important variability observed in botryococcene distribution could originate both from genetic and environmental factors.  相似文献   

8.
Echinenone production of a dark red-coloured strain of Botryococcus braunii   总被引:1,自引:0,他引:1  
Echinenone has been used as an edible orange pigment, antioxidant and provitamin A. An echinenone-accumulating strain, BOT-20, of Botryococcus braunii was isolated from freshwater environments in Japan. The B. braunii BOT-20 strain is different from other strains of B. braunii, as it appeared dark red during its growth in the laboratory culture as opposed to green. The biomass of the strain was 1.9?g?L?1 at 1?month after cultivation. The n-hexane/acetone (3:1, v/v) extract of the strain was 45.5% of the dry biomass weight and consisted of carotenoids (92%, of which 73% was echinenone) and hydrocarbons (8%). The echinenone content was 30.5% of the dry biomass weight, and production was 630?mg?L?1. Hydrocarbons comprised only 3.7% of the total dry biomass weight. The main component of hydrocarbon was an analogue of botryococene by 1H and 13C NMR. With high values of echinenone content and production, the B. braunii strain BOT-20 is expected to be a new bioresource for the commercial production of echinenone.  相似文献   

9.
分子生态学是研究生命系统与环境系统相互作用机理及其分子机制的科学,可以从宏观和微观结合的角度真实反映生态现象的本质。简述产烃布朗葡萄藻形态与化学种等生理生态特征的基础上,综述了近年来国内外布朗葡萄藻分子生态学研究的新进展,主要包括分子系统发育学及其与化学种、基因组、地理来源等之间的关系。经典分类学上,关于布朗葡萄藻属于绿藻门(Chlorophyta)还是黄藻门(Xanthophyta)存在争议,而基于18S核糖体核糖核酸(18S ribosomal ribonucleic acid,18S rRNA)序列的分子系统发育学研究结果将布朗葡萄藻界定为绿藻门、共球藻纲(Trebouxiophyceae)。依据藻株的产烃种类和化学结构特征,可将布朗葡萄藻划分为A、B和L 3个化学种,而布朗葡萄藻的分子系统学进化关系与化学种间高度统一。在基因组大小上,位于同一大亚聚群中的化学种B与L间却存在明显差异,而进化关系较远的化学种B与A间则更相近。不同地理来源布朗葡萄藻的18S rRNA序列和内部转录间隔区(internal transcribed spacer,ITS)多态性较高,提示不同地缘藻株间存有较高的遗传多样性。探讨了布朗葡萄藻分子生态学研究尚待解决的问题,并对今后相关研究做了展望。  相似文献   

10.
《Phytochemistry》1986,26(1):129-134
The B race of the green alga Botryococcus braunii is characterized by the production of large amounts of botryococcenes, i.e. triterpenoid hydrocarbons of general formula CπH2π-109 n= 30–37. The axenic strain used in this work produces botryococcenes ranging from C30 to C34 when fast growth is promoted by air-lift. Sequential extraction of hydrocarbons with solvents showed that botryococcenes accumulate in two distinct sites: externally in the successive outer walls forming a dense matrix and internally, probably in cyctoplasmic inclusions. Moreover, chase experiments after feeding the algae with sodium [1,2-14C]acetate, and feeding experiments with L-[Me-14C]methionine established the existence of an excretory process from the cells towards the matrix. The results of the radio GC analyses of the botryococcenes synthesized during the feeding experiments provided good evidence to show that the C30 botryococcene is the precursor of all the higher hydrocarbons, and that each intermediate botryococcene C31-C33 is the precursor of its next highest homologue. L-Methionine acts as the methyl donor in the methylation process, leading from the C30 precursor to the botryococcene family. The 13C NMR spectra of the botryococcenes produced when the algae were fed with L-[Me-13C]methionine indicate that the methylation takes place on the C30 backbone in positions 37, 16 and 20.  相似文献   

