首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pollinator and/or mate scarcity affects pollen transfer, with important ecological and evolutionary consequences for plant reproduction. However, the way in which the pollen loads transported by pollinators and deposited on stigmas are affected by pollination context has been little studied. We investigated the impacts of plant mate and visiting insect availabilities on pollen transport and receipt in a mass‐flowering and facultative autogamous shrub (Rhododendron ferrugineum). First, we recorded insect visits to R. ferrugineum in plant patches of diverse densities and sizes. Second, we analyzed the pollen loads transported by R. ferrugineum pollinators and deposited on stigmas of emasculated and intact flowers, in the same patches. Overall, pollinators (bumblebees) transported much larger pollen loads than the ones found on stigmas, and the pollen deposited on stigmas included a high proportion of conspecific pollen. However, comparing pollen loads of emasculated and intact flowers indicated that pollinators contributed only half the conspecific pollen present on the stigma. At low plant density, we found the highest visitation rate and the lowest proportion of conspecific pollen transported and deposited by pollinators. By contrast, at higher plant density and lower visitation rate, pollinators deposited larger proportion of conspecific pollen, although still far from sufficient to ensure that all the ovules were fertilized. Finally, self‐pollen completely buffered the detrimental effects on pollination of patch fragmentation and pollinator failure. Our results indicate that pollen loads from pollinators and emasculated flowers should be quantified for an accurate understanding of the relative impacts of pollinator and mate limitation on pollen transfer in facultative autogamous species.  相似文献   

2.
Outcrossing and sexual reproduction of most flowering plants depends on pollinators. Plant traits likely to be involved in pollinator attraction include flower color, shape, and size. Furthermore, plant or flower density and the temporal flowering pattern may have an effect on reproduction. In this study, we examine the pollination ecology, breeding system, female reproductive output, and germination of two tropical understory species, Stenostephanus lobeliiformis (Acanthaceae) and Besleria melancholica (Gesneriaceae), which differ in these traits. Pollinator observations revealed that the dense flowering S. lobeliiformis with pinkish flowers received a higher diversity of pollinators, but visitor frequency measured as visits per flower per hour was much less (0.1 h?1) than that to B. melancholica, which has a smaller floral display of dull-colored flowers (1.5 h?1). Pollination experiments revealed that S. lobeliiformis but not B. melancholica is pollen-limited. In addition, both species are partially self-incompatible and depend on pollinators for outcrossing. Natural fruit set of open-pollinated unmanipulated flowers (control treatment) in both species is 22–26 %. Germination studies indicated inbreeding depression in S. lobeliiformis. We conclude that the pollination ecology of these species is influenced by a broad set of traits and that very different combinations of these traits can be successful in terms of reproduction.  相似文献   

3.
  • Floral visitors differ in their efficacy as pollinators, and the impact of different pollinator species on pollen flow and plant reproduction has been frequently evaluated. In contrast, the impact of intraspecific behavioural changes on their efficacy as pollinators has seldom been quantified.
  • We studied a self‐incompatible shrub Palicourea rigida (Rubiaceae) and its hummingbird pollinators, which adjust their behaviour according to floral resource availability. Fluorescence microscopy was used to access pollen tube growth and incompatibility reaction in pistils after a single visit of territorial or intruder hummingbirds in two populations. To characterise the plant populations and possible differences in resource availability between areas we used a three‐term quadrat variance method to detect clusters of floral resources.
  • Within‐species variation in foraging behaviour, but not species identity, affected pollinator efficacy. Effectively, hummingbirds intruding into territories deposited more compatible pollen grains on P. rigida stigmas than territory holders in both study areas. Additionally, territory holders deposited more incompatible than compatible pollen grains.
  • Our results imply that intraspecific foraging behaviour variation has consequences for pollination success. Quantifying such variation and addressing the implications of intraspecific variability contribute to a better understanding of the dynamics and consequences of plant–pollinator interactions.
  相似文献   

