首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Taxonomic sufficiency (TS) — defined as the minimum taxonomic detail required to discern some ecological pattern of interest — has been used extensively in bioassessment and biodiversity studies as a way of avoiding a portion of the time and monetary costs associated with species diagnoses. The taxonomic sufficiency for detecting species-level patterns among floodplain-lake benthic-invertebrate assemblages remains unexplored. We examined cross-taxonomic-level congruence in assemblage-environment relationships among 23 Chinese floodplain lakes. Our objectives were: (1) to compare the correlation between species richness and density and those at coarser taxonomic resolution; (2) to identify whether assemblage-environment relationships depend on taxonomic scale; and (3) to test whether the proportion of between-lake variability accounted for by environmental variables was independent of taxonomic scale. When taxonomic structure was described using sequentially coarser taxonomic aggregations, species-level patterns of richness and abundance were sequentially obscured (i.e., genus-level taxonomy best preserved patterns in species composition, order- and class-level taxonomy poorly represented species composition). Similar environmental variables were important for distinguishing lake species assemblages and genus assemblages; however, different environmental variables were important for describing family-, order-, and class-level assemblage patters. Moreover, environmental variables accounted for a similar amount of biological variability, regardless of taxonomic scale. Our results suggest genus taxonomy as sufficient for rapid assessments of lake diversity. Numerical dominance of the species- and genus-rich Chironomidae, Tubificidae, and Naididae, may account for the marked loss of information that occurs when lake invertebrates are assigned only to their families. In summary, we describe taxonomic sufficiency to detecting patterns of richness and abundance among subtropical lake macroinvertebrate faunas. This study will interest Chinese benthologists concerned with conservation and bioassessment.  相似文献   

2.
We evaluated several factors influencing the taxonomic richness of macrophytes, benthic invertebrates, snails, and fish in a series of northern Wisconsin lakes. We chose the study lakes to decouple the potential effects of ionic strength of lake water and stream connection, two factors that are usually highly correlated and therefore have been confounded in previous studies. In addition, our study lakes covered a wide range in a variety of characteristics, including residential development, abundance of exotic species, nutrient concentrations, predator abundance, and lake size. Species richness within each of the four taxonomic groups was significantly positively related to ionic strength (as measured by specific conductance); we also found secondary associations with other variables, depending on the specific group of organisms. The relationship between richness and lake area was dependent on the specific conductance of the lake and the vagility of the organisms; less vagile groups of organisms showed stronger and steeper species–area relationships in low-conductivity lakes. Further, after variance owing to specific conductance was removed, the presence of stream connections was positively related to species richness for fish, snails, and macrophytes as well as familial richness in benthic invertebrates. Our results indicate that lakes with relatively more groundwater input have lower extinction rates for all four groups of taxa and that lakes with stream inlets and outlets have enhanced immigration rates for fish, snails, benthic invertebrate families, and macrophytes. These findings link processes of immigration and extinction of four groups of organisms of varying vagility to landscape-level hydrologic characteristics related to the glacial history of the region.  相似文献   

3.
Littoral benthic macroinvertebrates were studied in three alpine lakes in the High Tatra Mountains (Slovakia) located at different elevations: 2157, 1940 (alpine zone) and 1725 m (sub-alpine zone). The study sites were selected in order to obtain a gradient in thermal regimes and particular organic matter (POM). Differences in the faunal composition of lakes were tested for the ability of these differences to indicate climatic changes, and species/taxa were identified that could be used for the purposes of monitoring and climate change assessment. Macroinvertebrates were sampled quantitatively during the ice-free seasons of 2000 and 2001, and lake surface water temperature (LSWT) and POM were measured. LSWT and POM were negatively correlated with elevation, whereas ice cover was positively correlated with elevation. A total of 60 oligostenothermic macroinvertebrate species/taxa were collected belonging to ten higher taxonomic groups. Statistical analysis showed trends in several biotic metrics with altitude. More specifically, there was a clear increase in the number of species/taxa, genera, and higher taxonomic groups, as well as an increase in the Shannon–Wiener diversity with decreasing altitude. On the contrary, evenness and density of benthic macroinvertebrates did not show any clear relationship with altitude. Gatherers of detrital particles dominated the assemblages’ trophic structures, but no distinct changes in the proportion of functional feeding groups along the altitudinal gradient were found. While the non-insect fauna of the lakes was rather uniform across the elevational gradient, the insect fauna composition was highly correlated with altitude, as confirmed by Detrended Correspondence Analysis. Aquatic insects, in particular chironomids and caddisflies, can therefore be used as good indicators of temperature changes. Our results suggest that under warmer conditions, non-insect benthic macroinvertebrates will remain more or less stable, while aquatic insects will undergo an increase in the number of thermophilic species typical for lower altitudes. These colonizers will increase the diversity of alpine lakes, while the extinction of cold stenothermal species will lead to impoverishment of the native fauna. An indirect impact on benthic macroinvertebrates through changes in food sources is likely, and changes in trophic structure of the littoral assemblages can be expected.  相似文献   