11.
As a potential source of biofuel, the green colonial microalga Botryococcus braunii produces large amounts of hydrocarbons that are accumulated in the extracellular matrix. Generally, pretreatment such as drying or heating of wet algae is needed for sufficient recoveries of hydrocarbons from B. braunii using organic solvents. In this study, the Showa strain of B. braunii was cultured in media derived from the modified Chu13 medium by supplying artificial seawater, natural seawater, or NaCl. After a certain period of culture in the media with an osmotic pressure corresponding to 1/4-seawater, hydrocarbon recovery rates exceeding 90% were obtained by simply mixing intact wet algae with n-hexane without any pretreatments and the results using the present culture conditions indicate the potential for hydrocarbon milking.

Highlights

Seawater was used for efficient hydrocarbon extraction from Botryococcus braunii. The alga was cultured in media prepared with seawater or NaCl. Hydrocarbon recovery rate exceeding 90% was obtained without any pretreatment.  相似文献   

12.
Botryococcus braunii (N-836) produced 60 – 73% hydrocarbons on dry weight basis, of which C34 botryococcene was found to be the major hydrocarbon, constituting about 50 – 76 % of total content throughout the experimental studies. Major fatty acids present in this organism were C18:1 and C16:0. Saturated hydrocarbons like docosane, hexacosane and heptacosane were also found to be produced by the organism. Methyl branched fatty acids, were identified as 16-methyl heptadecanoic and 5, 9, 13 - trimethyl tetradecanoic acids by GC-MS. Maximum hydrocarbon accumulation was observed during third week of its growth.  相似文献   

13.
To understand the potential of cultivating Botryococcus braunii with flue gas (normally containing high CO2) for biofuel production, growth characteristics of B. braunii 765 with 2-20% CO2 aeration were investigated. The results showed that the strain could grow well without any obvious inhibition under all tested CO2 concentrations with an aeration rate of 0.2 vvm, even without any culture pH adjustment (ranged from 6.0 to 8.0). The maximum biomass among all conditions was 2.31 g L−1 on 25th day at 20% CO2. Hydrocarbon content and algal colony size increased with the increase of CO2 concentration. A negative correlation between algal biomass and culture total phosphorus was observed (from −0.828 to −0.911, < 0.01). Additionally, 2% sodium hypochlorite solution was used for photobioreactor sterilization to cultivate B. braunii.  相似文献   

14.
15.
Botryococcus braunii is a green microalga capable of producing large amounts of external long-chain hydrocarbons suitable as a source of biofuel. There have been several studies indicating that cultures of B. braunii can reduce the energy and water requirement for mass biofuel production, especially if non-destructive extraction methods for milking hydrocarbons are used. Growing microalgae as a raw material for biofuel using conventional liquid-based cultivation (i.e., raceway ponds) has yet to be shown to be economically successful. An alternative solid growth (biofilm) cultivation method can markedly reduce the energy requirements and costs associated with the harvesting and dewatering processes. We evaluated the growth of biofilms of several strains of B. braunii (from races A, B, L and S) and found that three of the four tested races successfully grew to stationary phase in 10 weeks with no contamination. Among all races, B. braunii BOT22 (race B) reached the highest biomass and lipid yields (3.80 mg dry weight cm?2 day?1 and 1.11 mg dry weight cm?2). Irrespective of the race, almost all photosynthetic parameters (F V /F 0 , PIABS and the OJIP curve) showed that the biofilm cultures were more stressed during lag and stationary phases than in logarithmic phase. We also studied the Botryococcus biofilm profiles using confocal microscopy and found that this method is suitable for estimating the overall biomass yield when compared with gravimetric measurement. In conclusion, the growth characteristics (biomass and lipid) and photosynthetic performance of all races indicated that B. braunii BOT22 is the most promising strain for biofilm cultivation.  相似文献   