4.
Plant–insect interactions often are important for plant reproduction, but the outcome of these interactions may vary with environmental context. Pollinating seed predators have positive and negative effects on host plant reproduction, and the interaction outcome is predicted to vary with density or abundance of the partners. We studied the interaction between Silene stellata, an herbaceous perennial, and Hadena ectypa, its specialized pollinating seed predator. Silene stellata is only facultatively dependent upon H. ectypa for pollination because other nocturnal moth co‐pollinators are equally effective at pollen transfer. We hypothesized that for plants without conspecific neighbors, H. ectypa would have higher visitation rates compared to co‐pollinators, and the plants would experience lower levels of H. ectypa pollen deposition. We predicted similar oviposition throughout the study site but greater H. ectypa predation in the area without conspecific neighbors compared to plants embedded in a naturally high density area. We found that H. ectypa had consistently higher visitation than moth co‐pollinators in all host plant contexts. However, H. ectypa pollinator importance declined in areas with low conspecific density because of reduced pollen deposition, resulting in lower seed set. Conversely, oviposition was similar across the study site independent of host plant density. Greater likelihood of very high fruit predation combined with lower pollination by H. ectypa resulted in reduced S. stellata female reproductive success in areas with low conspecific density. Our results demonstrate local context dependency of the outcomes of pollinating seed predator interactions with conspecific host plant density within a population.  相似文献   

5.
  • Cockroaches have rarely been documented as pollinators. In this paper we examine whether this is because they might be inefficient at pollination compared to other pollinators. Clusia blattophila, a dioecious shrub growing on isolated rocky outcrops in French Guiana, is pollinated by Amazonina platystylata cockroaches and provides a valuable system for the study of cockroach pollination efficiency.
  • We examined the species composition of the visitor guild and visitation rates by means of camcorder recordings and visitor sampling. Then, we investigated the capacity for pollen transfer of principal visitors and found correlations between visitation rates and pollen loads on stigmas. In an exclusion experiment we determined the contributions of individual species to pollination success.
  • Amazonina platystylata, crickets and two species of Diptera transferred pollen, but the number of transferred pollen grains was only related to visitation rates in the case of cockroaches. Crickets visited and rarely carried pollen. Dipterans were as frequent as cockroaches, carried similar pollen loads, but transferred much less pollen. An estimated 41% and 17% of ovules were pollinated by cockroaches and dipterans, respectively. The remaining ovules were not pollinated. There was no spatial variation in pollinator guild composition, but cockroaches visited flowers less frequently at the smaller study site.
  • We demonstrate that cockroaches pollinate a large proportion of ovules. Their pollination service is not confined to one study site and, unlike that provided by dipterans, is not limited to certain years. We suggest that cockroach pollination has been overlooked and that cockroach‐pollinated plants, which share certain floral features, possess adaptations to pollination by cockroaches.
  相似文献   

6.
Climate change is predicted to result in increased occurrence and intensity of drought in many regions worldwide. By increasing plant physiological stress, drought is likely to affect the floral resources (flowers, nectar and pollen) that are available to pollinators. However, little is known about impacts of drought at the community level, nor whether plant community functional composition influences these impacts. To address these knowledge gaps, we investigated the impacts of drought on floral resources in calcareous grassland. Drought was simulated using rain shelters and the impacts were explored at multiple scales and on four different experimental plant communities varying in functional trait composition. First, we investigated the effects of drought on nectar production of three common wildflower species (Lathyrus pratensis, Onobrychis viciifolia and Prunella vulgaris). In the drought treatment, L. pratensis and P. vulgaris had a lower proportion of flowers containing nectar and O. viciifolia had fewer flowers per raceme. Second, we measured the effects of drought on the diversity and abundance of floral resources across plant communities. Drought reduced the abundance of floral units for all plant communities, irrespective of functional composition, and reduced floral species richness for two of the communities. Functional diversity did not confer greater resistance to drought in terms of maintaining floral resources, probably because the effects of drought were ubiquitous across component plant communities. The findings indicate that drought has a substantial impact on the availability of floral resources in calcareous grassland, which will have consequences for pollinator behaviour and populations.  相似文献   

