首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The FK506 binding protein 51 (FKBP5), an intrinsic regulator of the glucocorticoid receptor, has been associated with pathological behaviors particularly in the context of childhood trauma (CT), via a putatively regulatory polymorphism, rs1360780. However, trans‐ and cis‐acting effects of this locus and its interaction with CT are incompletely understood. To study its effects on the expression of glucocorticoid‐regulated genes including FKBP5, we used lymphoblastoid cell lines (LCLs) derived from 16 CT‐exposed patients with greater than two substance dependence/suicidal behavior diagnoses (casesCT+) and 13 non‐CT‐exposed controls (controlsCT?). This study in LCLs measures long‐term trait‐like differences attributable to genotype or lasting epigenetic modification. Through analysis of differential allelic expression (DAE) using an FKBP5 3′‐UTR reporter single nucleotide polymorphism (SNP), rs3800373, that is in strong linkage disequilibrium with rs1360780, we confirmed that the rs1360780 risk allele (A) (or conceivably that of a linked SNP) leads to higher FKBP5 expression in controlsCT?. Intriguingly, casesCT+ did not show DAE, perhaps because of a genotype‐predicted difference in FKBP5 DNA methylation restricted to casesCT+. Furthermore, through correlation analyses on FKBP5 expression at baseline and after induction by dexamethasone, we observed that casesCT+ had lower induction of FKBP5 expression, indicating that overall they may have strong ultra‐short negative‐feedback. Only casesCT+ showed an effect of rs1360780 genotype on expression of FKBP5 and other glucocorticoid‐regulated genes. Together, these results confirm that the rs1360780 locus alters FKBP5 expression and further that in trans‐fashion this locus affects the expression of other glucocorticoid‐regulated genes after a glucocorticoid challenge. The CT exposure appears to be essential for trans‐effects of rs1360780 on glucocorticoid‐regulated genes.  相似文献   

2.
3.
Dysregulation of the hypothalamic–pituitary–adrenal (HPA) axis pathway is associated with several neuropsychiatric disorders, including post‐traumatic stress disorder (PTSD), major depressive disorder (MDD), schizophrenia and alcohol abuse. Studies have demonstrated an association between HPA axis dysfunction and gene variants within the cortisol, serotonin and opioid signaling pathways. We characterized polymorphisms in genes linked to these three neurotransmitter pathways and tested their potential interactions with HPA axis activity, as measured by dexamethasone (DEX) suppression response. We determined the percent DEX suppression of adrenocorticotropic hormone (ACTH) and cortisol in 62 unrelated, male rhesus macaques. While DEX suppression of cortisol was robust amongst 87% of the subjects, ACTH suppression levels were broadly distributed from ?21% to 66%. Thirty‐seven monkeys from the high and low ends of the ACTH suppression distribution (18 ‘high’ and 19 ‘low’ animals) were genotyped at selected polymorphisms in five unlinked genes (rhCRH, rhTPH2, rhMAOA, rhSLC6A4 and rhOPRM). Associations were identified between three variants (rhCRH‐2610C>T, rhTPH2 2051A>C and rh5‐HTTLPR) and level of DEX suppression of ACTH. In addition, a significant additive effect of the ‘risk’ genotypes from these three loci was detected, with an increasing number of ‘risk’ genotypes associated with a blunted ACTH response (P = 0.0009). These findings suggest that assessment of multiple risk alleles in serotonin and cortisol signaling pathway genes may better predict risk for HPA axis dysregulation and associated psychiatric disorders than the evaluation of single gene variants alone.  相似文献   