4.
Introduced fish reduce the abundance and diversity of native aquatic fauna, but the effect can be reduced in complex habitats. We manipulated fish populations in forested mountain lakes to determine whether or not fish affected benthic macroinvertebrate composition across lakes with differing habitat complexity. We compared abundance, biomass, body-length, and community structure of benthic macroinvertebrates from 16 lakes with three treatments (fish stocked, suspended stocking, fish removed) and unstocked fishless “controls”. Over 4 years, we assessed the relative importance of fish and environmental variables influencing the composition of benthic macroinvertebrates. Control lakes had the greatest overall abundance of macroinvertebrates when chironomid midges were excluded. Abundances of insects in the clinger/swimmer functional group and caddisflies were greatest in the control lakes but were primarily influenced by habitat variables including the availability of aquatic vegetation and wood. Total biomass and mean body length of macroinvertebrates were not affected by treatment. Taxon richness of macroinvertebrates was about 40% greater in the control lakes compared to the treatment lakes but did not differ among treatments. Our results suggest that fish reduce susceptible macroinvertebrate richness and abundances, but that changes associated with alterations of fish composition are confounded by other factors in complex lake habitats.  相似文献   

5.
6.
In studies using macroinvertebrates as indicators for monitoring rivers and streams, species level identifications in comparison with lower resolution identifications can have greater information content and result in more reliable site classifications and better capacity to discriminate between sites, yet many such programmes identify specimens to the resolution of family rather than species. This is often because it is cheaper to obtain family level data than species level data. Choice of appropriate taxonomic resolution is a compromise between the cost of obtaining data at high taxonomic resolutions and the loss of information at lower resolutions. Optimum taxonomic resolution should be determined by the information required to address programme objectives. Costs saved in identifying macroinvertebrates to family level may not be justified if family level data can not give the answers required and expending the extra cost to obtain species level data may not be warranted if cheaper family level data retains sufficient information to meet objectives. We investigated the influence of taxonomic resolution and sample quantification (abundance vs. presence/absence) on the representation of aquatic macroinvertebrate species assemblage patterns and species richness estimates. The study was conducted in a physically harsh dryland river system (Condamine-Balonne River system, located in south-western Queensland, Australia), characterised by low macroinvertebrate diversity. Our 29 study sites covered a wide geographic range and a diversity of lotic conditions and this was reflected by differences between sites in macroinvertebrate assemblage composition and richness. The usefulness of expending the extra cost necessary to identify macroinvertebrates to species was quantified via the benefits this higher resolution data offered in its capacity to discriminate between sites and give accurate estimates of site species richness. We found that very little information (<6%) was lost by identifying taxa to family (or genus), as opposed to species, and that quantifying the abundance of taxa provided greater resolution for pattern interpretation than simply noting their presence/absence. Species richness was very well represented by genus, family and order richness, so that each of these could be used as surrogates of species richness if, for example, surveying to identify diversity hot-spots. It is suggested that sharing of common ecological responses among species within higher taxonomic units is the most plausible mechanism for the results. Based on a cost/benefit analysis, family level abundance data is recommended as the best resolution for resolving patterns in macroinvertebrate assemblages in this system. The relevance of these findings are discussed in the context of other low diversity, harsh, dryland river systems.  相似文献   

