首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large increases in several populations of North American arctic geese have resulted in ecosystem-level effects from associated herbivory. Consequently, some breeding populations have shown density dependence in recruitment through declines in food availability. Differences in population trajectories of lesser snow geese (Chen caerulescens caerulescens; hereafter snow geese) and Ross's geese (C. rossii) breeding in mixed-species colonies south of Queen Maud Gulf (QMG), in Canada's central arctic, suggest that density dependence may be limiting snow goose populations. Specifically, long-term declines in age ratios (immature:adult) of harvested snow geese may have resulted from declines in juvenile survival. Thus, we focused on juvenile (first-year) survival of snow and Ross's geese in relation to timing of reproduction (annual mean nest initiation date) and late summer weather. We banded Ross's and snow geese from 1991 to 2008 in the QMG Migratory Bird Sanctuary. We used age-structured mark-recapture models to estimate annual survival rates for adults and juveniles from recoveries of dead birds. Consistent with life history differences, juvenile snow geese survived at rates higher than juvenile Ross's geese. Juvenile survival of both species also was lower in late seasons, but was unrelated to arctic weather measured during a 17-day period after banding. We found no evidence of density dependence (i.e., a decline in juvenile survival over time) in either species. We also found no interspecific differences in age-specific hunting vulnerability, though juveniles were more vulnerable than adults in both species, as expected. Thus, interspecific differences in survival were unrelated to harvest. Lower survival of juvenile Ross's geese may result from natural migration mortality related to smaller body size (e.g., greater susceptibility to inclement weather or predation) compared to juvenile snow geese. Despite lower first-year survival, recruitment by Ross's geese may still be greater than that by snow geese because of earlier sexual maturity, greater breeding propensity, and higher nest success by Ross's geese. © 2012 The Wildlife Society.  相似文献   

2.
Climate change is most rapid in the Arctic, posing both benefits and challenges for migratory herbivores. However, population‐dynamic responses to climate change are generally difficult to predict, due to concurrent changes in other trophic levels. Migratory species are also exposed to contrasting climate trends and density regimes over the annual cycle. Thus, determining how climate change impacts their population dynamics requires an understanding of how weather directly or indirectly (through trophic interactions and carryover effects) affects reproduction and survival across migratory stages, while accounting for density dependence. Here, we analyse the overall implications of climate change for a local non‐hunted population of high‐arctic Svalbard barnacle geese, Branta leucopsis, using 28 years of individual‐based data. By identifying the main drivers of reproductive stages (egg production, hatching and fledging) and age‐specific survival rates, we quantify their impact on population growth. Recent climate change in Svalbard enhanced egg production and hatching success through positive effects of advanced spring onset (snow melt) and warmer summers (i.e. earlier vegetation green‐up) respectively. Contrastingly, there was a strong temporal decline in fledging probability due to increased local abundance of the Arctic fox, the main predator. While weather during the non‐breeding season influenced geese through a positive effect of temperature (UK wintering grounds) on adult survival and a positive carryover effect of rainfall (spring stopover site in Norway) on egg production, these covariates showed no temporal trends. However, density‐dependent effects occurred throughout the annual cycle, and the steadily increasing total flyway population size caused negative trends in overwinter survival and carryover effects on egg production. The combination of density‐dependent processes and direct and indirect climate change effects across life history stages appeared to stabilize local population size. Our study emphasizes the need for holistic approaches when studying population‐dynamic responses to global change in migratory species.  相似文献   

3.
In highly seasonal environments, timing of breeding of organisms is typically set to coincide with the period of highest resource availability. However, breeding phenology may not change at a rate sufficient to keep up with rapid changes in the environment in the wake of climate change. The lack of synchrony between the phenology of consumers and that of their resources can lead to a phenomenon called trophic mismatch, which may have important consequences on the reproductive success of herbivores. We analyzed long‐term data (1991–2010) on climate, plant phenology and the reproduction of a long‐distance Arctic migrant, the greater snow goose (Chen caerulescens atlantica), in order to examine the effects of mismatched reproduction on the growth of young. We found that geese are only partially able to adjust their breeding phenology to compensate for annual changes in the timing of high‐quality food plants, leading to mismatches of up to 20 days between the two. The peak of nitrogen concentration in plants, an index of their nutritive quality for goslings, occurred earlier in warm springs with an early snow melt. Likewise, mismatch between hatch dates of young and date of peak nitrogen was more important in years with early snow melt. Gosling body mass and structural size at fledging was reduced when trophic mismatch was high, particularly when the difference between date of peak nitrogen concentration and hatching was >9 days. Our results support the hypothesis that trophic mismatch can negatively affect the fitness of Arctic herbivores and that this is likely to be exacerbated by rising global temperatures.  相似文献   

