首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
2.
The interactions between herbivorous insects and their symbiotic micro-organisms can be influenced by the plant species on which the insects are reared, but the underlying mechanisms are not understood. Here, we identify plant nutrients, specifically amino acids, as a candidate factor affecting the impact of symbiotic bacteria on the performance of the phloem-feeding aphid Aphis fabae. Aphis fabae grew more slowly on the labiate plant Lamium purpureum than on an alternative host plant Vicia faba, and the negative effect of L. purpureum on aphid growth was consistently exacerbated by the bacterial secondary symbionts Regiella insecticola and Hamiltonella defensa, which attained high densities in L. purpureum-reared aphids. The amino acid content of the phloem sap of L. purpureum was very low; and A. fabae on chemically defined diets of low amino acid content also grew slowly and had elevated secondary symbiont densities. It is suggested that the phloem nutrient profile of L. purpureum promotes deleterious traits in the secondary symbionts and disturbs insect controls over bacterial abundance.  相似文献   

3.
Analysis of predator–prey interactions is a core concept of animal ecology, explaining structure and dynamics of animal food webs. Measuring the functional response, i.e. the intake rate of a consumer as a function of prey density, is a powerful method to predict the strength of trophic links and assess motives of prey choice, particularly in arthropod communities. However, due to their reductionist set‐up, functional responses, which are based on laboratory feeding experiments, may not display field conditions, possibly leading to skewed results. Here, we tested the validity of functional responses of centipede predators and their prey by comparing them with empirical gut content data from field‐collected predators. Our predator–prey system included lithobiid and geophilomorph centipedes, abundant and widespread predators of forest soils and their soil‐dwelling prey. First, we calculated the body size‐dependent functional responses of centipedes using a published functional response model in which we included natural prey abundances and animal body masses. This allowed us to calculate relative proportions of specific prey taxa in the centipede diet. In a second step, we screened field‐collected centipedes for DNA of eight abundant soil‐living prey taxa and estimated their body size‐dependent proportion of feeding events. We subsequently compared empirical data for each of the eight prey taxa, on proportional feeding events with functional response‐derived data on prey proportions expected in the gut, showing that both approaches significantly correlate in five out of eight predator–prey links for lithobiid centipedes but only in one case for geophilomorph centipedes. Our findings suggest that purely allometric functional response models, which are based on predator–prey body size ratios are too simple to explain predator–prey interactions in a complex system such as soil. We therefore stress that specific prey traits, such as defence mechanisms, must be considered for accurate predictions.  相似文献   

4.
张二娜  黄斌  侯有明 《昆虫知识》2011,48(2):267-272
本文从菜田生态系统的角度出发,就黄曲条跳甲Phyllotreta striolata(Fabricius)取食诱导对小菜蛾Plutella xylostella(L.)造成的影响进行了研究。黄曲条跳甲取食诱导对小菜蛾取食的影响比较明显,一般来说,黄曲条跳甲少量或短时间的取食会刺激小菜蛾幼虫在相应叶片上的取食,反之则会抑制;而且不同的寄主,不同完整度的叶片(即是否被黄曲条跳甲取食过)上的承载能力不同,芥菜、白菜、菜心和萝卜的承载力弱于甘蓝和芥蓝,黄曲条跳甲取食过的叶片弱于未被黄曲条跳甲取食过的叶片;不同数量的黄曲条跳甲取食对小菜蛾的产卵量影响显著,对其余生物学参数影响不显著,少量的黄曲条跳甲取食会刺激小菜蛾的产卵,多数则会抑制。  相似文献   