7.
1. Until recently, the distribution of diatom species assemblages and their attributes (e.g. species richness and evenness) in relation to water depth have been identified but not quantified, especially across several lakes in a region. Here, we examined diatom assemblages in the surface sediment across a water‐depth gradient in eight small, boreal lakes in north‐western Ontario, minimally disturbed by human activities. 2. Surface‐sediment diatom assemblages were collected within each lake along a gentle slope from near‐shore to the centre deep basin of the lake, at a resolution of ~1 m water depth. Analysis of sedimentary samples provided an integrated view of assemblages that were living in the lake over several years and enabled a high‐resolution analysis of many lakes. The study lakes ranged in water chemistry, morphology and size and are located along an east–west transect approximately 250 km long in north‐western Ontario (Canada). 3. The majority of diatom species were distributed along a continuum of depth, with those taxa having similar habitat requirements forming distinct, though overlapping, assemblages. Three major zones of diatom assemblages in each lake were consistently identified: (i) a near‐shore assemblage of Achnanthes (sensu lato), Nitzschia, Cymbella (sensu lato) and other benthic species; (ii) a mid‐depth assemblage of small Fragilaria (sensu lato)/small Aulacoseira and various Navicula taxa; and (iii) a deep‐water assemblage of planktonic origin (mainly Discotella spp.). 4. The depth of the transition between assemblage zones varied between the eight lakes. The boundary between the deep‐water planktonic zone and the mid‐depth benthic zone varied according to water chemistry and was probably related to light attenuation. The boundary was deeper in lakes with the lower dissolved organic carbon and total phosphorus (TP) (i.e. less light attenuation) and vice versa. 5. Generally, species richness, species evenness and turnover rate of species as a function of depth were significantly lower in the planktonic assemblage zone in comparison with the two zones nearer the shore. Reproducibility of species and assemblage distributions across the depth gradient of the lakes illustrated that, despite potential for sediment transport, detailed ecological characterisation of diatom species can be gleaned from sedimentary data. Such data are often lacking, particularly for near‐shore benthic species.  相似文献   

8.
The richness of the aquatic macrophyte floras, i.e., the total number of species, was assessed in 39 soft water lakes in central Ontario, Canada. The Cu and Ni concentrations and pH of the lakes ranged from 1 to 360 mg m?3, 2 to 3700 mg m?3 and 3.9 to 7.0, respectively. Two non-exclusive subsets of the data were examined to determine firstly, if floral richness was related to lake pH in lakes with low Cu and Ni levels (Data Set I) and secondly, if floral richness in acidic (pH ? 5.3) lakes was related to levels of various trace metals (Data Set II). Charophytes were not found in lakes with pH < 5.2. In Data Set I, there was no relationship between the richness of tracheophytes and pH, and there was a negative relationship between pH and bryophyte richness. Unlike phytoplankton, zooplankton, benthic macroinvertebrates and fish, there was no decrease in total species richness in lakes of pH < 5.5, as long as trace metal levels were low. Examination of Data Set II indicated tracheophyte richness of acidic lakes was negatively correlated with Cu and Ni levels. Biological surveys of metal-contaminated acidic lakes are, therefore, not of use for predicting the effects of acid deposition alone on aquatic macrophytes.  相似文献   

9.
Individual morphology and performance are directly or indirectly under the influence of variation in resource levels. To study the effects of different resource conditions and their effects on morphology and ontogenetic reaction norms in young‐of‐the‐year (YOY) perch (Perca fluviatilis), we used three different approaches. First, we examined the morphological trajectories over early ontogeny in relation to lake‐specific resources in a field study. Second, one lake that lacked perch recruitment was stocked with perch eggs from a control lake in a whole‐lake experiment to study ontogenetic reaction norms. Third, we compared the development of YOY perch in the three lakes that mainly inhabited the littoral zone with YOY perch experimentally confined to enclosures in the pelagic zone of the lakes.
Overall body morphology of the YOY perch changed both as a function of size and as a function of diet. As perch increased in size they developed a deeper body morphology corresponding to an increased proportion of benthic macroinvertebrates in their diet. In pelagic enclosures where perch were constrained to feed mainly on zooplankton they had a more fusiform body morphology than perch in the lakes that fed on a mixture of zooplankton and macroinvertebrates. Similarly, the ontogenetic reaction norm of perch was related to the diet and lake‐specific zooplankton levels in the whole‐lake experiment.
In the pelagic enclosures, perch with high growth rates had a more fusiform body morphology than slow‐growing perch, whereas the opposite was found in the lakes, where perch included more macroinvertebrates in their diets. Perch in lakes with a higher proportion of macroinvertebrates in the diet also had deeper body morphology. The opposite morphology – growth rate relationship found between perch in the pelagic versus those using the whole lake suggest a morphological trade‐off between foraging on zooplankton and foraging on macroinvertebrates. Our results suggest that YOY perch show different ontogenetic reaction norms as a function of lake‐specific resource levels, which may allow YOY recruitment to later stages. Our results further suggest that diet‐related changes in morphology are a rapid process.  相似文献   