7.
Variation in within-population floral density can affect interactions between plants and pollinators, resulting in variable pollen export for plants. We investigated the effects of conspecific and heterospecific floral densities on pollination success both of two related, self-compatible, nectar-rewarding orchid species in Ireland, Spiranthes romanzoffiana (rare and listed as endangered) and its congener, S. spiralis (more abundant and not of conservation concern). Floral densities, insect visitation rates, and orchid pollen transport were recorded in multiple quadrats in four populations of both orchid species over their flowering season. We found that conspecific and heterospecific co-flowering plant density affected pollination in both orchid species. For S. romanzoffiana, higher heterospecific density increased pollen removal. For S. spiralis, higher conspecific visitation increased pollen removal and increased heterospecific density decreased pollen deposition. In addition, increased conspecific density increased pollen deposition in both species. This study shows that plants may interact to facilitate or compete for different components of the pollination process, namely; pollinator attraction, pollen removal and deposition. Such interactions have immediate consequences for endangered plant species, as increases in both conspecific and heterospecific coflowering density may ameliorate the negative effects of rarity on pollination, hence overall reproductive success.  相似文献   

8.
Floral landscapes comprise diverse phytochemical combinations. Individual phytochemicals in floral nectar and pollen can reduce infection in bees and directly inhibit trypanosome parasites. However, gut parasites of generalist pollinators, which consume nectar and pollen from many plant species, are exposed to phytochemical combinations. Interactions between phytochemicals could augment or decrease effects of single compounds on parasites. Using a matrix of 36 phytochemical treatment combinations, we assessed the combined effects of two floral phytochemicals, eugenol and thymol, against four strains of the bumblebee gut trypanosome Crithidia bombi. Eugenol and thymol had synergistic effects against C. bombi growth across seven independent experiments, showing that the phytochemical combination can disproportionately inhibit parasites. The strength of synergistic effects varied across strains and experiments. Thus, the antiparasitic effects of individual compounds will depend on both the presence of other phytochemicals and parasite strain identity. The presence of synergistic phytochemical combinations could augment the antiparasitic activity of individual compounds for pollinators in diverse floral landscapes.  相似文献   

9.
Summary The island of Madagascar ranks second to the neotropics in diversity of Bignoniaceae. Tribe Coleeae (Bignoniaceae) is a monophyletic group of tropical trees endemic to Madagascar and surrounding islands. The Masoala assemblage of Coleeae, in northeastern Madagascar, utilizes four mechanisms for avoiding competition via niche specialization: (1) morphologically via characters that comprise syndromes, explaining part of the pattern in this system – although the syndrome concept is not perfect; (2) spatially via vertical stratification and potentially pollen placement; (3) temporally via phenological stagger; (4) ethologically via flowering duration and display. The 13 sympatric species of understory treelets and canopy trees did receive low flower visitor numbers. Contrary to the prevailing view of pollination systems where generalized systems predict equivalency between floral traits and pollinators, I found that different pollinators pollinated the 13 species of trees, that floral characters of different trees did not overlap in multidimensional phenotype space, and that few species of trees were visited by more than two pollinator groups. The use of multiple niches is potentially important in understanding both the origin and maintenance of tropical tree diversity.  相似文献   

10.
Canopy trees are largely responsible for the environmental heterogeneity in the understory of tropical and subtropical species‐rich forests, which in turn may influence sapling community dynamics. We tested the effect of the specific identity of four cloud forest canopy trees on total solar radiation, canopy openness, soil moisture, litter depth, and soil temperature, as well as on the structure and dynamics of the sapling community growing beneath their canopies. We observed significant effects of the specific identity of canopy trees on most understory microenvironmental variables. Soil moisture was higher and canopy openness lower beneath Cornus disciflora. In turn, canopy openness and total solar radiation were higher beneath Oreopanax xalapensis, while the lowest soil moisture occurred beneath Quercus laurina. Moreover, Chiranthodendron pentadactylon was the only species having a positive effect on litter depth under its canopy. In spite of these between‐species environmental differences, only C. pentadactylon had significant, negative effects on sapling density and species richness, which may be associated to low seed germination and seedling establishment due to an increased litter depth in its vicinity. The relevance of the specific identity of canopy trees for natural regeneration processes and species richness maintenance depends on its potential to differentially affect sapling dynamics through species‐specific modifications of microenvironmental conditions.  相似文献   