16.
Multiple ionic liquids (ILs) were assessed for their ability to extract branched, unsaturated hydrocarbons from an aqueous medium. In addition, IL cytotoxicity studies were performed on two phototrophic microbes, Synechocystis sp. PCC6803 and Botryococcus braunii var Showa. The optimum IL for use in an isoprenoid hydrocarbon extraction may vary based on the biological source of the isoprenoids. Our results suggest that ionic liquids have the potential to serve as novel biocompatible milking agents for extracting high-value chemicals from the microbes, with toxicity to both species minimized by considerations of ionic liquid structure and hydrophobicity.  相似文献   

17.
The green unicellular alga Botryococcus braunii shows unusually high concentrations of non-isoprenoid very long chain hydrocarbons. The structure of such hydrocarbons, the relative efficiency of various long chain fatty acids as precursors, the relationship between fatty acid and hydrocarbon concentrations (over the different physiological stages of the alga achieved during batch cultures) and the preferential localization of fatty acids lead to the conclusion that all the major non-isoprenoid hydrocarbons of B. braunii derive from the same direct precursor, oleic acid. Feeding experiments, using doubly labelled oleic acid, show that the whole carbon chain of the latter is incorporated into final hydrocarbons; accordingly such compounds do not originate from a head-to-head condensation mechanism with oleic acid acting as donor. Various features (regarding chiefly the systematic occurrence of a terminal double bond in B. braunii hydrocarbon, their close specific activities after feeding and the large inhibition in their production achieved using dithioerythritol) show that the biosynthesis of B. braunii hydrocarbons probably takes place via an elongation-decarboxylation mechanism related to that operating in some higher plants.  相似文献   

18.
Biodiesel from microalgae is recognized as a desirable, renewable biofuel to replace petroleum-derived transport fuels. However, the efficient harvesting of microalgae is a major hurdle for commercialization. Therefore, the development of a cost-effective harvesting method is essential to reduce production cost. A partial factorial design was used to screen the main factors involved, which were the concentration of FeCl3, the bioflocculant, and the time of slow mixing. Response surface methodology (RSM) was used to further investigate the optimal conditions for these factors on flocculation of Botryococcus braunii. Analysis of variance and other relevant tests confirmed the validity of the suggested model. The optimal conditions inferred from the obtained equation were 0.79 mM FeCl3, 0.58 % (v/v) bioflocculant, and 180 sec of slow mixing for 1.1 g DCW L?1 of B. braunii. The flocculating activity under these conditions was 90.6 %. By using RSM, the optimal conditions for flocculation of B. braunii could be reached more quickly and efficiently.  相似文献   

19.
Botryococcus braunii Kützing, a green colonial microalga, occurs worldwide in both freshwater and brackish water environments. Despite considerable attention to B. braunii as a potential source of renewable fuel, many ecophysiological properties of this alga remain unknown. Here, we examined the desiccation and temperature tolerances of B. braunii using two newly isolated strains BOD-NG17 and BOD-GJ2. Both strains survived through 6- and 8-month desiccation treatments but not through a 12-month treatment. Interestingly, the desiccation-treated cells of B. braunii gained tolerance to extreme temperature shifts, i.e., high temperature (40 °C) and freezing (?20 °C). Both strains survived for at least 4 and 10 days at 40 and ?20 °C, respectively, while the untreated cells barely survived at these temperatures. These traits would enable long-distance dispersal of B. braunii cells and may account for the worldwide distribution of this algal species. Extracellular substances such as polysaccharides and hydrocarbons seem to confer the desiccation tolerance.  相似文献   

20.
Extracellular and intracellular hydrocarbons produced by Clostridium pasteurianum VKM 1774 during cultivation on glucose-containing media in an argon atmosphere or in the presence of carbon dioxide and molecular hydrogen were analyzed by gas-liquid chromatography. Intracellular hydrocarbons were 50-55% (C25-C35) n-alkanes. Carbon dioxide and molecular hydrogen stimulated synthesis of extracellular hydrocarbons, which comprised 90-95% (C11-C24) n-alkanes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号