4.
Anthropogenic climate disruption, including temperature and precipitation regime shifts, has been linked to animal population declines since the mid‐20th century. However, some species, such as Arctic‐breeding geese, have thrived during this period. An increased understanding of how climate disruption might link to demographic rates in thriving species is an important perspective in quantifying the impact of anthropogenic climate disruption on the global state of nature. The Greenland barnacle goose (Branta leucopsis) population has increased tenfold in abundance since the mid‐20th century. A concurrent weather regime shift towards warmer, wetter conditions occurred throughout its range in Greenland (breeding), Ireland and Scotland (wintering) and Iceland (spring and autumn staging). The aim of this study was to determine the relationship between weather and demographic rates of Greenland barnacle geese to discern the role of climate shifts in the population trend. We quantified the relationship between temperature and precipitation and Greenland barnacle goose survival and productivity over a 50 year period from 1968 to 2018. We detected significant positive relationships between warmer, wetter conditions on the Icelandic spring staging grounds and survival. We also detected contrasting relationships between warmer, wetter conditions during autumn staging and survival and productivity, with warm, dry conditions being the most favourable for productivity. Survival increased in the latter part of the study period, supporting the possibility that spring weather regime shifts contributed to the increasing population trend. This may be related to improved forage resources, as warming air temperatures have been shown to improve survival rates in several other Arctic and northern terrestrial herbivorous species through indirect bottom‐up effects on forage availability.  相似文献   

5.
The lesser snow goose (Anser caerulescens caerulescens) has been exterminated across a vast area of Eurasia. At present, it is unable to regenerate there, though its population in North America has reached fifteen million. In Eurasia, the only major nesting colony still persists on Wrangel Island, where the geese use the trophic resources together with ruminants. An assessment of the competitive networks and the trophic interactions between the geese and the ruminants was performed. The analysis of the significance of the trophic niche overlap and the competitive advantages of geese in the habitat preferences has proved that the ruminants are stronger competitors for trophic resources than the geese. It has been ascertained that the levels of competition for trophic resources and/or resource shortages are higher across the habitats of most types associated with the goose colony. The level of the competition for trophic resources is lower, and the feed resources are more diverse and abundant in the habitats that are used by the geese after leaving the colony. It can be concluded that the shortage of resources and/or the stronger competitors for trophic resources (the ruminants) cannot prevent restoration of extinct colonies or the formation of new colonies with a recent increase in the size of the goose population on Wrangel Island. The distribution, abundance, and quality of trophic resources and the competition for them with ruminants do not determine the goose choice of a habitat for a nesting colony. The choice depends on the microclimate and, probably, on a range of other factors.  相似文献   

6.
Abstract The dusky Canada goose (Branta canadensis occidentalis) population has been in long-term decline, likely due to reduced breeding productivity, but gosling survival of this population had not been examined. We studied gosling survival in broods of radiomarked adult females on the western Copper River Delta, Alaska, USA, during 1997–1999 and 2001–2003. Survival estimates for dusky Canada goose goslings to 45 days (x̄ = 0.32) were below estimates from most previous studies of geese. Daily survival of goslings increased with age and decreased with date of hatch. Precipitation during the first 3 days post-hatch was negatively related to gosling survival and this effect increased with date. Annual estimates of gosling survival were positively correlated with annual estimates of nest success, suggesting overlap in factors affecting nest and gosling survival. Nest success probably also directly affected gosling survival, because survival decreased with hatch date and more broods hatched from renests during years with low nest success. Gosling survival appears to play an important role in limiting current productivity of this population. Management directed at increasing nest success would likely also improve gosling survival. We recommend additional research directed at examining sources of gosling mortality and the link between nest success and gosling survival.  相似文献   

