首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low insulin‐like growth factor‐1 (IGF‐1) signaling is associated with improved longevity, but is paradoxically linked with several age‐related diseases in humans. Insulin‐like growth factor‐1 has proven to be particularly beneficial to the brain, where it confers protection against features of neuronal and cognitive decline. While aging is characterized by central insulin resistance in the face of hyperinsulinemia, the somatotropic axis markedly declines in older humans. Thus, we hypothesized that increasing IGF‐1 in the brain may prove to be a novel therapeutic alternative to overcome central insulin resistance and restore whole‐body insulin action in aging. Utilizing hyperinsulinemic‐euglycemic clamps, we show that old insulin‐resistant rats with age‐related declines in IGF‐1 level demonstrate markedly improved whole‐body insulin action, when treated with central IGF‐1, as compared to central vehicle or insulin (< 0.05). Furthermore, central IGF‐1, but not insulin, suppressed hepatic glucose production and increased glucose disposal rates in aging rats (< 0.05). Taken together, IGF‐1 action in the brain and periphery provides a ‘balance’ between its beneficial and detrimental actions. Therefore, we propose that strategies aimed at ‘tipping the balance’ of IGF‐1 action centrally are the optimal approach to achieve healthy aging and longevity in humans.  相似文献   

2.
3.
Rapamycin, an inhibitor of mTOR kinase, increased median lifespan of genetically heterogeneous mice by 23% (males) to 26% (females) when tested at a dose threefold higher than that used in our previous studies; maximal longevity was also increased in both sexes. Rapamycin increased lifespan more in females than in males at each dose evaluated, perhaps reflecting sexual dimorphism in blood levels of this drug. Some of the endocrine and metabolic changes seen in diet‐restricted mice are not seen in mice exposed to rapamycin, and the pattern of expression of hepatic genes involved in xenobiotic metabolism is also quite distinct in rapamycin‐treated and diet‐restricted mice, suggesting that these two interventions for extending mouse lifespan differ in many respects.  相似文献   

4.
5.
6.
The caveolin‐3 (CAV3) protein is known to be specifically expressed in various myocytes, and skeletal muscle consumes most of the blood glucose as an energy source to maintain normal cell metabolism and function. The P104L mutation in the coding sequence of the human CAV3 gene leads to autosomal dominant disease limb‐girdle muscular dystrophy type 1C (LGMD‐1C). We previously reported that C2C12 cells transiently transfected with the P104L CAV3 mutant exhibited decreased glucose uptake and glycogen synthesis after insulin stimulation. The present study aimed to examine whether the P104L mutation affects C2C12 cell glucose metabolism, growth, and proliferation without insulin stimulation. C2C12 cells stably transfected with CAV3‐P104L were established, and biochemical assays, western blot analysis and confocal microscopy were used to observe glucose metabolism as well as cell growth and proliferation and to determine the effect of the P104L mutation on the PI3K/Akt signaling pathway. Without insulin stimulation, C2C12 cells stably transfected with the P104L CAV3 mutant exhibited decreased glucose uptake and glycogen synthesis, decreased CAV3 expression and reduced localization of CAV3 and GLUT4 on the cell membrane. The P104L mutant significantly reduced the cell diameters, but accelerated cell proliferation. Akt phosphorylation was inhibited, and protein expression of GLUT4, p‐GSK3β, and p‐p70s6K, which are molecules downstream of Akt, was significantly decreased. The CAV3‐P104L mutation inhibits glycometabolism and cell growth but accelerates C2C12 cell proliferation by reducing CAV3 protein expression and cell membrane localization, which may contribute to the pathogenesis of LGMD‐1C.  相似文献   

7.
Senescent cells in tissues and organs are considered to be pivotal to not only the aging process but also the onset of chronic disease. Accumulating evidence from animal experiments indicates that the magnitude of senescence can vary within and between aged tissue samples from the same animal. However, whether this variation in senescence translates across to human tissue samples is unknown. To address this fundamental question, we have conducted a systematic review and meta‐analysis of all available literature investigating the magnitude of senescence and its association with chronological age in human tissue samples. While senescence is higher in aged tissue samples, the magnitude of senescence varies considerably depending upon tissue type, tissue section, and marker used to detect senescence. These findings echo animal experiments demonstrating that senescence levels may vary between organs within the same animal.  相似文献   