5.
Host plant cues are known to shape insect–host plant association in many insect groups. More pronounced associations are generally manifested in specialist herbivores, but little is known in generalist herbivores. We used a polyphagous native beetle from New Zealand, bronze beetle, Eucolaspis sp. ‘Hawkes Bay’ (Chrysomelidae: Eumolpinae) to explore the role of olfaction in locating host plants and local adaptation. We also tested the role of other cues in the degree of acceptance or rejection of hosts. Adult Eucolaspis beetles were attracted to fresh leaf volatiles from apple and blackberry (Rosaceae). Male and female beetles responded similarly to olfactory cues of host plants. An indication of evolutionary affiliation was observed in olfactory preferences of geographically isolated conspecific populations. We found that geographically isolated populations of the beetles differ in their olfactory responses and exhibit some degree of local adaptation. However, irrespective of geographical and ecological associations, blackberry was preferred over apple as a feeding plant, and another novel plant, bush lawyer (Rubus australis), was readily accepted by 53.25% of the tested beetles. We show that plant volatiles play an important role in host location by Eucolaspis, but the acceptance or rejection of a particular host could also involve visual and contact cues.  相似文献   

6.
Despite considerable recent interest in how biodiversity may influence ecosystem properties, the issue of how plant diversity and composition may affect multiple trophic levels in soil food webs remains essentially unexplored. We conducted a glasshouse experiment in which three plant species of each of three functional groups (grasses, N‐fixing legumes and forbs) were grown in monoculture and in mixtures of three species (with the three species being in the same or different functional groups) and all nine species. Plant species identity had important effects on the biomasses or population densities of belowground primary consumers (microbial biomass, herbivorous nematodes) and two groups of secondary consumers (microbe‐feeding nematodes and enchytraeids); the third consumer trophic level (predatory nematodes) was marginally not significantly affected at P=0.05. Plant species also influenced the relative importance of the bacterial‐based and fungal‐based energy channels for both the primary and secondary consumer trophic levels. Within‐group diversity of only the soil microflora and herbivorous nematodes (both representing the basal consumer trophic level) were affected by plant species identity. However, community composition within all trophic groupings considered (herbivorous nematodes, microbes, microbe‐feeding nematodes, predatory nematodes) was strongly influenced by what plant species were present. Despite the strong responses of the soil biota to plant species identity, there were few effects of plant species or functional group richness on any of the belowground response variables measured. Further, net primary productivity (NPP) was unaffected by plant diversity. Since some belowground response variables were correlated with NPP across treatments, it is suggested that belowground responses to plant diversity might become more apparent in situations when NPP itself responds to plant diversity. Our results point to plant species identity as having important multitrophic effects on soil food webs, both at the whole trophic group and within‐group levels of resolution, and suggest that differences in plant traits across species may be important in driving the decomposer subsystem.  相似文献   

7.
8.
Gut content analysis is a useful tool when studying arthropod predator-prey interactions. We used polymerase chain reaction (PCR) technique to examine how detection of prey DNA in the gut content of predators was influenced by digestion time and temperature. Such knowledge is critical before applying PCR-based gut content analysis to field collected predators. Larvae of the two-spotted ladybeetle (Adalia bipunctata L.) were fed with the bird cherry-oat aphid (Rhopalosiphum padi L.) at either 21℃ or 14℃. After consuming one aphid, the predators were allowed to digest the prey for a range of time periods up to 24 hours. The influence of temperature on A. bipunctata feeding behavior was also recorded. From the fed larvae, total DNA was extracted and PCR reactions with R. padi specific primers were run. The number ofA. bipunctata that tested positive for R. padi DNA was negatively related to the length of digestion time. Temperature influenced larval feeding behavior but did not have a significant effect on R. padi DNA detection. After pooling the data from both temperature treatments we estimated the time point when R. padi DNA could be amplified from 50% of the fed A. bipunctata by PCR to be 4.87 hours. With such a rapid decrease in prey DNA detection success, positive PCR reactions will most likely be the result of predation events occurring shortly before capture. If a defined digestion temperature range has proven not to influence prey detection, PCR data obtained from predators collected within that particular range can be interpreted in the same way.  相似文献   

