共查询到20条相似文献,搜索用时 0 毫秒
1.
Etiology of the Alzheimer’s disease (AD) is not fully understood. Different pathological processes are considered, such as amyloid deposition, tau protein phosphorylation, oxidative stress (OS), metal ion disregulation, or chronic neuroinflammation. Purinergic signaling is involved in all these processes, suggesting the importance of nucleotide receptors (P2X and P2Y) and adenosine receptors (A1, A2A, A2B, A3) present on the CNS cells. Ecto-purines, ecto-pyrimidines, and enzymes participating in their metabolism are present in the inter-cellular spaces. Accumulation of amyloid-β (Aβ) in brain induces the ATP release into the extra-cellular space, which in turn stimulates the P2X7 receptors. Activation of P2X7 results in the increased synthesis and release of many pro-inflammatory mediators such as cytokines and chemokines. Furthermore, activation of P2X7 leads to the decreased activity of α-secretase, while activation of P2Y2 receptor has an opposite effect. Simultaneous inhibition of P2X7 and stimulation of P2Y2 would therefore be the efficient way of the α-secretase activation. Activation of P2Y2 receptors present in neurons, glia cells, and endothelial cells may have a positive neuroprotective effect in AD. The OS may also be counteracted via the purinergic signaling. ADP and its non-hydrolysable analogs activate P2Y13 receptors, leading to the increased activity of heme oxygenase, which has a cytoprotective activity. Adenosine, via A1 and A2A receptors, affects the dopaminergic and glutaminergic signaling, the brain-derived neurotrophic factor (BNDF), and also changes the synaptic plasticity (e.g., causing a prolonged excitation or inhibition) in brain regions responsible for learning and memory. Such activity may be advantageous in the Alzheimer’s disease. 相似文献
2.
Tecalco-Cruz Angeles C. Zepeda–Cervantes Jesús Ortega-Domínguez Bibiana 《Molecular biology reports》2021,48(11):7517-7526
Molecular Biology Reports - Estrogens are hormones that play a critical role during development and growth for the adequate functioning of the reproductive system of women, as well as for... 相似文献
3.
Our ageing society is confronted with a dramatic increase in incidence of age-related neurodegenerative diseases; biomedical research leading to novel therapeutic strategies is crucial to address this problem. Animal models of neurodegenerative conditions are invaluable in improving our understanding of the molecular basis of pathology, potentially revealing novel targets for intervention. Here, we review transgenic animal models of Alzheimer’s and Parkinson’s disease reported in mice, zebrafish, Caenorhabditis elegans and Drosophila melanogaster. This information will enable researchers to compare different animal models targeting disease-associated molecules by genomic engineering and to facilitate the development of novel animal models for any particular study, depending on the ultimate research goals. 相似文献
4.
5.
6.
Mohamed Helal Erwan Hingant Laurent Pujo-Menjouet Glenn F. Webb 《Journal of mathematical biology》2014,69(5):1207-1235
We introduce a mathematical model of the in vivo progression of Alzheimer’s disease with focus on the role of prions in memory impairment. Our model consists of differential equations that describe the dynamic formation of \(\upbeta \) -amyloid plaques based on the concentrations of A \(\upbeta \) oligomers, PrPC proteins, and the A \(\upbeta \) - \(\times \) -PrPCcomplex, which are hypothesized to be responsible for synaptic toxicity. We prove the well-posedness of the model and provided stability results for its unique equilibrium, when the polymerization rate of \(\upbeta \) -amyloid is constant and also when it is described by a power law. 相似文献
7.
Macreadie IG 《European biophysics journal : EBJ》2008,37(3):295-300
This brief review discusses copper transport in humans, with an emphasis on knowledge learned from one of the simplest model
organisms, yeast. There is a further focus on copper transport in Alzheimer’s Disease (AD). Copper homeostasis is essential
for the well-being of all organisms, from bacteria to yeast to humans: survival depends on maintaining the required supply
of copper for the many enzymes, dependent on copper for activity, while ensuring that there is no excess free copper, which
would cause toxicity. A virtual orchestra of proteins are required to achieve copper homeostasis. For copper uptake, Cu(II)
is first reduced to Cu(I) via a membrane-bound reductase. The reduced copper can then be internalised by a copper transporter
where it is transferred to copper chaperones for transport and specific delivery to various organelles. Of significance are
internal copper transporters, ATP7A and ATP7B, notable for their role in disorders of copper deficiency and toxicity, Menkes
and Wilson’s disease, respectively. Metallothioneins and Cu/Zn superoxide dismutase can protect against excess copper in cells.