10.
For lake characterisation, top-down typologies are mostly used throughout Europe, including type criteria such as climate, lake area, catchment geology and conductivity. In Germany, a lake typology was applied comprising ecoregion, calcium concentration, Schindler’s ratio, stratification type and residence time. However, the relevance of these criteria for the macroinvertebrate fauna has not been conclusively demonstrated till now. Benthic invertebrate community data and related environmental parameters of pristine or near-pristine lakes in Germany were analysed by multivariate analysis techniques to elucidate which environmental parameters are reflected by invertebrate composition. Moreover, benthic invertebrate data were transformed to metrics expressing ecological attributes and species richness (summarising functional composition, diversity and sensitivity measures). Multivariate statistics were used to test whether information relevant to ordination was lost and whether variation decreases using metrics which combine data with ecological attributes. Analysis of lake-type criteria revealed that ecoregions and prevailing substrates were characterized by different taxonomic compositions of macroinvertebrates. In addition, a relationship was found between community composition and lake size. Creating a novel bottom-up lake typology based on ecoregions, lake size and prevailing substrate gives better separation of distinct macroinvertebrate communities and a higher level of homogeneity within groups compared to top-down typology or single environmental parameters alone, both on species and metrics data. Despite some data variation due to methodological differences (e.g. different sampling and sorting techniques) and interannual and seasonal variation in the data set, NMDS ordination presented well-separated groups of bottom-up lake types. Lake types were more precisely separated by species data than by metric data in both top-down and bottom-up typology. However, as information loss from species lists to calculated metrics is marginal, type-specific benthic invertebrate assemblages are reflected both on the species level and on the metric level. Species and metric data are both suitable for data ordination, while single environmental parameters affecting macroinvertebrate composition can best be obtained using metrics.  相似文献   

11.
1987年间逐月调查分析了北京6个小型湖泊底栖无脊椎动物群落结构特征。通过指示种、优势种、种类、数量、生物量、Shannon多样性指数及其与水质的关系分析,前3个湖相当于中营养湖泊,后3个湖相当于中-富营养湖泊。梨形环稜螺(Bellamya purificata)和粗腹摇蚊幼虫(Pelopia sp.)可作为北京6个小湖环境质量的指标生物,前者指示水质较好,后者指示水质较差。Shannon多样性指数值(H′)与湖水BOD、COD、TP、TN含量之间关系比较密切,用该指数并参考指示生物特征评价此类型浅水小湖营养状况是可行的。  相似文献   

12.
Dreissenid mussels (the zebra mussel Dreissena polymorpha and the quagga mussel Dreissena bugensis ) have invaded lakes and rivers throughout North America and Europe, where they have been linked to dramatic changes in benthic invertebrate community diversity and abundance. Through a meta-analysis of published data from 47 sites, we developed statistical models of Dreissena impact on benthic macroinvertebrates across a broad range of habitats and environmental conditions. The introduction of Dreissena was generally associated with increased benthic macroinvertebrate density and taxonomic richness, and with decreased community evenness (of taxa excluding Dreissena ). However, the strength of these effects varied with sediment particle size across sites. The effects of Dreissena differed among taxonomic and functional groups of macroinvertebrates, with positive effects on the densities of scrapers and predators, particularly leeches (Hirudinea), flatworms (Turbellaria), and mayflies (Ephemeroptera). Gastropod densities increased in the presence of Dreissena , but large-bodied snail taxa tended to decline. Dreissena was associated with declines in the densities sphaeriid clams and other large filter-feeding taxa, as well as burrowing amphipods ( Diporeia spp.), but had strong positive effects on gammarid amphipods. These patterns are robust to variation in the methodology of primary studies. The effects of Dreissena are remarkably concordant with those of ecologically similar species, suggesting universality in the interactions between introduced byssally attached mussels and other macroinvertebrates.  相似文献   