11.
Floral herbivores and pollinators are major determinants of plant reproduction. Because interaction of floral herbivores and pollinators occurs when herbivores attack the flowers in the bud and flower stages and because the compensatory ability of plants is known to differ according to the timing of herbivory, the effects of herbivory may differ according to its timing. In this study, we investigated the effects of floral herbivory at different stages on fruit production and seed/ovule ratio at two sites of large populations of the perennial herb, Iris gracilipes for 2 years. Herbivory at the bud and fruit stages both tended to have negative effects on fruit production, but the former caused more severe damage. On the other hand, herbivory at the flower stage tended not to have negative effects on fruit production because the degree of flower loss was smaller in the flower stage. Although herbivory decreased fruit production, flowers did not compensate for the damage by increasing the seed/ovule ratio because reproduction of I. gracilipes was limited by pollen availability rather than resources. These results indicate that floral herbivory at different stages has different effects on plant reproduction.  相似文献   

12.
Greater pollination intensity can enhance maternal plant fitness by increasing seed set and seed quality as a result of more intense pollen competition or enhanced genetic sampling. We tested experimentally these effects by varying the pollen load from a single pollen donor on stigmas of female flowers of Dalechampia scandens (Euphorbiaceae) and measuring the effects on seed number and seed mass. Seed set increased rapidly with pollen number at low to moderate pollen loads, and a maximum set of three seeds occurred with a mean pollen load of 19 pollen grains. We did not detect a trade‐off between the number of seeds and seed mass within a fruit. Seed mass increased with increasing pollen load, supporting the hypothesis of enhanced seed quality via increased pollen‐competition intensity or genetic sampling. These results suggest that maternal fitness increases with larger pollen loads, even when the fertilization success is already high. Our results further highlight the importance of high rates of pollen arrival onto stigmas, as mediated by reliable pollinators. Comparing the pollen‐to‐seed response curve obtained in this experiment with those observed in natural populations suggests that pollen limitation may be more severe in natural populations than predicted from greenhouse studies. These results also indicate that declines in pollinator abundance may decrease plant fitness through lowered seed quality before an effect on seed set is detected.  相似文献   

13.
The reproductive‐assurance hypothesis predicts that mating‐system traits will evolve towards increased autonomous self‐pollination in plant populations experiencing unreliable pollinator service. We tested this long‐standing hypothesis by assessing geographic covariation among pollinator reliability, outcrossing rates, heterozygosity and relevant floral traits across populations of Dalechampia scandens in Costa Rica. Mean outcrossing rates ranged from 0.16 to 0.49 across four populations, and covaried with the average rates of pollen arrival on stigmas, a measure of pollinator reliability. Across populations, genetically based differences in herkogamy (anther–stigma distance) were associated with variation in stigmatic pollen loads, outcrossing rates and heterozygosity. These observations are consistent with the hypothesis that, when pollinators are unreliable, floral traits promoting autonomous selfing evolve as a mechanism of reproductive assurance. Extensive covariation between floral traits and mating system among closely related populations further suggests that floral traits influencing mating systems track variation in adaptive optima generated by variation in pollinator reliability.  相似文献   

14.
Both differences in local plant density and phenotypic traits may affect pollination and plant reproduction, but little is known about how density affects trait–fitness relationships via changes in pollinator activity. In this study we examined how plant density and traits interact to determine pollinator behaviour and female reproductive success in the self‐incompatible, perennial herb Phyteuma spicatum. Specifically, we hypothesised that limited pollination service in more isolated plants would lead to increased selection for traits that attract pollinators. We conducted pollinator observations and assessed trait–fitness relationships in a natural population, whose individuals were surrounded by a variable number of inflorescences. Both local plant density and plant phenotypic traits affected pollinator foraging behaviour. At low densities, pollinator visitation rates were low, but increased with increasing inflorescence size, while this relationship disappeared at high densities, where visitation rates were higher. Plant fitness, in terms of seed production per plant and per capsule, was related to both floral display size and flowering time. Seed production increased with increasing inflorescence size and was highest at peak flowering. However, trait–fitness relationships were not density‐dependent, and differences in seed production did not appear to be related to differences in pollination. The reasons for this remain unclear, and additional studies are needed to fully understand and explain the observed patterns.  相似文献   