9.
Warmer climates are predicted to increase bark beetle outbreak frequency, severity, and range. Even in favorable climates, however, outbreaks can decelerate due to resource limitation, which necessitates the inclusion of competition for limited resources in analyses of climatic effects on populations. We evaluated several hypotheses of how climate impacts mountain pine beetle reproduction using an extensive 9‐year dataset, in which nearly 10,000 trees were sampled across a region of approximately 90,000 km2, that was recently invaded by the mountain pine beetle in Alberta, Canada. Our analysis supports the hypothesis of a positive effect of warmer winter temperatures on mountain pine beetle overwinter survival and provides evidence that the increasing trend in minimum winter temperatures over time in North America is an important driver of increased mountain pine beetle reproduction across the region. Although we demonstrate a consistent effect of warmer minimum winter temperatures on mountain pine beetle reproductive rates that is evident at the landscape and regional scales, this effect is overwhelmed by the effect of competition for resources within trees at the site level. Our results suggest that detection of the effects of a warming climate on bark beetle populations at small spatial scales may be difficult without accounting for negative density dependence due to competition for resources.  相似文献   

10.
The red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae), is a major pest of stored grain and cereal crops. It is also an important model species in genetic, ecological, and evolutionary research. The majority of its genome was recently sequenced and published. However, the genomic sequence of the small Y-chromosome is still undetermined, which hinders the development of molecular sex identification methods. Traditional methods for sexing adult forms of Tribolium beetles are troublesome. Therefore, a method for molecular sex identification in the red flour beetle was developed. One sex-linked randomly amplified polymorphic DNA marker was converted into a sequence-characterized amplified region (SCAR). The SCAR was aligned with the T. castaneum reference whole-genome sequence and fully matched a fragment of a single contig of unknown genomic location. The novelty of the method is that the fragment consists of shorter DNA fragments that are also present at other locations around the genome, but the particular order of these fragments within the sequenced region appeared to be Y-specific and this property was utilized for marker development. A set of three primers for multiplex PCR reaction was designed resulting in amplification of different length Y-specific and not-Y-specific (control) DNA fragments in a single PCR, which allows to distinguish males from females. The primers successfully sexed pre-sexed pupae and adult beetles from six laboratory strains, showing that the order of the repeated fragments is conserved in the species and is not strain-specific.  相似文献   

11.
刘启龙  程赛赛  陈婷  常亮  高梅香 《生态学报》2023,43(6):2242-2252
土壤动物联结着生态系统地上与地下部分的物质循环和能量流动,对生态系统的结构、功能及过程起着重要的调控作用。地表甲虫作为典型的大型土壤动物,在食物网中占有重要的位置,因此对不同林型地表甲虫的δ13C、δ15N同位素特征及营养关系研究对了解森林土壤动物的食性特征进而保护森林生物多样性是十分必要的。采集了小兴安岭凉水自然保护区6种不同林型的地表甲虫共10科31种,利用稳定同位素技术测定了甲虫中的δ13C、δ15N含量,并分析不同林型内地表甲虫的δ13C、δ15N值及营养级差异。结果表明6、7月份不同林型地表甲虫的δ13C、δ15N值差异显著(P<0.05),其中δ13C值在原始阔叶红松林和次生白桦林显著高于落叶松人工林和阔叶红松择伐林。δ15N值在阔叶红松择伐林显著高于其他5种林型。不同林型地表甲虫的营养级差异显著(P<0.05),林型内各物种营养级差异不显著(P...  相似文献   

12.
Rare species can play important functional roles, but human‐induced changes to disturbance regimes, such as fire, can inadvertently affect these species. We examined the influence of prescribed burns on the recruitment and diversity of plant species within a temperate forest in southeastern Australia, with a focus on species that were rare prior to burning. Floristic composition was compared among plots in landscapes before and after treatment with prescribed burns differing in the extent of area burnt and season of burn (before–after, control‐impact design). Floristic surveys were conducted before burns, at the end of a decade of drought, and 3 years postburn. We quantified the effect of prescribed burns on species grouped by their frequency within the landscape before burning (common, less common, and rare) and their life‐form attributes (woody perennials, perennial herbs or geophytes, and annual herbs). Burn treatment influenced the response of rare species. In spring‐burn plots, the recruitment of rare annual herbs was promoted, differentiating this treatment from both autumn‐burn and unburnt plots. In autumn‐burn plots, richness of rare species increased across all life‐form groups, although composition remained statistically similar to control plots. Richness of rare woody perennials increased in control plots. For all other life‐form and frequency groups, the floristic composition of landscapes changed between survey years, but there was no effect of burn treatment, suggesting a likely effect of rainfall on species recruitment. A prescribed burn can increase the occurrence of rare species in a landscape, but burn characteristics can affect the promotion of different life‐form groups and thus affect functional diversity. Drought‐breaking rain likely had an overarching effect on floristic composition during our study, highlighting that weather can play a greater role in influencing recruitment and diversity in plant communities than a prescribed burn.  相似文献   