13.
We studied the succession patterns of the benthic community following a whole-lake restoration experiment in a subtropical hypertrophic lake (Lake Rodó, 34°55′ S 56°10′ W, Montevideo, Uruguay). The restoration measures involved diversion of the main inlet and removal of upper 1-m sediment and biomanipulation of the fish community. Between January 1997 and November 1999, we sampled sediments seasonally to analyse changes in benthos in relation to other abiotic and biotic characteristics of the system. The benthic community of the lake was composed of three families and nine genera. The maximum density (646 ind m−2), as well as the maximum taxonomic richness (six), were observed 1 month after the lake was refilled. Since 1998, the benthic abundance decreased considerably and continuously and a total absence of benthic organisms was registered by the end of the year. The low abundance of macroinvertebrates during 1997 could be explained by the food preferences of the dominant fish species, and the high fish biomass at the beginning of the biomanipulation process. However, the most relevant physico-chemical temporal patterns were the increase of organic matter and nutrients in the sediment and the fluctuations of oxygen and nitrate in the deepest layer of the water column. The disappearance of benthos was related to these temporal changes. These results stress the importance of the increase of organic matter for the changes in the physico-chemical environment, and its importance in the benthic succession and possible collapse. We suggest that in hypertrophic lakes, the effects of organic matter enrichment in the sediment can be even more relevant than fish predation in shaping the zoobenthos.  相似文献   

14.
Benthic invertebrates of some saline lakes of the Sud Lipez region,Bolivia   总被引:1,自引:1,他引:0  
Claude Dejoux 《Hydrobiologia》1993,267(1-3):257-267
The benthic invertebrates fauna of most of the saline lakes of the Sud Lipez region (Bolivia, Altiplano) has been until now quite unstudied. Samples collected during an extensive survey of 12 lakes and two small inflow rivers allow a first list of the main macroinvertebrates living in these biotopes.The heterogeneous nature of these saline lakes with their freshwater springs and phreatic inflows offers a variety of habitats to macroinvertebrates. The benthic fauna in lakes with salinities > 10 g l–1 is not so low in density but includes few species and is dominated by Orthocladiinae and Podonominae larvae. In contrast, the freshwater springs and inflows are colonized by a diverse fauna, with a mixture of both freshwater and saline taxa, but dominated by Elmidae and Amphipoda. The lakes are quite isolated and, apart from some cosmopolitan organisms, their fauna can be quite distinctive.  相似文献   

15.
The rapid decrease of biodiversity and limited resources for surveying it have forced researchers to devise short-cuts for biodiversity surveys and conservation planning. These short-cuts include environmental surrogates, higher taxon surrogates, indicator species and indicator groups. We considered indicator groups as surrogates for wholesale biodiversity and cross-taxon congruence in biodiversity patterns in littoral macroinvertebrates of boreal lakes. Despite the fact that we considered indicator groups amongst a wide variety of taxa, such as two-winged flies, mayflies, caddisflies, beetles, bugs and molluscs, none of the proposed groups possessed all of the qualities of a good indicator taxon for biodiversity surveys and conservation planning. We found generally weak, yet typically significant, relationships between the proposed indicator groups and remaining taxa in both species richness and assemblage similarity. Low congruence was paralleled by somewhat differing relationships of the taxonomic groups to various environmental features of lakes. Furthermore, the relationships of most indicator groups to the environmental features of lakes were not particularly strong. The present findings are unfortunate, because indicator groups did not perform well in predicting the wholesale biodiversity of littoral macroinvertebrates. Thus, there appears to be no short-cut for considering all groups of macroinvertebrates in biodiversity surveys, conservation planning and characterisation of environmental relationships of lake littoral assemblages.  相似文献   