15.
  • Mutualistic (e.g. pollination) and antagonistic (e.g. herbivory) plant–insect interactions shape levels of plant fitness and can have interactive effects.
  • By using experimental plots of Brassica rapa plants infested with generalist (Mamestra brassicae) and specialised (Pieris brassicae) native herbivores and with a generalist invasive (Spodoptera littoralis) herbivore, we estimated both pollen movement among treatments and the visiting behaviour of honeybees versus other wild pollinators.
  • Overall, we found that herbivory has weak effects on plant pollen export, either in terms of inter‐treatment movements or of dispersion distance. Plants infested with the native specialised herbivore tend to export less pollen to other plants with the same treatment. Other wild pollinators preferentially visit non‐infested plants that differ from those of honeybees, which showed no preferences. Honeybees and other wild pollinators also showed different behaviours on plants infested with different herbivores, with the former tending to avoid revisiting the same treatment and the latter showing no avoidance behaviour. When taking into account the whole pollinator community, i.e. the interactive effects of honeybees and other wild pollinators, we found an increased avoidance of plants infested by the native specialised herbivore and a decreased avoidance of plants infested by the invasive herbivore.
  • Taken together, our results suggest that herbivory may have an effect on B. rapa pollination, but this effect depends on the relative abundance of honeybees and other wild pollinators.
  相似文献   

16.
In some tropical areas, annual cycles in the environment and plant phenology are not clearly detectable. In such aseasonal tropics, it was found that plant population density is associated with flowering intervals within the same habitats and within the same pollination guilds, if some conditions are satisfied. This finding is based on observations of flowering phenology of butterfly-pollinated understory shrubs of the genus Ixora (Rubiaceae) for 36 months in a mixed dipterocarp forest in Sarawak, northwest Borneo. Plants did not receive sufficient pollination services and fruit set was pollination-limited. Under such conditions, it is theoretically predicted that the plant types that reproduce frequently would have higher population density than those that reproduce less frequently, because common types must avoid competition for pollinators and rare types can have a large floral display by storing resources during long reproductive intervals to attract pollinators efficiently. Observed relationships among plant reproductive intervals, pollinator attractions and population densities in Ixora are consistent with theoretical predictions. Based on the theory proposed in this paper, I discuss a factor promoting diversification of the genus Ixora and other taxa.  相似文献   

17.
Community assembly is the result of multiple ecological and evolutionary forces that influence species coexistence. For flowering plants, pollinators are often essential for plant reproduction and establishment, and pollinator‐mediated interactions may influence plant community composition. Here, we use null models and community phylogenetic analyses of co‐occurrence patterns to determine the role of pollinator‐mediated processes in structuring plant communities dominated by congeners. We surveyed three species‐rich genera (Limnanthes, Mimulus and Clarkia) with centres of diversity in the Sierra Nevada of California. Each genus contains species that co‐flower and share pollinators, and each has a robust phylogeny. Within each genus, we surveyed 44–48 communities at three spatial scales, measured floral and vegetative traits and tested for segregation or aggregation of: (i) species, (ii) floral traits (which are likely to be influenced by pollinators), and (iii) vegetative traits (which are likely affected by other environmental factors). We detected both aggregation and segregation of floral traits that were uncorrelated with vegetative trait patterns; we infer that pollinators have shaped the community assembly although the mechanisms may be varied (competition, facilitation, or filtering). We also found that mating system differences may play an important role in allowing species co‐occurrence. Together, it appears that pollinators influence community assemblage in these three clades.  相似文献   