13.
One of the important aspects explaining the evolutionary success of polyploid plants is that polyploids often, although not always, occupy a wider range of environments than their diploid ancestors. The two most likely explanations for this pattern are a wider plasticity in polyploid species and the existence of a range of locally adapted types. Most studies on patterns of distribution of different ploidy levels are only observational, and do not distinguish between these alternative explanations. The present study investigated the performance and plasticity of diploid and hexaploid cytotypes of a perennial plant, Aster amellus . The hexaploid plants occur in habitats with a wider range of competition intensity. Nine different populations of the species were selected: three diploid (from low competition habitats) and six hexaploid (from both low and high competition habitats). Plants were grown from seeds from these populations with and without competition in a common garden. Competition had strong effect on plant performance. There was, however, little effect of the ploidy levels and home environment. There was also almost no interaction between competition and ploidy level/home environment. The results of this study provide no support for any of the two suggested explanations for the wider range of habitats occupied by hexaploid plants. Other explanations thus must be thought. Generally, the results indicate that, although the higher plasticity of higher ploidy levels is often suggested, this may not be true. We therefore should attempt to assemble more experimental data to support or reject this assumption.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 211–219.  相似文献   

14.
Consumption of planktonic algae by Cyclops vicinus living in Lake Balaton were studied in eighteen feeding experiments during 1980–1981. Gut contents of 284 adult C. vicinus were analysed in comparison with the natural phytoplankton assemblage. Rates of algal cells elimination were also studied and compared to controles which did not contain animals. C. vicinus in Lake Balaton was found to be an omnivore.  相似文献   

15.
The development and severity of fin damage was examined in groups of juvenile rainbow trout Oncorhynchus mykiss of different strength of feeding hierarchies. The development of dorsal and caudal fin damage over time was compared between four groups fed different ration levels (0·25, 0·5, 1·0 and 1·5% body weight day−1) and between individuals of different feeding rank within each group. Dominance hierarchies were assessed from repeated daily measurements of food consumption of individuals using radiography. The feeding and growth data indicated that the strength of the social hierarchy weakened with increasing ration. Caudal fin damage developed with time in all groups whereas dorsal fin damage developed only under limited rations. The severity of both dorsal and caudal fin damage was significantly dependent on the ration size fed to the group, with lower ration groups sustaining more fin damage. The severity of dorsal fin erosion was greater than for the caudal fin. Within the two lower ration groups, subordinate fish suffered the most dorsal fin damage. The results suggested that the severity of dorsal fin damage within groups of juvenile rainbow trout can be used as an indicator of hierarchy Strength.  相似文献   

16.
Biochar management has been proposed as a possible tool to mitigate anthropogenic CO2 emissions, and thus far its impacts in forested environments remain poorly understood. We conducted a large‐scale, replicated field experiment using 0.05‐ha plots in the boreal region in northern Sweden to evaluate how soil and vegetation properties and processes responded to biochar application and the disturbance associated with burying biochar in the soil. We employed a randomized block design, where biochar and soil mixing treatments were established in factorial combination (i.e., control, soil mixing only, biochar only, and biochar and soil mixing; n = 6 plots of each). After two growing seasons, we found that biochar application enhanced net soil N mineralization rates and soil concentrations regardless of the soil mixing treatment, but had no impact on the availability of , the majority of soil microbial community parameters, or soil respiration. Meanwhile, soil mixing enhanced soil concentrations, but had negative impacts on net N mineralization rates and several soil microbial community variables. Many of the effects of soil mixing on soil nutrient and microbial community properties were less extreme when biochar was also added. Biochar addition had almost no effects on vegetation properties (except for a small reduction in species richness of the ground layer vegetation), while soil mixing caused significant reductions in graminoid and total ground layer vegetation cover, and enhanced seedling survival rates of P. sylvestris, and seed germination rates for four tree species. Our results suggest that biochar application can serve as an effective tool to store soil C in boreal forests while enhancing availability. They also suggest that biochar may serve as a useful complement to site preparation techniques that are frequently used in the boreal region, by enhancing soil fertility and reducing nutrient losses when soils are scarified during site preparation.  相似文献   