4.
Blood samples collected from normal subjects and newly hospitalized depressed patients at 8 AM on the day before and at 8 AM and 4 PM the day after receiving dexamethasone, 1 mg orally at 11 PM, were analyzed for ACTH and cortisol. The mean plasma ACTH values of these two groups were not significantly different at any of the times, while the cortisol levels of the depressed patients were significantly higher than those of the normal subjects at 8 AM pre-dexamethasone (P<0.001). There was no correlation between plasma ACTH and cortisol values in either group. The cortisol responses to dexamethasone in depressed patients revealed two subgroups. In one subgroup, the cortisol was suppressed as much as in normal subjects, but in the other, cortisol levels were not suppressed. The post-dexamethasone ACTH rebounded at 4 PM in the latter subgroup to higher values than in the subgroup with suppressed cortisol levels and in the normal subjects. After dexamethasone, the ACTH values were negatively correlated with plasma cortisol only in the normal subjects (P<0.01), not in the depressed patients. These results indicate that ACTH levels do not account for the elevated cortisol and the failure of dexamethasone to suppress cortisol levels in some depressed patients.  相似文献   

5.
Inadequate suppression of plasma cortisol after 1-2 mg dexamethasone is frequently observed in depressive patients. To further investigate the pathophysiology underlying cortisol nonsuppression after dexamethasone we compared cortisol and corticotropin (ACTH) response to human corticotropin-releasing factor (h-CRF), lysine vasopressin (LVP), and a concurrent administration of both peptides after pretreatment with 1.5 mg dexamethasone in six male controls. Neither h-CRF nor LVP were able to produce a marked elevation of dexamethasone suppressed plasma cortisol and ACTH. If both peptides were administered in combination, a substantial escape of plasma cortisol from dexamethasone suppression was observed. ACTH responses changed in concordance with those of cortisol indicating that the LVP-CRF interaction takes place at the pituitary level. Our finding is consistent with a multihormonal control of pituitary-adrenal activity and bears several implications for interpretation of dexamethasone suppression test results in depressive illness.  相似文献   

6.
Adverse maternal environments can lead to increased fetal exposure to maternal cortisol, which can cause infant neurobehavioral deficits. The placenta regulates fetal cortisol exposure and response, and placental DNA methylation can influence this function. FK506 binding protein (FKBP5) is a negative regulator of cortisol response, FKBP5 methylation has been linked to brain morphology and mental disorder risk, and genetic variation of FKBP5 was associated with post-traumatic stress disorder in adults. We hypothesized that placental FKBP5 methylation and genetic variation contribute to gene expression control, and are associated with infant neurodevelopmental outcomes assessed using the Neonatal Intensive Care Unit (NICU) Network Neurobehavioral Scales (NNNS). In 509 infants enrolled in the Rhode Island Child Health Study, placental FKBP5 methylation was measured at intron 7 using quantitative bisulfite pyrosequencing. Placental FKBP5 mRNA was measured in a subset of 61 infants by quantitative PCR, and the SNP rs1360780 was genotyped using a quantitative allelic discrimination assay. Relationships between methylation, expression and NNNS scores were examined using linear models adjusted for confounding variables, then logistic models were created to determine the influence of methylation on membership in high risk groups of infants. FKBP5 methylation was negatively associated with expression (P = 0.08, r = −0.22); infants with the TT genotype had higher expression than individuals with CC and CT genotypes (P = 0.06), and those with CC genotype displayed a negative relationship between methylation and expression (P = 0.06, r = −0.43). Infants in the highest quartile of FKBP5 methylation had increased risk of NNNS high arousal compared to infants in the lowest quartile (OR 2.22, CI 1.07–4.61). TT genotype infants had increased odds of high NNNS stress abstinence (OR 1.98, CI 0.92–4.26). Placental FKBP5 methylation reduces expression in a genotype specific fashion, and genetic variation supersedes this effect. These genetic and epigenetic differences in expression may alter the placenta’s ability to modulate cortisol response and exposure, leading to altered neurobehavioral outcomes.  相似文献   