16.
Lakes are common features of alpine landscapes, and the attention given to alpine lakes has increased recently in response to increased recognition of the important role that these freshwaters play as sensible indicators of climate change. Despite this general research interest, there is nevertheless a general lack of information about zoobenthos especially of lakes in the Alps, and only few published data are available, which has made it nearly impossible to draw general conclusions in respect to benthic community structure, profundal and/or littoral food webs. This paper aims to explore the relationships between main environmental/catchment properties of 55 lakes and their littoral benthic fauna across three regions of the Alps. We provide updated information on relative abundance, species richness, distribution and ecology of macroinvertebrates which occur and are typical in the littoral of high-mountain lakes of the Alps. These lakes were located in the Lago-Maggiore Watershed (Italy and Switzerland), in South Tyrol (Italy) and in North/East Tyrol (Austria), between 1840 and 2796 m a.s.l., in catchments undisturbed by human activities. As the studied lakes are situated above the tree line, they were characterised by low nutrient levels indicating an oligotrophic status. Lake water chemistry corresponded closely to the geo-lithology of the catchment and some parameters (especially nutrient concentrations) differed between the regions. The macroinvertebrates were dominated by insects which to a high degree were chironomid larvae and pupae. Other insect orders were typical cold stenotherm species of Ephemeroptera, Plecoptera and Trichoptera. Non-insect macroinvertebrates contributed to the 144 taxa found. Other than lake size and catchment area, the faunal parameters exhibited a clearer pattern along altitude. Macroinvertebrates per sample increased with higher elevation, reached their maximum in lakes between 2400 and 2600 m a.s.l., but decreased strongly above 2600 m. The altitudinal pattern of species richness and Shannon diversity resembled each other being highest between 2001 and 2200 m a.s.l., but decreased when going lower and higher, respectively. Various patterns and trends along altitude were also evident when individual groups were analysed within the individual sampling regions. The somewhat conflicting trends of various biocoenotic indices let assume that factors other than altitude are also responsible for the structure of faunal assemblages in the littoral of alpine lakes. Six variables (“bare rocks” and “nitrate”, “alkalinity”, “ammonia” and “peat bog”) were selected by the CCA analysis where these three groups of lakes were identified: (1) lakes with a higher alkalinity (higher pH, conductivity, ion concentration), a higher relative vegetation cover (compared to the “bare rocks” on the opposite side) and lower nitrate levels; (2) lakes with a higher portion of “bare rocks” in their catchments and higher nitrate levels; and (3) a smaller group of lakes with higher ammonia levels and a boggy environment. Geographical patterns seemed to have weak effects on the presence of taxa while catchment properties had evident impacts on macroinvertebrate communities in these lakes. In this way, the present study contributes to the overall understanding of environmental settings and effects on high mountain lake ecosystems and assists in refining research and conservation strategies for an important landscape aspect in the Alps.  相似文献   

17.
Our purpose was to explore relationships of freshwater planktonic and benthic community species richness with water chemistry parameters using a dataset of biological, chemical, and physical data from 550 lakes. This was done using multivariate (ordination), graphical, and correlation analyses. Although the lakes are rather similar in location (Belarus) and in being mostly eutrophic, they do show variations in water chemistry. We ordinated lakes by water chemistry variables, and then looked for correlations between the ordination axes and species richness in 10 taxonomic groups: Cyanobacteria, Chlorophyta, Bacillariophyta, Cladocera, Copepoda, Rotatoria, Mollusca, Trichoptera, Chironomidae, and aquatic macrophytes. The first four Principal Components Analysis (PCA) axes explained about 67% of the total variability in water chemistry. The axes represent water hardness (DIC, dissolved inorganic carbon), organic content (DOC, dissolved organic carbon), nutrients, and chlorides and sulfates. The PCA ordination revealed environmental gradients, but not the distinctive clusters of lakes. Species richness was most strongly correlated with the first PCA axis (DIC), which accounted for 29% of the total variation in water chemistry. Species richness was positively correlated with DIC for eight of 10 taxonomic categories. The second PCA axis (DOC), which accounted for 20% of total variation in water chemistry, was correlated with species richness in the three phytoplankton groups, and with chironomid species richness. The third PCA axis (nutrients, especially nitrogen, 11%) was correlated with species richness of copepoda, chironomids, and macrophytes. The fourth PCA axis (chloride and sulfate) accounted for only 7% of the total variance in water chemistry, and was significantly negatively correlated with species richness of rotifers, molluscs, and chironomids. In addition to these linear correlations, there were several significant non-linear relationships. DIC variables showed curvilinear (hump-shaped) relationship with benthos (all groups combined) and especially with molluscs, and DOC variables—with phytoplankton and benthos. Each community, and often separate taxonomic groups within community have their own optimal ranges of chemical concentrations, and various water chemistry variables showed significant curvilinear relationships with biodiversity, suggesting that the diversity of different major aquatic groups may be influenced by different chemicals. Handling editor: S. Declerck  相似文献   