17.
Abstract 1. Consequences of variation in food plant quality were estimated for a system consisting of two monophagous noctuid herbivores and three ichneumonid parasitoids.
2. In a natural population, pupal weights of the herbivores in this system, Nonagria typhae and Archanara sparganii , were found to be highly variable. Pupal weights increased strongly and consistently with the increase in the vigour of the host plant, Typha latifolia , providing support for the plant vigour hypothesis. Correspondingly, as the moths do not feed as adults, a strong, positive correlation between host vigour and fecundity of the herbivores would be expected.
3. There were strong and positive relationships between adult body sizes of the parasitoids and the sizes of their lepidopteran hosts. Moreover, a direct, positive link between plant quality and parasitoid size was documented.
4. For all three parasitoids, cascading effects of plant quality on body size were weaker than for the herbivores. Differences in the importance of adult feeding and oviposition behaviour suggest that dependence of fitness on body size is also weaker in the parasitoids than in the moths. It is therefore concluded that the numerical response of the herbivore population to a change in plant quality should exceed the corresponding response in the parasitoids.
5. The results of this work imply that variation in plant variables may affect performance of different trophic levels to a different extent. It is suggested that the importance of adult feeding for the reproductive success (capital vs. income breeding strategies) in both herbivores and parasitoids is an essential aspect to consider when predicting responses of such a system to changes in plant quality.  相似文献   

18.
The N2O flux from the surface of grass-covered pots was only significant following grass maturing. Removal of the above-ground plant material resulted in an immediate and long-lasting increase in N2O production in the soil. The results suggest that easily available organic matter from the roots stimulates the denitrification when the plants are damaged. Grass cutting might therefore result in a marked nitrogen loss through denitrification. The quantitative effect was equal in soil with and without succinate added. The size of the anaerobic zone around the roots is therefore sufficient to allow for denitrification activity mediated by increased organic matter availability because of plant cutting.  相似文献   

19.
Insect herbivores are important drivers of ecosystem processes in grasslands, and can mediate the grassland's response to environmental change. For example, recent evidence shows that above‐ and belowground herbivory, individually and in combination, can modify how a plant community responds to nitrogen (N) eutrophication, an important driver of global change. However, knowledge about how such effects extend to the associated soil food web is lacking. In a mesocosm experiment, we investigated how communities of soil nematodes – an abundant and functionally important group of soil organisms – responded to above‐ and belowground insect herbivory at contrasting N levels. We found that the strongest influence of above‐ and belowground herbivory on the nematode community appeared at elevated N. The abundance of root‐feeding nematodes increased when either above‐ or belowground insect herbivores were present at elevated N, but when applied together the two herbivore types cancelled out one another's effect. Additionally, at elevated N aboveground herbivory increased the abundance of fungal‐feeders relative to bacterial‐feeders, which indicates changes in decomposition pathways induced by N and herbivory. Belowground herbivory increased the abundance of omnivorous nematodes. The shifts in both the herbivorous and detrital parts of the soil food web demonstrate that above‐ and belowground herbivory does not only mediate the response of the plant community to N eutrophication, but in extension also the soil food web sustained by the plant community. We conclude that feedbacks between effects of above‐ and belowground herbivory mediate the response of the grassland ecosystem to N eutrophication.  相似文献   

20.
Plant Ecology - The aim of this study was to assess the effect of arbuscular mycorrhizal fungi Rhizophagus intraradices and soil microbial groups and their interactions on a simple plant community...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号