7.
Trophic interactions in a high arctic snow goose colony   总被引:2,自引:1,他引:1  
We examined the role of trophic interactions in structuringa high arctic tundra community characterized by a large breedingcolony of greater snow geese (Chen caerulescens atlantica).According to the exploitation ecosystem hypothesis of Oksanenet al. (1981), food chains are controlled by top-down interactions.However, because the arctic primary productivity is low, herbivorepopulations are too small to support functional predator populationsand these communities should thus be dominated by the plant/herbivore trophic-level interaction. Since 1990, we have beenmonitoring annual abundance and productivity of geese, the impactof goose grazing, predator abundance (mostly arctic foxes, Alopexlagopus) and the abundance of lemmings, the other significantherbivore in this community, on Bylot Island, Nunavut, Canada.Goose grazing consistently removed a significant proportionof the standing crop (  相似文献   

8.
9.
Abstract The Beringia region of the Arctic contains 2 colonies of lesser snow geese (Chen caerulescens caerulescens) breeding on Wrangel Island, Russia, and Banks Island, Canada, and wintering in North America. The Wrangel Island population is composed of 2 subpopulations from a sympatric breeding colony but separate wintering areas, whereas the Banks Island population shares a sympatric wintering area in California, USA, with one of the Wrangel Island subpopulations. The Wrangel Island colony represents the last major snow goose population in Russia and has fluctuated considerably since 1970, whereas the Banks Island population has more than doubled. The reasons for these changes are unclear, but hypotheses include independent population demographics (survival and recruitment) and immigration and emigration among breeding or wintering populations. These demographic and movement patterns have important ecological and management implications for understanding goose population structure, harvest of admixed populations, and gene flow among populations with separate breeding or wintering areas. From 1993 to 1996, we neckbanded molting birds at their breeding colonies and resighted birds on the wintering grounds. We used multistate mark-recapture models to evaluate apparent survival rates, resighting rates, winter fidelity, and potential exchange among these populations. We also compared the utility of face stain in Wrangel Island breeding geese as a predictor of their wintering area. Our results showed similar apparent survival rates between subpopulations of Wrangel Island snow geese and lower apparent survival, but higher emigration, for the Banks Island birds. Males had lower apparent survival than females, most likely due to differences in neckband loss. Transition between wintering areas was low (<3%), with equal movement between northern and southern wintering areas for Wrangel Island birds and little evidence of exchange between the Banks and northern Wrangel Island populations. Face staining was an unreliable indicator of wintering area. Our findings suggest that northern and southern Wrangel Island subpopulations should be considered a metapopulation in better understanding and managing Pacific Flyway lesser snow geese. Yet the absence of a strong population connection between Banks Island and Wrangel Island geese suggests that these breeding colonies can be managed as separate but overlapping populations. Additionally, winter population fidelity may be more important in lesser snow geese than in other species, and both breeding and wintering areas are important components of population management for sympatric wintering populations.  相似文献   

10.
During spring migration, herbivorous waterfowl breeding in the Arctic depend on peaks in the supply of nitrogen‐rich forage plants, following a “green wave” of grass growth along their flyway to fuel migration and reproduction. The effects of climate warming on forage plant growth are expected to be larger at the Arctic breeding grounds than in temperate wintering grounds, potentially disrupting this green wave and causing waterfowl to mistime their arrival on the breeding grounds. We studied the potential effect of climate warming on timing of food peaks along the migratory flyway of the Russian population of barnacle geese using a warming experiment with open‐top chambers. We measured the effect of 1.0–1.7°C experimental warming on forage plant biomass and nitrogen concentration at three sites along the migratory flyway (temperate wintering site, temperate spring stopover site, and Arctic breeding site) during 2 months for two consecutive years. We found that experimental warming increased biomass accumulation and sped up the decline in nitrogen concentration of forage plants at the Arctic breeding site but not at temperate wintering and stop‐over sites. Increasing spring temperatures in the Arctic will thus shorten the food peak of nitrogen‐rich forage at the breeding grounds. Our results further suggest an advance of the local food peak in the Arctic under 1–2°C climate warming, which will likely cause migrating geese to mistime their arrival at the breeding grounds, particularly considering the Arctic warms faster than the temperate regions. The combination of a shorter food peak and mistimed arrival is likely to decrease goose reproductive success under climate warming by reducing growth and survival of goslings after hatching.  相似文献   