It is clear too, increasing age, environmental and lifestyle factors impact on brain copper. Studies on AD suggest an important
role for copper in the brain, with some AD therapies focusing on mobilising copper in AD brains. The transport of copper into
the brain is complex and involves numerous players, including amyloid precursor protein, Aβ peptide and cholesterol. 相似文献
8.
We studied the effects of aggregated amyloid β-peptide Aβ25–35 on spatial memory and the spectral-correlational characteristics of EEG of both the dorsal hippocampus and the frontal cortex both in adult and aged rats at the early stage of Aβ25–35 action. Spatial memory was characterized using a novel cognitive test. A decrease in low-frequency theta band oscillations in the dorsal hippocampus and the frontal cortex was observed. The mean coefficient of EEG cross-correlation between these structures was significantly reduced at the early stage of Aβ25–35 action both in adult and aged rats. In addition, we found that one month after Aβ25–35 injection spatial memory was impaired. These results suggest that the decrease in low-frequency theta band oscillations and the weakening of binding between the dorsal hippocampus and the frontal cortex under the action of Aβ25–35 may be an underlying cause of the typical memory breakdown associated with the Alzheimer’s disease. 相似文献
9.
Alzheimer’s disease (AD) is a most common neurodegenerative disorder, which associates with impaired cognition. Gut microbiota can modulate host brain function and behavior via microbiota-gut-brain axis, including cognitive behavior. Germ-free animals, antibiotics, probiotics intervention and diet can induce alterations of gut microbiota and gut physiology and also host cognitive behavior, increasing or decreasing risks of AD. The increased permeability of intestine and blood-brain barrier induced by gut microbiota disturbance will increase the incidence of neurodegeneration disorders. Gut microbial metabolites and their effects on host neurochemical changes may increase or decrease the risk of AD. Pathogenic microbes infection will also increase the risk of AD, and meanwhile, the onset of AD support the “hygiene hypothesis”. All the results suggest that AD may begin in the gut, and is closely related to the imbalance of gut microbiota. Modulation of gut microbiota through personalized diet or beneficial microbiota intervention will probably become a new treatment for AD. 相似文献
10.
11.
A. V. Alessenko 《Biochemistry (Moscow) Supplemental Series B: Biomedical Chemistry》2013,7(2):108-123
The review discusses the functional role of sphingolipids in the pathogenesis of Alzheimer’s disease (AD). Certain evidence exists that the imbalance of sphingolipids such as sphingomyelin, ceramide, sphingosine, sphingosine-1-phosphate and galactosylceramide in the brain of animals and humans, in the cerebrospinal fluid and blood plasma of AD patients plays a crucial role in neuronal function by regulating growth, differentiation and cell death in CNS. Activation of sphingomyelinase (Smase), which leads to the accumulation of the proapoptotic agent, ceramide, can be considered as a new mechanism for AD and may be a prerequisite for the treatment of this disease by using drugs that inhibit SMase activity. The role of sphingolipids as biomarkers for the diagnosis of the early stage of Alzheimer’s disease and monitoring the effectiveness of treatment with new drugs is discussed. 相似文献
12.
Sian-Yang Ow Dave E Dunstan 《Protein science : a publication of the Protein Society》2014,23(10):1315-1331
Amyloid fibrils are self-assembled fibrous protein aggregates that are associated with a number of presently incurable diseases such as Alzheimer’s and Parkinson’s disease. Millions of people worldwide suffer from amyloid diseases. This review summarizes the unique cross-β structure of amyloid fibrils, morphological variations, the kinetics of amyloid fibril formation, and the cytotoxic effects of these fibrils and oligomers. Alzheimer’s disease is also explored as an example of an amyloid disease to show the various approaches to treat these amyloid diseases. Finally, this review investigates the nanotechnological and biological applications of amyloid fibrils; as well as a summary of the typical biological pathways involved in the disposal of amyloid fibrils and their precursors. 相似文献
13.
14.