7.
We report a rare case of a 57-year-old female patient with Cushing's disease who had clinically and biochemically proven cyclicity. There were periodic increases in plasma ACTH and cortisol and urinary free cortisol and 17-OHCS. Plasma CRH was undetectable and plasma ACTH responded to exogenous CRH when basal plasma cortisol was relatively low. Neither plasma ACTH nor cortisol responded to dexamethasone (oral and intravenous) but plasma ACTH was clearly suppressed by cortisol infusion. With 40 mg/day bromocriptine, the periodic hypercortisolemia disappeared and the patient was maintained on remission. The response of plasma cortisol to dexamethasone suppression test was also normalized.  相似文献   

8.
The glucocorticoid receptor (GR) antagonist mifepristone (RU-486) has been reported to increase early morning plasma ACTH/cortisol in diverse non-demented populations. This pilot study examined the cortisol response to RU 486 in patients with Alzheimer’s disease (AD), a condition associated with abnormalities in various aspects of the hypothalamic-pituitary-adrenal (HPA) axis. Nine AD subjects were randomized in a placebo-controlled parallel study: 4 in the placebo group and 5 in the RU 486 group. Subjects received oral doses of RU 486 (200 mg) or placebo daily for 6-weeks. Morning plasma cortisol was determined at baseline, at 12 h following the first study drug dose, and weekly thereafter. RU 486 resulted in a significant increase in cortisol levels [F(1,6)=65.32; P<0.001]. The magnitude of this increase grew over the course of the study [F(1,6)=63.17; P<0.001], was not related to cortisol suppression after dexamethasone and appeared greater than that reported in the literature in younger populations in response to the same drug regimen. However, further studies with age-matched controls should be done to determine possible AD related changes in this response.  相似文献   

9.
We tested the hypothesis that the capuchin monkey adrenal (Cebus apella) gland has oscillatory properties that are independent of adrenocorticotropic hormone (ACTH) by exploring under ACTH suppression by dexamethasone: (i) maintenance of a circadian rhythm of plasma cortisol and (ii) clock time dependency of plasma cortisol response to exogenous ACTH. The capuchin monkey had a clear ACTH and plasma cortisol rhythm. Dexamethasone treatment resulted in low non-rhythmic ACTH levels and decreased cortisol to 1/10 of control values; nevertheless, the circadian rhythm of plasma cortisol persisted. We found that cortisol response to exogenous ACTH was clock time-dependent. The maximal response to ACTH occurred at the acrophase of the cortisol rhythm (0800 h). These results suggest that the capuchin monkey adrenal cortex may possess intrinsic oscillatory properties that participate in the circadian rhythm of adrenal cortisol secretion and in the circadian cortisol response to ACTH.  相似文献   

10.
11.
We examined the plasma cortisol and ACTH concentrations after graded doses of dexamethasone in a group of young, healthy adults. The decrease in cortisol was uniform in all subjects, and in 8 subjects there was a high degree of correspondence with the plasma ACTH concentration. The remaining 5 subjects had no change in plasma ACTH concentration during dexamethasone administration. All subjects had an expected diurnal change in cortisol on 2 pretreatment days and there was a corresponding diurnal change in ACTH for those subjects who had associated ACTH and cortisol responses after dexamethasone, while those with dissociated ACTH and cortisol after dexamethasone had no diurnal ACTH pattern. These findings were consistent with the 24-hour pattern of ACTH and cortisol before and after 1.0 mg of dexamethasone in 2 of the same subjects. These results are further evidence for ACTH independent regulation of adrenal function and indicate that pituitary-adrenal regulation in man is more complex than the traditional model of ACTH-cortisol feedback would predict.  相似文献   