8.
Aging is a major risk factor for many chronic diseases due to increased vulnerability to external stress and susceptibility to disease. Aging is associated with metabolic liver disease such as nonalcoholic fatty liver. In this study, we investigated changes in lipid metabolism during aging in mice and the mechanisms involved. Lipid accumulation was increased in liver tissues of aged mice, particularly cholesterol. Increased uptake of both cholesterol and glucose was observed in hepatocytes of aged mice as compared with younger mice. The mRNA expression of GLUT2, GK, SREBP2, HMGCR, and HMGCS, genes for cholesterol synthesis, was gradually increased in liver tissues during aging. Reactive oxygen species (ROS) increase with aging and are closely related to various aging‐related diseases. When we treated HepG2 cells and primary hepatocytes with the ROS inducer, H2O2, lipid accumulation increased significantly compared to the case for untreated HepG2 cells. H2O2 treatment significantly increased glucose uptake and acetyl‐CoA production, which results in glycolysis and lipid synthesis. Treatment with H2O2 significantly increased the expression of mRNA for genes related to cholesterol synthesis and uptake. These results suggest that ROS play an important role in altering cholesterol metabolism and consequently contribute to the accumulation of cholesterol in the liver during the aging process.  相似文献   

9.
Down syndrome is a common disorder associated with intellectual disability in humans. Among a variety of severe health problems, patients with Down syndrome exhibit disrupted sleep and abnormal 24‐h rest/activity patterns. The transchromosomic mouse model of Down syndrome, Tc1, is a trans‐species mouse model for Down syndrome, carrying most of human chromosome 21 in addition to the normal complement of mouse chromosomes and expresses many of the phenotypes characteristic of Down syndrome. To date, however, sleep and circadian rhythms have not been characterized in Tc1 mice. Using both circadian wheel‐running analysis and video‐based sleep scoring, we showed that these mice exhibited fragmented patterns of sleep‐like behaviour during the light phase of a 12:12‐h light/dark (LD) cycle with an extended period of continuous wakefulness at the beginning of the dark phase. Moreover, an acute light pulse during night‐time was less effective in inducing sleep‐like behaviour in Tc1 animals than in wild‐type controls. In wheel‐running analysis, free running in constant light (LL) or constant darkness (DD) showed no changes in the circadian period of Tc1 animals although they did express subtle behavioural differences including a reduction in total distance travelled on the wheel and differences in the acrophase of activity in LD and in DD. Our data confirm that Tc1 mice express sleep‐related phenotypes that are comparable with those seen in Down syndrome patients with moderate disruptions in rest/activity patterns and hyperactive episodes, while circadian period under constant lighting conditions is essentially unaffected.  相似文献   

10.
11.
Studies of Nordic twins suggest an increased genetic influence on mortality with age. Contrary to this, the heterogeneity hypothesis predicts that the mortality of individuals carrying a ‘frail’ or ‘risky’ genotype in a population will approach that of noncarriers with age because of selection pressure. The ApoE ε4 allele is associated with an increased mortality risk, and its effect has been suggested to decrease with age. Here, we investigated the effect of ApoE ε4 allele on survival in a sample of the healthiest and long‐lived Danes. The study population comprised Danes born in 1905 and a replicate sample of the 1895 cohort. For the 1905 cohort, a total of 350 carriers and 1256 noncarriers of the ApoE ε4 allele were followed from 1998 until death or end of follow‐up. Cox regression models were used for the analysis. Of the 1606 persons with known ApoE ε4 status in 1998, 1546 had died at the end of the 10‐year follow‐up. Carriers of the ApoE ε4 allele had an increased mortality compared to noncarriers, and the influence of ApoE status on mortality increased in the age interval 92–103. For the covariates sex and independency status, the difference in relative risk of death between groups decreased with advancing age. Our findings of increasing influence of ApoE ε4 allele on mortality with age do not support previous findings of decreased influence ApoE ε4 allele on mortality with age, and alternative models such as the multifactorial threshold models should be considered for understanding the genetic effects on mortality at advanced age.  相似文献   