Alzheimer’s disease (AD) is the most common form of dementia, afflicting more than 30 million people worldwide. Currently, there is no cure or way to prevent this devastating disease. Extracellular plaques, containing various forms of amyloid-β protein (Aβ), and intracellular neurofibrillary tangles (NFTs), composed of hyper-phosphorylated tau protein, are two major pathological hallmarks of the AD brain. Aggregation, deposition, and N-terminal modification of Aβ protein and tau phosphorylation and aggregation are thought to precede the onset of cognitive decline, which is better correlated with tangle formation and neuron loss. Active and passive vaccines against various forms of Aβ have shown promise in pre-clinical animal models. However, translating these results safely and effectively into humans has been challenging. Recent clinical trials showed little or no cognitive efficacy, possibly due to the fact that the aforementioned neurodegenerative processes most likely pre-existed in the patients well before the start of immunotherapy. Efforts are now underway to treat individuals at risk for AD prior to or in the earliest stages of cognitive decline with the hope of preventing or delaying the onset of the disease. In addition, efforts to immunize against tau and other AD-related targets are underway. 相似文献
15.
Alzheimer Disease (AD) is the most common neurodegenerative disorder worldwide, and account for 60% to 70% of all cases of progressive cognitive impairment in elderly patients. At the microscopic level distinctive features of AD are neurons and synapses degeneration, together with extensive amounts of senile plaques and neurofibrillars tangles. The degenerative process probably starts 20–30 years before the clinical onset of the disease. Senile plaques are composed of a central core of amyloid β peptide, Aβ, derived from the metabolism of the larger amyloid precursor protein, APP, which is expressed not only in the brain, but even in non neuronal tissues. More than 30 years ago, some studies reported that human platelets express APP and all the enzymatic activities necessary to process this protein through the same pathways described in the brain. Since then a large number of evidence has been accumulated to suggest that platelets may be a good peripheral model to study the metabolism of APP, and the pathophysiology of the onset of AD. In this review, we will summarize the current knowledge on the involvement of platelets in Alzheimer Disease. Although platelets are generally accepted as a suitable model for AD, the current scientific interest on this model is very high, because many concepts still remain debated and controversial. At the same time, however, these still unsolved divergences mirror a difficulty to establish constant parameters to better defined the role of platelets in AD. 相似文献
16.
17.
Chasing genes in Alzheimer’s and Parkinson’s disease 总被引:4,自引:0,他引:4
Alzheimers disease (AD), the most common type of dementia, and Parkinsons disease (PD), the most common movement disorder, are both neurodegenerative adult-onset diseases characterized by the progressive loss of specific neuronal populations and the accumulation of intraneuronal inclusions. The search for genetic and environmental factors that determine the fate of neurons during the ageing process has been a widespread approach in the battle against neurodegenerative disorders. Genetic studies of AD and PD initially focused on the search for genes involved in the aetiological mechanisms of monogenic forms of these diseases. They later expanded to study hundreds of patients, affected relative-pairs and population-based studies, sometimes performed on special isolated populations. A growing number of genes (and pathogenic mutations) is being identified that cause or increase susceptibility to AD and PD. This review discusses the way in which strategies of gene hunting have evolved during the last few years and the significance of finding genes such as the presenilins, -synuclein, parkin and DJ-1. In addition, we discuss possible links between these two neurodegenerative disorders. The clinical, pathological and genetic presentation of AD and PD suggests the involvement of a few overlapping interrelated pathways. Their imbricate features point to a spectrum of neurodegeneration (tauopathies, synucleinopathies, amyloidopathies) that need further intense investigation to find the missing links. 相似文献
18.
19.
20.
Alzheimer’s disease (AD) is the leading cause of dementia. The two histopathological markers of AD are amyloid plaques composed of the amyloid-β (Aβ) peptide, and neurofibrillary tangles of aggregated, abnormally hyperphosphorylated tau protein. The majority of AD cases are late-onset, after the age of 65, where a clear cause is still unknown. However, there are likely different multifactorial contributors including age, enviornment, biology and genetics which can increase risk for the disease. Genetic predisposition is considerable, with heritability estimates of 60–80%. Genetic factors such as rare variants of TREM2 (triggering receptor expressed on myeloid cells-2) strongly increase the risk of developing AD, confirming the role of microglia in AD pathogenesis. In the last 5 years, several studies have dissected the mechanisms by which TREM2, as well as its rare variants affect amyloid and tau pathologies and their consequences in both animal models and in human studies. In this review, we summarize increases in our understanding of the involvement of TREM2 and microglia in AD development that may open new therapeutic strategies targeting the immune system to influence AD pathogenesis. 相似文献