11.
The abundance of greater white-fronted geese (Anser albifrons frontalis) on the Arctic Coastal Plain (ACP) of northern Alaska, USA, has more than tripled since the late 1990s; however, recent rate of annual population growth has declined as population size increased, which may indicate white-fronted geese on the ACP are approaching carrying capacity. We examined rates of gosling growth in greater white-fronted geese at 3 sites on the ACP during 2012–2014 to assist with predictions of future population trends and assess evidence for density-dependent constraints on recruitment. We marked goslings at hatch with individually coded webtags and conducted brood drives during early August to capture, measure, and weigh goslings. Annual estimates of gosling mass at 32 days old (range = 1,190–1,685) indicate that goslings had obtained >60% of asymptotic size. This rate of growth corresponds with that of other goose species and populations with access to high-quality forage and no limitations on forage availability, and is consistent with the overall increase in abundance of white-fronted geese at the ACP scale. Contrary to most previous investigations, age-adjusted mass of goslings did not decline with hatch date. Goslings grew faster in coastal areas than at inland freshwater sites. Taken together, these findings suggest forage was not limiting gosling growth rates in either ecosystem, but forage was of greater quality in coastal areas where goose foraging habitat is expanding because of permafrost subsidence. Spatial patterns of gosling growth corresponded with local-scale patterns of population density and population change; the areas with greatest rates of gosling growth were those with the greatest population density and rates of population increase. We found little evidence to suggest forage during brood rearing was limiting population increase of white-fronted geese on the ACP. Factors responsible for the apparent slowing of ACP-wide population growth are likely those that occur in stages of the annual cycle outside of the breeding grounds. Published 2021. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

12.
Climate change driven advances in the date of sea ice breakup will increasingly lead to a loss of spring polar bear foraging opportunities on ringed seal pups creating a phenological trophic ‘mismatch’. However, the same shift will lead to a new ‘match’ between polar bears and ground nesting birds. This new match will be especially prevalent along the Cape Churchill Peninsula of western Hudson Bay where both polar bears and nesting snow geese are abundant. Easily foraged goose eggs will provide at least some of the earlier arriving polar bears with compensation for the energy deficit accrued through lost seal hunting opportunities. We examine the potential impact of changes in the extent and pattern of polar bear egg predation on snow goose abundance using projection models that account not only for increases in the temporal overlap of the two species but also for autocorrelation and stochasticity in the processes underlying polar bear onshore arrival and snow goose incubation. Egg predation will reduce reproductive output of the nesting lesser snow geese and, under all but trivial rates, will lead to a reduction in the size of their nesting population on the Cape Churchill Peninsula. Stochasticity associated with the asymmetrical advances in polar bear onshore arrival and the snow goose incubation period will lead to periodic mismatches in their overlap. These, in turn, will allow snow goose abundance to increase periodically. Climate driven changes in trophic matches and mismatches may reduce snow goose numbers but will not eliminate this over‐abundant species that poses a threat to Arctic landscapes.  相似文献   

13.
Intensification of agriculture since the 1950s has enhanced the availability, competitive ability, crude protein content, digestibility and extended growing seasons of forage grasses. Spilled cereal grain also provides a rich food source in autumn and in winter. Long‐distance migratory herbivorous geese have rapidly exploited these feeding opportunities and most species have shown expansions in range and population size in the last 50 years. Results of long‐term studies are presented from two Arctic‐breeding populations, the Svalbard pink‐footed goose and the Greenland white‐fronted goose (GWFG). GWFGs have shown major habitat shifts since the 1950s from winter use of plant storage organs in natural wetlands to feeding on intensively managed farmland. Declines in local density on, and abandonment of, unmodified traditional wintering habitat and increased reproductive success among those birds wintering on farmland suggest that density‐dependent processes were not the cause of the shift in this winter‐site‐faithful population. Based on enhanced nutrient and energy intake rates, we argue that observed shifts in both species from traditionally used natural habitats to intensively managed farmland on spring staging and wintering areas have not necessarily been the result of habitat destruction. Increased food intake rates and potential demographic benefits resulting from shifts to highly profitable foraging opportunities on increasingly intensively managed farmland, more likely explain increases in goose numbers in these populations. The geographically exploratory behaviour of subdominant individuals enables the discovery and exploitation of new winter feeding opportunities and hence range expansion. Recent destruction of traditional habitats and declines in farming at northern latitudes present fresh challenges to the well being of both populations. More urgently, Canada geese colonizing breeding and moulting habitats of white‐fronted geese in Greenland are further affecting their reproductive output.  相似文献   