12.
The present study deals with the possible effects of selected environmental agents upon the uptake and metabolism of d ‐glucose in isolated acinar and ductal cells from the rat submandibular salivary gland. In acinar cells, the uptake of d ‐[U‐14C]glucose and its non‐metabolised analogue 3‐O‐[14C‐methyl]‐d ‐glucose was not affected significantly by phloridzin (0.1 mM) or substitution of extracellular NaCl (115 mM) by an equimolar amount of CsCl, whilst cytochalasin B (20 μM) decreased significantly such an uptake. In ductal cells, both phloridzin and cytochalasin B decreased the uptake of d ‐glucose and 3‐O‐methyl‐d ‐glucose. Although the intracellular space was comparable in acinar and ductal cells, the catabolism of d ‐glucose (2.8 or 8.3 mM) was two to four times higher in ductal cells than in acinar cells. Phloridzin (0.1 mM), ouabain (1.0 mM) and cytochalasin B (20 μM) all impaired d ‐glucose catabolism in ductal cells. Such was also the case in ductal cells incubated in the absence of extracellular Ca2+ or in media in which NaCl was substituted by CsCl. It is proposed that the ductal cells in the rat submandibular gland are equipped with several systems mediating the insulin‐sensitive, cytochalasin B‐sensitive and phloridzin‐sensitive transport of d ‐glucose across the plasma membrane. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Functional decline of the hematopoietic system occurs during aging and contributes to clinical consequences, including reduced competence of adaptive immunity and increased incidence of myeloid diseases. This has been linked to aging of the hematopoietic stem cell (HSC) compartment and has implications for clinical hematopoietic cell transplantation as prolonged periods of T‐cell deficiency follow transplantation of adult mobilized peripheral blood (PB), the primary transplant source. Here, we examined the gene expression profiles of young and aged HSCs from human cord blood and adult mobilized PB, respectively, and found that Wnt signaling genes are differentially expressed between young and aged human HSCs, with less activation of Wnt signaling in aged HSCs. Utilizing the OP9‐DL1 in vitro co‐culture system to promote T‐cell development under stable Notch signaling conditions, we found that Wnt signaling activity is important for T‐lineage differentiation. Examination of Wnt signaling components and target gene activation in young and aged human HSCs during T‐lineage differentiation revealed an association between reduced Wnt signal transduction, increasing age, and impaired or delayed T‐cell differentiation. This defect in Wnt signal activation of aged HSCs appeared to occur in the early T‐progenitor cell subset derived during in vitro T‐lineage differentiation. Our results reveal that reduced Wnt signaling activity may play a role in the age‐related intrinsic defects of aged HSCs and early hematopoietic progenitors and suggest that manipulation of this pathway could contribute to the end goal of improving T‐cell generation and immune reconstitution following clinical transplantation.  相似文献   

14.
15.
A serum biomarker of biological versus chronological age would have significant impact on clinical care. It could be used to identify individuals at risk of early‐onset frailty or the multimorbidities associated with old age. It may also serve as a surrogate endpoint in clinical trials targeting mechanisms of aging. Here, we identified MCP‐1/CCL2, a chemokine responsible for recruiting monocytes, as a potential biomarker of biological age. Circulating monocyte chemoattractant protein‐1 (MCP‐1) levels increased in an age‐dependent manner in wild‐type (WT) mice. That age‐dependent increase was accelerated in Ercc1?/Δ and Bubr1H/H mouse models of progeria. Genetic and pharmacologic interventions that slow aging of Ercc1?/Δ and WT mice lowered serum MCP‐1 levels significantly. Finally, in elderly humans with aortic stenosis, MCP‐1 levels were significantly higher in frail individuals compared to nonfrail. These data support the conclusion that MCP‐1 can be used as a measure of mammalian biological age that is responsive to interventions that extend healthy aging.  相似文献   

16.
17.
18.
19.
Accumulating evidence suggests that inhibition of mitogen‐activated protein kinase signalling can reduce phosphorylation of peroxisome proliferator‐activated receptor γ (PPARγ) at serine 273, which mitigates obesity‐associated insulin resistance and might be a promising treatment for type 2 diabetes. Dihydromyricetin (DHM) is a flavonoid that has many beneficial pharmacological properties. In this study, mouse fibroblast 3T3‐L1 cells were used to investigate whether DHM alleviates insulin resistance by inhibiting PPARγ phosphorylation at serine 273 via the MEK/ERK pathway. 3T3‐L1 pre‐adipocytes were differentiated, and the effects of DHM on adipogenesis and glucose uptake in the resulting adipocytes were examined. DHM was found to dose dependently increase glucose uptake and decrease adipogenesis. Insulin resistance was then induced in adipocytes using dexamethasone, and DHM was shown to dose and time dependently promote glucose uptake in the dexamethasone‐treated adipocytes. DHM also inhibited phosphorylation of PPARγ and ERK. Inhibition of PPARγ activity with GW9662 potently blocked DHM‐induced glucose uptake and adiponectin secretion. Interestingly, DHM showed similar effects to PD98059, an inhibitor of the MEK/ERK pathway. DHM acted synergistically with PD98059 to improve glucose uptake and adiponectin secretion in dexamethasone‐treated adipocytes. In conclusion, our findings indicate that DHM improves glucose uptake in adipocytes by inhibiting ERK‐induced phosphorylation of PPARγ at serine 273.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号