18.
DNA barcoding aims to develop an efficient tool for species identification based on short and standardized DNA sequences. In this study, the DNA barcode paradigm was tested among the genera of the tribe Sisyrinchieae (Iridoideae). Sisyrinchium, with more than 77% of the species richness in the tribe, is a taxonomically complex genus. A total of 185 samples belonging to 98 species of Sisyrinchium, Olsynium, Orthrosanthus and Solenomelus were tested using matK, trnHpsbA and internal transcribed spacer (ITS). Candidate DNA barcodes were analysed either as single markers or in combination. Detection of a barcoding gap, similarity‐based methods and tree‐based analyses were used to assess the discrimination efficiency of DNA barcodes. The levels of species identification obtained from plastid barcodes were low and ranged from 17.35% to 20.41% for matK and 5.11% to 7.14% for trnH‐psbA. The ITS provided better results with 30.61–38.78% of species identified. The analyses of the combined data sets did not result in a significant improvement in the discrimination rate. Among the tree‐based methods, the best taxonomic resolution was obtained with Bayesian inference, particularly when the three data sets were combined. The study illustrates the difficulties for DNA barcoding to identify species in evolutionary complex lineages. Plastid markers are not recommended for barcoding Sisyrinchium due to the low discrimination power observed. ITS gave better results and may be used as a starting point for species identification.  相似文献   

19.
Macroinvertebrates have been recognized as key ecological indicators of aquatic environment and are the most commonly used approaches for water quality assessment. However, species identification of macroinvertebrates (especially of aquatic insects) proves to be very difficult due to the lack of taxonomic expertise in some regions and can become time‐consuming. In this study, we evaluated the feasibility of DNA barcoding for the classification of benthic macroinvertebrates and investigated the genetic differentiation in seven orders (Insecta: Ephemeroptera, Plecoptera, Trichoptera, Diptera, Hemiptera, Coleoptera, and Odonata) from four large transboundary rivers of northwest China and further explored its potential application to biodiversity assessment. A total of 1,144 COI sequences, belonging to 176 species, 112 genera, and 53 families were obtained and analyzed. The barcoding gap analysis showed that COI gene fragment yielded significant intra‐ and interspecific divergences and obvious barcoding gaps. NJ phylogenetic trees showed that all species group into monophyletic species clusters whether from the same population or not, except two species (Polypedilum. laetum and Polypedilum. bullum). The distance‐based (ABGD) and tree‐based (PTP and MPTP) methods were utilized for grouping specimens into Operational Taxonomic Units (OTUs) and delimiting species. The ABGD, PTP, and MPTP analysis were divided into 177 (p = .0599), 197, and 195 OTUs, respectively. The BIN analysis generated 186 different BINs. Overall, our study showed that DNA barcoding offers an effective framework for macroinvertebrate species identification and sheds new light on the biodiversity assessment of local macroinvertebrates. Also, the construction of DNA barcode reference library of benthic macroinvertebrates in Eurasian transboundary rivers provides a solid backup for bioassessment studies of freshwater habitats using modern high‐throughput technologies in the near future.  相似文献   

20.
Abstract Ground‐active ants were sampled from three habitats: (i) a 10‐year‐old Eucalyptus punctata plantation, (ii) native woodland regrowth, and (iii) the surrounding pasture, at a study site in the Hunter Valley, New South Wales, Australia. A previous study, undertaken 6 years earlier at the same study sites, revealed no difference in species richness or composition between the eucalypt plantation and pasture. The aims of the present study were: (i) to investigate the successional change in ant community structure within the plantations; and (ii) to evaluate what levels of taxonomic identification were sufficient to indicate a change had taken place. Univariate statistics (anova ) were used to compare estimates of assemblage richness between habitats using data classified at five levels of taxonomic resolution: species, morphospecies, easily recognisable taxonomic units, genus and functional group. Multivariate statistics (anosim and non‐metric multidimensional scaling) were used to compare ant assemblages between habitats and between sampling events at a range of taxonomic resolutions from species to functional group. This study found: (i) a significant temporal change in community composition was evident using species, genus and functional group level data, but no change was detected in the pasture or woodland; (ii) mean ant species, morphospecies and easily recognisable taxonomic units richness were significantly greater within the plantations than the pasture; (iii) compositional differences between the plantation and pasture assemblages were evident at all levels of taxonomic resolution; (iv) mean ant species and genus richness were significantly higher in the woodland than in the plantation, and these two habitats were compositionally distinct at all levels of taxonomic resolution. This is the first case study to have documented a successional response from ants to the revegetation of agricultural land with eucalypt plantations. Reasons for the temporal and interhabitat differences in community structure are discussed, as well as the implications for taxonomic sufficiency in monitoring ant community successions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号