14.
Recent declines in black brant (Branta bernicla nigricans) are likely the result of low recruitment. In geese, recruitment is strongly affected by habitat conditions experienced by broods because gosling growth rates are indicative of forage conditions during brood rearing and strongly influence future survival and productivity. In 2006–2008, we studied gosling growth at 3 of the 4 major colonies on the Yukon-Kuskokwim Delta, Alaska. Estimates of age-adjusted gosling mass at the 2 southern colonies (approx. 30% of the world population of breeding black brant) was low (gosling mass at 30.5 days ranged 346.7 ± 42.5 g to 627.1 ± 15.9 g) in comparison to a third colony (gosling mass at 30.5 days ranged 640.0 ± 8.3 g to 821.6 ± 13.6 g) and to most previous estimates of age-adjusted mass of brant goslings. Thus, our results are consistent with the hypothesis that poor gosling growth is negatively influencing the brant population. There are 2 non-mutually exclusive explanations for the apparent growth rates we observed. First, the population decline may have been caused by density-independent factors and habitat capacity has declined along with the population as a consequence of the unique foraging feedback between brant and their grazing habitats. Alternatively, a reduction in habitat capacity, as a result of changes to the grazing system, may have negatively influenced gosling growth, which is contributing to the overall long-term population decline. We found support for both explanations. For colonies over habitat capacity we recommend management to enhance foraging habitat, whereas for colonies below habitat capacity we recommend management to increase nesting productivity. © 2010 The Wildlife Society.  相似文献   

15.
Pink-footed geese Anser brachyrhynchus nest in two contrasting but commonly found habitats: steep cliffs and open tundra slopes. In Svalbard, we compared nest densities and nesting success in these two environments over ten breeding seasons to assess the impact of spring snow cover, food availability to nesting adults and arctic fox Vulpes lagopus (main terrestrial predator) abundance. In years with extensive spring snow cover, fewer geese at both colonies attempted to breed, possibly because snow cover limited pre-nesting feeding opportunities, leaving adults in poor breeding condition. Nesting success at the steep cliff colony was lower with extensive spring snow cover; such conditions force birds to commit to repeated and prolonged recess periods at far distant feeding areas, leaving nests open to predation. By contrast, nesting success at the open tundra slope was not affected by spring snow cover; even if birds were apparently in poor condition they could feed immediately adjacent to their nests and defend them from predators. Foxes were the main nest predator in the open tundra slopes but avian predators likely had a larger impact at the steep cliffs colony. Thus, the relative inaccessibility of the cliffs habitat may bring protection from foxes but also deprives geese from readily accessing feeding areas, with the best prospects for successful nesting in low spring snow cover years. Our findings indicate that spring snow cover, predator abundance and food proximity did not uniformly influence nesting success of this herbivore, and their effects were dependent on nesting habitat choice.  相似文献   

16.
Evidence that decoy harvest techniques primarily remove individuals of poorer body condition is well established in short-lived duck species; however, there is limited support for condition bias in longer-lived waterfowl species, such as geese, where decoy harvest is considered primarily additive because of their high natural survival rates. We evaluated support for the harvest condition bias hypothesis of 2 long-lived waterfowl species, the lesser snow goose (Anser caerulescens caerulescens) and Ross's goose (Anser rossii). We used proximate analysis to quantify lipid and protein content of lesser snow and Ross's geese collected during the Light Goose Conservation Order (LGCO) in 2015 and 2016 during spring migration in Arkansas, Missouri, Nebraska, and South Dakota, USA. In each state, LGCO participants collected birds using traditional decoy techniques and we collected birds from the general population using jump-shooting tactics. Total body lipid content in both lesser snow and Ross's geese varied with age, region of harvest, and harvest type (decoy or jump-shooting). On average, adult lesser snow and Ross's geese harvested over decoys had 60 g and 41 g, respectively, fewer lipids than conspecifics collected using jump-shooting. We observed lower lipid reserves in decoy-shot geese in all 4 states sampled despite general gains in lipid reserves as migration chronology progressed. Our data support that the harvest condition bias extends to longer-lived waterfowl species and during a life-history event (spring migration) in which harvest is not normally observed. In the case of overabundant light geese, the disproportionate harvest of poorer-conditioned lesser snow and Ross's geese may serve as an additional challenge against any realized effects of harvest to reduce the population, in addition to extremely low harvest rates. © 2019 The Wildlife Society.  相似文献   