18.
Understory herbs are an essential part of tropical rain forests, but little is known about factors limiting their reproduction. Many of these herbs are clonal, patchily distributed, and produce large floral displays of nectar‐rich 1‐d flowers to attract hummingbird pollinators that may transport pollen over long distances. The aim of this study was to investigate the effects of clonality, cross‐proximity, and patchy distribution on the reproduction of the hummingbird‐pollinated Amazonian herb Heliconia metallica. We experimentally pollinated flowers within populations with self‐pollen and with pollen of different diversity, crossed flowers between populations, and added supplemental pollen to ramets growing solitarily or in conspecific patches. Only flowers pollinated early in the morning produced seeds. Selfed flowers produced seeds, but seed number and mass were strongly reduced, suggesting partial sterility and inbreeding depression after selfing. Because of pollen competition, flowers produced more seeds after crosses with several than with single donor plants. Crosses between populations mostly resulted in lower seed production than those within populations, suggesting outbreeding depression. Ramets in patches produced fewer seeds than solitary ramets and were more pollen‐limited, possibly due to geitonogamy and biparental inbreeding in patches. We conclude that high rates of geitonogamy due to clonality and pollen limitation due to the short receptivity of flowers and patchy distribution constrain the reproduction of this clonal herb. Even in unfragmented rain forests with highly mobile pollinators, outbreeding depression may be a widespread phenomenon in plant reproduction.  相似文献   

19.
Concerns over the availability of honeybees (Apis mellifera L.) to meet pollination demands have elicited interest in alternative pollinators to mitigate pressures on the commercial beekeeping industry. The blue orchard bee, Osmia lignaria (Say), is a commercially available native bee that can be employed as a copollinator with, or alternative pollinator to, honeybees in orchards. To date, their successful implementation in agriculture has been limited by poor recovery of bee progeny for use during the next spring. This lack of reproductive success may be tied to an inadequate diversity and abundance of alternative floral resources during the foraging period. Managed, supplementary wildflower plantings may promote O. lignaria reproduction in California almond orchards. Three wildflower plantings were installed and maintained along orchard edges to supplement bee forage. Plantings were seeded with native wildflower species that overlapped with and extended beyond almond bloom. We measured bee visitation to planted wildflowers, bee reproduction, and progeny outcomes across orchard blocks at variable distances from wildflower plantings during 2015 and 2016. Pollen provision composition was also determined to confirm O. lignaria wildflower pollen use. Osmia lignaria were frequently observed visiting wildflower plantings during, and after, almond bloom. Most O. lignaria nesting occurred at orchard edges. The greatest recovery of progeny occurred along the orchard edges having the closest proximity (80 m) to managed wildflower plantings versus edges farther away. After almond bloom, O. lignaria nesting closest to the wildflower plantings collected 72% of their pollen from Phacelia spp., which supplied 96% of the managed floral area. Phacelia spp. pollen collection declined with distance from the plantings, but still reached 17% 800 m into the orchard. This study highlights the importance of landscape context and proximity to supplementary floral resources in promoting the propagation of solitary bees as alternative managed pollinators in commercial agriculture.  相似文献   

20.
  • Long‐lived flowers increase pollen transfer rates, but these entail high water and carbon maintenance costs. The retention of pollinated and reward‐free old flowers enhances pollinator visitation to young receptive flowers by increasing floral display size. This mechanism is associated with acropetal inflorescences or changes in flower colour and openness, but the retention of unchanging solitary flowers remains overlooked.
  • We examined pollination‐dependent variation in floral longevity and determined stigmatic receptivity, pollen viability and pollen removal rates among flower ages in Kielmeyera regalis, a Neotropical savanna shrub. We also evaluated the effects of floral display size on pollinator visitation rates. Lastly, we determined whether old flowers are unvisited and exclusively increase pollinator attraction to young flowers through flower removal experiments.
  • Regardless of pollination treatment, flowers lasted fully open with no detectable physical changes for 3 days. Over time, stigmas remained receptive but >95% of pollen was removed. Pollinator visitation significantly increased with floral display size and intermediate percentages (15–30%) of newly opened flowers. Accordingly, the retention of reward‐free and unvisited old flowers increased young flower–pollinator interaction.
  • Our results reveal the importance of a prolonged floral longevity in increasing pollinator attraction toward newly opened receptive flowers without changes in flower colour and form. We conclude that the retention of pollinated, reward‐free and unvisited colour‐unchanged old flowers in K. regalis is a strategy that counteracts the water use costs associated with the maintenance of large flowers with increased mate opportunities in a pollen‐limited scenario.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号