12.
13.
14.
Stimulation of the serotonin 1A (5-HT1A) receptor subtype by 5-HT has been shown to result in an elevation in plasma corticosteroid levels in both mammals and several species of teleost fish, including the Gulf toadfish (Opsanus beta); however, in the case of teleost fish, it is not clearly known at which level of the hypothalamic–pituitary–interrenal axis the 5-HT1A receptor is stimulated. Additionally, previous investigations have revealed that chronic elevations of plasma cortisol mediate changes in brain 5-HT1A receptor mRNA and protein levels via the glucocorticoid receptor (GR); thus, we hypothesized that the function of centrally activated 5-HT1A receptors is reduced or abolished as a result of chronically elevated plasma cortisol levels and that this response is GR mediated. Our results are the first to demonstrate that intravenous injection of the 5-HT1A receptor agonist, 8-OH-DPAT, stimulates a significant increase in corticotropin-releasing factor (CRF) precursor mRNA expression in the hypothalamic region and the release of adrenocorticotropic hormone (ACTH) from the pituitary of teleost fish compared to saline-injected controls. We also provide evidence that cortisol, acting via GRs, attenuates the 5-HT1A receptor-mediated secretion of both CRF and ACTH.  相似文献   

15.
16.
A 51-yr-old male patient with a 3 yr history of Cushing's syndrome is described. The baseline plasma cortisol level was elevated, while the plasma ACTH levels remained at an undetectable level. Dynamic testing of pituitary-adrenal function revealed no suppression after 8 mg of dexamethasone, and there was no response to metyrapone or CRF, while plasma cortisol showed a hyperresponse to synthetic ACTH. Plasma cortisol responded to insulin-induced hypoglycemia without an obvious ACTH response. These and the computerized tomography data suggested a "huge" bilateral nodular adrenocortical hyperplasia which was later confirmed by surgery. The left and right adrenal glands weighed 55 and 76 g, respectively. In vitro experiments, using the adrenal tissue, showed that there was an adrenal cortisol response to 1-39 ACTH but not to regular insulin, arginine vasopressin, angiotensin II, norepinephrine or epinephrine. These results indicate that plasma cortisol responded to a slight hypoglycemia-induced plasma ACTH change which was not detected in the ACTH radioimmunoassay or to factors other than ACTH which might be induced by hypoglycemia.  相似文献   

17.

Background

Chronic stress has been found to be a major risk factor for various human pathologies. Stress activates the hypothalamic-pituitary-adrenal (HPA) axis, which is tightly regulated via, among others, the glucocorticoid receptor (GR). The activity of the GR is modulated by a variety of proteins, including the co-chaperone FK506 binding protein 51 (FKBP5). Although FKBP5 has been associated with risk for affective disorders and has been implicated in GR sensitivity, previous studies focused mainly on peripheral blood, while information about basal distribution and induction in the central nervous system are sparse.

Methodology/Principal Findings

In the present study, we describe the basal expression pattern of Fkbp5 mRNA in the brain of adult male mice and show the induction of Fkbp5 mRNA via dexamethasone treatment or different stress paradigms. We could show that Fkbp5 is often, but not exclusively, expressed in regions also known for GR expression, for example the hippocampus. Furthermore, we were able to induce Fkbp5 expression via dexamethasone in the CA1 and DG subregions of the hippocampus, the paraventricular nucleus (PVN) and the central amygdala (CeA). Increase of Fkbp5 mRNA was also found after restrained stress and 24 hours of food deprivation in the PVN and the CeA, while in the hippocampus only food deprivation caused an increase in Fkbp5 mRNA.

Conclusions/Significance

Interestingly, regions with a low basal expression showed higher increase in Fkbp5 mRNA following induction than regions with high basal expression, supporting the hypothesis that GR sensitivity is, at least partly, mediated via Fkbp5. In addition, this also supports the use of Fkbp5 gene expression as a marker for GR sensitivity. In summary, we were able to give an overview of the basal expression of fkbp5 mRNA as well as to extend the findings of induction of Fkbp5 and its regulatory influence on GR sensitivity from peripheral blood to the brain.  相似文献   