17.
Quantifying spatial patterns of bird nests and nest fate provides insights into processes influencing a species’ distribution. At Cape Churchill, Manitoba, Canada, recent declines in breeding Eastern Prairie Population Canada geese (Branta canadensis interior) has coincided with increasing populations of nesting lesser snow geese (Chen caerulescens caerulescens) and Ross’s geese (Chen rossii). We conducted a spatial analysis of point patterns using Canada goose nest locations and nest fate, and lesser snow goose nest locations at two study areas in northern Manitoba with different densities and temporal durations of sympatric nesting Canada and lesser snow geese. Specifically, we assessed (1) whether Canada geese exhibited territoriality and at what scale and nest density; and (2) whether spatial patterns of Canada goose nest fate were associated with the density of nesting lesser snow geese as predicted by the protective-association hypothesis. Between 2001 and 2007, our data suggest that Canada geese were territorial at the scale of nearest neighbors, but were aggregated when considering overall density of conspecifics at slightly broader spatial scales. The spatial distribution of nest fates indicated that lesser snow goose nest proximity and density likely influence Canada goose nest fate. Our analyses of spatial point patterns suggested that continued changes in the distribution and abundance of breeding lesser snow geese on the Hudson Bay Lowlands may have impacts on the reproductive performance of Canada geese, and subsequently the spatial distribution of Canada goose nests.  相似文献   

18.
The Mid‐Continent Population of the lesser snow goose, which breeds in the eastern and central Canadian Arctic and sub‐Arctic, and winters in the southern United States and northern Mexico has increased 5–7% annually from the late 1960s to the mid‐1990s, largely because of increased survival in response to an agricultural food subsidy. The rise in numbers complements the increased use of nitrogen fertilizers and a corresponding rise in yields of rice, corn, and wheat along the flyways and on the wintering grounds. In sub‐Arctic migration areas and at Arctic breeding colonies, foraging by high numbers of birds has led to loss of coastal vegetation, adverse changes in soil properties and the establishment of an alternative stable state of exposed sediment, which can be detected with LANDSAT imagery. At a local scale, gosling growth, size and survival decreased in affected areas and other taxa have been adversely affected. The food subsidy on wintering and migration areas appears insufficient to meet reproductive demands as foraging in spring continues to occur on southern Hudson Bay staging and nesting areas. The recent introduction of liberal hunting regulations may reduce population size in the near term, but the revegetation of these coastal ecosystems will take decades to achieve. The present pattern of vegetation loss in these Arctic coastal systems is likely to continue in the forseeable future.  相似文献   

19.
Tundra ecosystems are widely recognized as precious areas and globally important carbon (C) sinks, yet our understanding of potential threats to these habitats and their large soil C store is limited. Land‐use changes and conservation measures in temperate regions have led to a dramatic expansion of arctic‐breeding geese, making them important herbivores of high‐latitude systems. In field experiments conducted in high‐Arctic Spitsbergen, Svalbard, we demonstrate that a brief period of early season belowground foraging by pink‐footed geese is sufficient to strongly reduce C sink strength and soil C stocks of arctic tundra. Mechanisms are suggested whereby vegetation disruption due to repeated use of grubbed areas opens the soil organic layer to erosion and will thus lead to progressive C loss. Our study shows, for the first time, that increases in goose abundance through land‐use change and conservation measures in temperate climes can dramatically affect the C balance of arctic tundra.  相似文献   

20.
Abstract. The North American mid‐continent population of Lesser snow geese (Chen caerulescens caerulescens L.) has increased by ca. 7% per year, largely as a result of geese feeding on agricultural crops in winter and on migration. We describe the long‐term effects of increasing numbers of geese at an arctic breeding ground (La Pérouse Bay, Manitoba) on intertidal salt‐marsh vegetation. Between 1985 and 1999 goose grubbing caused considerable loss of graminoid vegetation along transects in intertidal marshes. Loss of vegetation led to bare sediment with a plant cover of less than 2%. Changes in vegetation could not be described by simple linear, geometric or exponential functions; most losses occurred between 1988 and 1990 and losses were staggered in time between individual transects, some of which had all vegetation removed. Between 1979 and 1999 the standing crop in July in remaining intact heavily‐grazed swards of Puccinellia phry‐ganodes and Carex subspathacea fell from 40–60 g m‐2 to 20–30 g m‐2. Intense grazing on remaining patches of sward has restricted growth of these clonal forage plants and hypersalinity of bare sediments has precluded re‐establishment of vegetation. Between 1989 and 1993 numbers of faecal droppings in grazed plots reached maximum values of 15–22 droppings m‐2 wk‐1. Since then peak values have remained at less than 13 droppings m‐2 wk‐1. The loss of vegetation and changes in soil conditions have resulted in the establishment of an alternative stable state (hypersaline bare sediment).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号