18.
This study examined the effects of dexamethasone treatment on basal hypothalamo-pituitary-adrenal (HPA) axis function and HPA responses to subsequent acute hypoxemia in the ovine fetus during late gestation. Between 117 and 120 days (term: approximately 145 days), 12 fetal sheep and their mothers were catheterized under halothane anesthesia. From 124 days, 6 fetuses were continuously infused intravenously with dexamethasone (1.80 +/- 0.15 microg.kg(-1).h(-1) in 0.9% saline at 0.5 ml/h) for 48 h, while the remaining 6 fetuses received saline at the same rate. Two days after infusion, when dexamethasone had cleared from the fetal circulation, acute hypoxemia was induced in both groups for 1 h by reducing the maternal fraction of inspired O2. Fetal dexamethasone treatment transiently lowered fetal basal plasma cortisol, but not ACTH, concentrations. However, 2 days after treatment, fetal basal plasma cortisol concentration was elevated without changes in basal ACTH concentration. Despite elevated basal plasma cortisol concentration, the ACTH response to acute hypoxemia was enhanced, and the increment in plasma cortisol levels was maintained, in dexamethasone-treated fetuses. Correlation of fetal plasma ACTH and cortisol concentrations indicated enhanced cortisol output without a change in adrenocortical sensitivity. The enhancements in basal cortisol concentration and the HPA axis responses to acute hypoxemia after dexamethasone treatment were associated with reductions in pituitary and adrenal glucocorticoid receptor mRNA contents, which persisted at 3-4 days after the end of treatment. These data show that prenatal glucocorticoids alter the basal set point of the HPA axis and enhance HPA axis responses to acute stress in the ovine fetus during late gestation.  相似文献   

19.
Abstract

The immunophilins are an important group of regulatory molecules in the immune system. FKBP5, expressed throughout mammals and in fish and birds, functions in both physiological and pathogenic pathways, including innate immunity and steroid-based diseases. In this study, we cloned the first porcine FKBP5 from Rongchang pig by the rapid amplification of cDNA ends technique. The full-length cDNA is 4097?bp, with an open reading frame of 1371?bp that codes for a 457-aa protein. Western blotting detected the porcine FKBP5 protein at highest levels in thymus, followed by spleen and lung. Immunohistochemistry detected the porcine FKBP5 protein in lymphocytes and granulocytes of the blood, and flow cytometry identified greater expression in unactivated (vs. activated) T lymphocytes. Finally, the expression level of porcine FKBP5 in the granulocytes was found to decline significantly from the time of birth to one-year-old. These collective data suggest that the newly identified porcine FKBP5 may function in activation of T cells in pig and in innate immunity in the newborn pig in particular.  相似文献   

20.
Metabolic syndrome (MetS) is correlated with the activity of hypothalamic-pituitary-adrenal axis (HPA), but the underlying mechanism still remains elusive. The aim of this study was to investigate the HPA axis function in patients with MetS. This case-control study included 159 people. They were divided into 2 groups. The first group included 73 healthy volunteers (control group: 19 males, 54 females, mean±SD: 49.9±7.5 years old, with BMI: 27.9±4.42?kg/m2) and the second group included 86 patients with MetS (case group: 48 males, 38 females, mean±SD: 52.2±7.6 years old, with BMI: 30.5±5.35?kg/m2). An oral glucose tolerance test (OGTT) was performed for all subjects after a 12-h overnight fast, and blood samples were obtained for determination of ACTH, cortisol, insulin, C-peptide, and glucose levels. Serum cortisol after an overnight dexamethasone suppression test was determined in both groups. Patients with MetS had serum cortisol levels after an overnight dexamethasone suppression test significantly higher than controls. During OGTT plasma ACTH levels were higher at all time points in patients with MetS compared to controls, whereas serum cortisol levels were comparable between the 2 groups. Plasma ACTH during OGTT was also correlated with most of the components of MetS. The HPA axis in patients with MetS seems to be more active as evidenced by the higher cortisol levels after the overnight dexamethasone suppression test and by the higher ACTH levels during OGTT. This functional hypercortisolism might be involved in the pathogenesis of the metabolic syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号